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Double Andreev reflections in type-II Weyl semimetal-superconductor junctions
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We study the Andreev reflections (ARs) at the interface of the type-II Weyl semimetal-superconductor junctions
and find double ARs when the superconductor is put in the Weyl semimetal band tilting direction, which is similar
to the double reflections of light in anisotropic crystals. The directions of the double (retro and specular) ARs are
symmetric about the normal due to the hyperboloidal Fermi surface near the Weyl nodes, but with different AR
amplitudes depending on the incident electron. When the normal direction of the Weyl semimetal-superconductor
interface is changed from parallel to perpendicular with the band tilt, the double ARs gradually evolve into one
retro-AR and one normal reflection, resulting in an anisotropic differential conductance, which is a unique
observable signature for the double ARs in experiments.
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I. INTRODUCTION

In condensed matter physics, massless Dirac fermions or
chiral Weyl fermions exist as low-energy excitations and
exhibit many novel phenomena in quantum transport [1–9],
triggering much interest in exploring new quasiparticles in real
quantum systems [10–12]. Materials hosting Weyl fermions
are called Weyl semimetals (WSMs), where the conduction
and valence bands have crossing points in the bulk, known
as the “Weyl nodes.” The spectrum around the Weyl node
is coniclike, similar to the two-dimensional Dirac cones
in graphene [1]. Since all three Pauli matrices are used
in the Weyl Hamiltonian, the Weyl points are very robust
against weak time-reversal symmetry breaking or inversion-
symmetry breaking perturbations. The only symmetry allowed
to preserve the Weyl node is the translation symmetry of the
crystal lattice. In the momentum space, the Weyl node acts
like a topological charge with the charge sign corresponding
to its chirality. Due to this topological property, the Fermi arcs
that connect the Weyl nodes with different chiralities can be
observed on the surface of a Weyl semimetal.

WSMs with a pointlike Fermi surface are referred as the
conventional or type-I WSMs. But recent progresses show
that the conic spectrum can be tilted or overtilted by adding a
kinetic term into the energy spectrum to transform the WSM
into the type-II one [13,14], where the Fermi surface near the
Weyl nodes is hyperboloidal with a large density of states.
The dramatic spectrum tilt violates the Lorentz invariance
and generates electron and hole pockets near the Weyl nodes.
Although the Lorentz symmetry is fundamental in high-energy
physics, it is not necessarily present in quantum materials. Due
to the coexistence of electron and hole states, some interesting
phenomena that are distinct from the type-I WSM have been
predicted, e.g., the unusual magnetic quantum oscillations,
field-selective anomalous optical conductivity, and anomalous
Hall effect [15–20]. Experimentally, LaAlGe, WTe2, and
MoTe2 have been confirmed as the type-II WSMs by observing
the topological Fermi arcs between electron and hole pockets
using angle-resolved photoemission spectroscopy (ARPES)
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[21–28] or STM measurement [29]. WSMs can be induced into
Weyl superconductor by intrinsic electron-phonon coupling,
extrinsic proximity effect with an s-wave superconductor
[14,30,31], or by the metallic point contacts [32].

In the conductor-superconductor interface, except for the
normal electron reflection, there also exists Andreev reflection
(AR) [33], a process where the electron is reflected back as
a hole in the conductor and a Cooper-pair is injected into
the superconductor. At the small bias, the conductance of the
conductor-superconductor junction is mainly determined by
the AR [34–36]. ARs can be classified into retro-AR and
specular AR according to the directions of the reflected holes.
Retro-AR occurs in the normal metal-superconductor interface
where the hole almost retraces the path of the incident electron
[see Fig. 1(a)] and the electron-hole conversion is intraband,
i.e., both electron and hole are located in the same conduction
or valence band. In the graphene-superconductor junctions,
the electron and reflected hole can locate in different bands,
of which the interband conversion results in the specular AR
[see Fig. 1(b)] [37–39]. In both cases only single AR (retro or
specular AR) occurs at the interface, and the normal reflection
exists usually.

One question arises that weather there exists a new kind of
AR in type-II WSM-superconductor junctions inspired by the
violent band tilt in type-II WSM. Surprisingly, in this paper,
we find the double ARs at the type-II WSM-superconductor
interface [see Fig. 1(c)], where retro-AR and specular AR
happen simultaneously for one incident electron. The physical
reason behind the double ARs is that the spectrum tilt makes
the conduction and valence bands lie in the same Fermi level,
so both intraband and interband electron-hole conversions
happen if the superconductor is put in the band tilt direction of
the WSM (+x direction). The band tilt also forbids the normal
reflection, resulting in a conductance plateau when the bias is
within the superconductor gap. Moreover, when the interface
orientation of the WSM-superconductor junction is changed
from +x direction to +y direction, the double ARs gradually
evolve into one retro-AR and one normal reflection with the
subgap conductance decreasing with the interface orientation
angle, indicating that the ARs or conductance through type-
II WSM-superconductor junctions are strongly anisotropic.
We propose the anisotropic conductance as a practicable
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FIG. 1. Schematic diagrams for (a) retro-AR in normal
metal-superconductor (NM-SC) interface, (b) specular AR in
graphene-superconductor interface, and (c) double ARs in type-II
WSM-superconductor interface. The solid black arrows indicate the
directions of the incident and reflected electrons, and the dashed
red arrows indicate the directions for the reflected holes. In type-II
WSM-superconductor interface, normal reflection is prohibited and
the holes are reflected in the retro and specular directions of the
incident electron.

way to detect the tilting direction of the Weyl cones in
experiments.

The rest of the paper is constructed as follows. In Sec. II,
we give the theoretical model describing the type-II WSM-
superconductor junctions. In Secs. III and IV, we study the
double ARs when the WSM-superconductor interface orienta-
tion angle θ = 0 and θ �= 0, respectively. The conductance of
the WSM-superconductor junctions is investigated in Sec. V.
Section VI gives a brief summary of our results. The detailed
derivations of the coefficients of the double ARs in the presence
of the interface barrier and the orientation angle θ �= 0 are put
in Appendixes A and B.

II. MODEL AND HAMILTONIAN OF THE TYPE-II
WSM-SUPERCONDUCTOR JUNCTION

We first consider a two-band effective Weyl Hamiltonian
near the Weyl node K0 which respects the time-reversal
symmetry but breaks inversion symmetry:

H+(k) = h̄v1kxσ0 + h̄v2k·σ , (1)

where the wave vector k is the displacement from the Weyl
node K0, σ0 is the identity matrix, σ = (σx,σy,σz) is the
Pauli matrix vector, and v2 is the Fermi velocity with its
sign determining the chirality of the node. The spectrum tilt
is described by the parameter v1. Here we set v1,v2 to be
positive, and v1 > v2 to make the WSM being the type-II one.
Time reversal symmetry requires another Weyl node locating
at −K0 with its effective Hamiltonian satisfying [40]

H−(k) = −h̄v1kxσ0 − h̄v2(kxσx − kyσy + kzσz). (2)

By substituting k with p/h̄ = −i∇r, we get the effective
Hamiltonian for Weyl nodes at K0 and −K0 in real space:
H+(p/h̄) and H−(p/h̄).

We consider the BCS pairing in the superconductor.
Electron excitations near K0 are coupled by hole excitations
near −K0, so the Bogoliubov-de Gennes (BdG) Hamiltonian
of the type-II WSM-superconductor junction reads [41]

HBdG =
(

H+(p/h̄) − μ(r) �(r)
�∗(r) −H ∗

−(p/h̄) + μ(r)

)
, (3)

where μ(r), �(r) are the chemical potential and the pairing po-
tential, respectively. One can verify that H ∗

−(p/h̄) = H+(p/h̄)
because of the time-reversal symmetry. μ(r) and �(r) are step
functions:

μ(r) =
{
μ x < −y tan θ

U x > −y tan θ
, �(r) =

{
0 x < −y tan θ

� x > −y tan θ
.

In the WSM region (x < −y tan θ ), the potential μ is tuned
by a gate voltage and the superconductor gap is zero. On the
other side, it is the superconducting region (x > −y tan θ )
with a nonzero superconductor gap � and a large electrostatic
potential U (U � μ,�). Here, θ is the intersection angle of
the normal of the WSM-superconductor junction interface with
the x bias [see Fig. 8(a)].

III. THE DOUBLE ANDREEV REFLECTIONS WHEN THE
ORIENTATION ANGLE θ = 0

In this section, we consider the case of the interface
orientation angle θ = 0. Then, the WSM and superconductor
are in x < 0 and x > 0 regions, respectively. By solving the
eigenvalues of HBdG, we obtain the energy dispersions for
electron and hole excitations in the type-II WSM:

Ee±(k) = h̄v1kx ± h̄v2|k| − μ, (4)

Eh±(k) = −h̄v1kx ± h̄v2|k| + μ, (5)

and the excitation energy in the superconductor

Es(k) =
√

�2 + (h̄v1kx ± h̄v2|k| − U )2, (6)

with |k| =
√
k2
x + k2

y + k2
z . Denote Ee+ (Eh−) as the conduction

band for electron (hole), and Ee− (Eh+) for the valence band.
The band tilt makes the slopes in the +x direction of the
bands for electrons (holes) all positive (negative), so there
are two incident modes for electrons and two reflected modes
for holes. Here we first consider the electron incident from
the valence band (Ee−). The holes are then reflected into
the conduction band (Eh−) and the valence band (Eh+). The
intraband electron-hole conversion results in the retro-AR (A1)
and the interband conversion is for the specular AR (A2)
[see Fig. 1(c)]. So at the type-II WSM-superconductor in-
terface, a beam of incident electron is Andreev reflected into
two beams of holes, which is similar to the double reflections
of light in anisotropic crystals [42,43].

In the momentum space, the equienergy surfaces (Fermi
surfaces) of the type-II WSM for electrons and holes are circu-

lar hyperboloids satisfying the equation (kx−kxc±)2

a2±
− k2

y+k2
z

b2±
= 1,

where kxc± = (μ±E)v1

h̄(v2
1−v2

2 )
, a± = |μ±E|v2

h̄(v2
1−v2

2 )
, b± = |μ±E|

h̄
√

(v2
1−v2

2 )
, and
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FIG. 2. Hyperbolic equienergy lines (Ee±,Eh±) for electrons and
holes in the kx-ky plane in the WSM side. Here kz = 0. The green
dashed lines are the asymptotes for Ee±. The intersections of the
horizontal dashed line with equienergy lines A, B, C, D denote the
incident modes for electrons and reflected modes for holes. The black
arrows at A and B denote the directions of the incident electron, and
the arrows at C and D are the directions for the double ARs. Here
we choose point A as the incident electron mode with an incident
angle α, the holes are then reflected in the retro-direction A1 and the
specular direction A2.

“+” for electrons, “−” for holes. During the reflection process,
the energy E and the wave vectors ky and kz remain invariant.
Since the equienergy surface has rotational symmetry along the
kx axis, for simplicity, we set kz = 0 in the following analysis.
Then in the kx − ky plane, the equienergy lines become
hyperbolas as shown in Fig. 2. Given the energy E and the
wave vector ky , the intersections A, B, C, D denote the modes
for the incident electron and the reflected holes in the WSM
side with their semiclassical velocity (vx,vy) ≡ ∇kE(k)/h̄
[E(k) is the energy dispersion for electrons or holes] being
perpendicular with the equienergy lines. The black arrow at
point A denotes the direction for the incident electron with an
incident angle α (α = − arctan vy/vx), and the arrows at C and
D are the directions for retro-AR (A1) and specular AR (A2).
Eh+ and Eh− is symmetric about kx = kxc−, so A1 and A2

have opposite reflection angles. With increasing wave vector
|ky |, the incident angle |α| increases but saturates at a critical
angle αc = arctan(v2/

√
v2

1 − v2
2 ).

A. The wave functions in the type-II WSM and
superconductor regions

In order to calculate the double AR coefficients A1 and
A2, we first solve the wave functions in the WSM and
superconductor regions, respectively. The BdG equation in
the type-II WSM side (x < 0) is

(
H+(p/h̄) − μ 0

0 −H+(p/h̄) + μ

)(
f

g

)
= E

(
f

g

)
, (7)

where f and g are the electron and hole wave functions. At a
given incident energy E and the wave vectors ky,kz in the y,z

FIG. 3. (a) Dispersion relations for electrons and holes in the
type-II WSM with finite ky or kz. Ee+ (Eh−) denotes the tilted
conduction band for electrons (holes), and Ee− (Eh+) is the tilted
valence band for electrons (holes). The intersections of the black
dashed line with the bands denote the incident modes �e± for
electrons and the reflected modes �h± for holes. (b) Dispersion
relation at normal incidence (ky = kz = 0) with the incident angle
α = 0. The intersection of Ee− with the kx−axis is kx0 = μ

h̄(v1−v2) .

The holes are reflected into the modes that are symmetric with the
incident modes of electrons about kx = kx0.

direction, the eigenstates are

�e+(r) =

⎛
⎜⎝

k+ + kz

kx+ + iky

0
0

⎞
⎟⎠ exp(ikx+x + ikyy + ikzz),

�e−(r) =

⎛
⎜⎝

−k− + kz

kx− + iky

0
0

⎞
⎟⎠ exp(ikx−x + ikyy + ikzz),

�h+(r) =

⎛
⎜⎝

0
0

−k′
+ + kz

k′
x+ + iky

⎞
⎟⎠ exp(ik′

x+x + ikyy + ikzz),

�h−(r) =

⎛
⎜⎝

0
0

k′
− + kz

k′
x− + iky

⎞
⎟⎠ exp(ik′

x−x + ikyy + ikzz),

(8)

where r = (x,y,z) and

kx± =
v1(E + μ) ∓ v2

√
(E + μ)2 + h̄2

(
v2

1 − v2
2

)(
k2
y + k2

z

)
h̄
(
v2

1 − v2
2

) ,

k′
x± =

v1(μ − E) ± v2

√
(E − μ)2 + h̄2

(
v2

1 − v2
2

)(
k2
y + k2

z

)
h̄
(
v2

1 − v2
2

) ,

k± =
√

k2
x± + k2

y + k2
z ,

k′
± =

√
k′2
x± + k2

y + k2
z .

The wave functions �e+ and �e− are the eigenstates for
electrons in the tilted conduction band Ee+ and valence band
Ee−. �h+ and �h− are the eigenstates for holes in the tilted
valence band Eh+ and conduction band Eh−. Figure 3(a) shows
the energy dispersions for electrons and holes with finite ky

or kz. The intersections A, B, C, and D denote the incident
and reflected wave functions �e∓, �h±, and also correspond
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to the intersections in Fig. 2. In fact, here kx−, kx+, k′
x+, and

k′
x− are the kx coordinates of the point A, B, C, and D in

Fig. 3(a), respectively. From the slopes of the band dispersions
in Fig. 3(a), we can see that both �e+ and �e− move in the +x

direction, so there are two incident modes for electrons with
given energy E and wave vector ky,kz. The Andreev reflection
is denoted as A1 (A2) if the holes are reflected in the mode
�h+ (�h−).

The superconductor is put in the x > 0 region with its BdG
equation:(

H+(p/h̄) − U �σ0

�σ0 −H+(p/h̄) + U

)(
f

g

)
= E

(
f

g

)
. (9)

In the large U limit, the outgoing wave functions in the
superconductor are

�S+(r) =

⎛
⎜⎝

eiβ

eiβ

1
1

⎞
⎟⎠ exp(ikx1x + ikyy + ikzz − τ1x),

�S−(r) =

⎛
⎜⎝

eiβ

−eiβ

1
−1

⎞
⎟⎠ exp(ikx2x + ikyy + ikzz − τ2x),

(10)

where

β =
{

arccos(E/�) if E < �,

−i arcosh(E/�) if E > �,

kx1 
 U

h̄(v1 + v2)
, kx2 
 U

h̄(v1 − v2)
, (11)

τ1 = � sin β

h̄(v1 + v2)
, τ2 = � sin β

h̄(v1 − v2)
.

The eigenstates �S±(r) are the superpositions of electron and
hole excitations in the superconductor, which have similar
forms as the solutions in the graphene-superconductor junction
[37]. When E > �, these states propagate in the +x direction,
carrying net electron or hole current [44]. When |E| < �,
�S±(r) both decay exponentially as x → +∞, and the net
particle current is zero, so the normal tunneling from the
WSM to superconductor is prohibited. In this case, the electron
incident from the WSM side can only be normally reflected
as an electron or Andreev reflected as a hole. Since no modes
exist for the normal electron reflection in the type-II WSM,
the Andreev reflection happens with unit probability.

B. The double ARs while without the interface barrier

We first consider �e− as the incident mode. The wave
functions �(r) in the WSM region (the x < 0 region) can
be written as follows:

�(r) = �e−(r) + r1�h+(r) + r2�h−(r), (12)

where r1 and r2 are the reflection amplitudes of the double
ARs. The wave functions in the superconductor region (the
x > 0 region) can be described as

�(r) = a�S+(r) + b�S−(r), (13)

where a and b are the amplitudes of electronlike and holelike
quasiparticles in the superconductor region. Here, r1, r2, a, and

b are determined by matching the boundary conditions. The
matching condition of the wave-functions at x = 0 interface of
the WSM-superconductor junction is �(r)|x=0− = �(r)|x=0+ .
This means

[�e−(r) + r1�h+(r) + r2�h−(r)]x=0−

= [a�S+(r) + b�S−(r)]x=0+ . (14)

Substituting Eqs. (8) and (10) into Eq. (14), we obtain

r1/2 = (kx− + iky)(k′
∓ ± kz) ± (k− − kz)(k′

x∓ + iky)

(k′+ − kz)(k′
x− + iky) + (k′

x+ + iky)(k′− + kz)
e−iβ .

The particle current density operator is defined as

J ≡ 1

h̄
[r,HBdG]

= τz ⊗ [(v1σ0 + v2σx)ex + v2σyey + v2σzez], (15)

where τz = (1 0
0 −1) denotes electron-hole index, and ex , ey

and ez are unit vectors in x, y, and z directions. Only the x

component of the current density operator Jx = τz ⊗ (v1σ0 +
v2σx) decides the reflection coefficients at the interface. So
the Andreev reflection coefficients A1 and A2 can be obtained
straightforwardly:

A1/2(E) ≡
∣∣∣∣ 〈�h±|Jx |�h±〉
〈�e−|Jx |�e−〉

∣∣∣∣|r1/2|2

=
∣∣∣∣ (k′

± ∓ kz)(v1k
′
± ∓ v2k

′
x±)

(k− − kz)(v1k− − v2kx−)

∣∣∣∣|r1/2|2. (16)

In addition, one can easily verify that when ky = kz = 0
(normal incidence), A1 and A2 reduce into

A1(E) = 	(μ − E)T A(E),

A2(E) = 	(E − μ)T A(E),
(17)

where 	 is the Heaviside step function and T A(E) = 1 if E <

�, T A(E) = (E − √
E2 − �2)2/�2 if E > �. Thus only one

AR happens at the normal incidence and A1, A2 exchange at the
chemical potential μ. From the band structure point of view,
the modes symmetry for electrons and holes plays an important
role for results Eq. (17). Figure 3(b) is the dispersion relation
for the normal incidence (ky = kz = 0). One can see that the
reflected holes only locate in the modes symmetric with the
incident modes of the electrons about kx = kx0. When E < μ,
the reflected hole is located in the valence band of which
the intraband electron-hole conversion results in the retro-AR
(A1). When E > μ, the symmetric reflection modes lie in
the conduction band, so A1 disappears and A2 arises due to
the interband electron-hole conversion. In addition, due to the
normal incidence with the incident angle α = 0, both the angle
αA1 of the intraband AR and the angle αA2 of the interband AR
are zero also. While for a general incidence case with α �= 0,
both A1 and A2 are nonzero. Importantly, by summing over A1

and A2, we find that the total AR coefficient A ≡ A1 + A2 =
T A(E), which has the universal form and only depends on the
energy E and the superconductor gap �, with nothing to do
with the incident angle α and other parameters.

In the following numerical calculations, we set h̄ = 1, v2 =
1, � = 1, and kz = 0. Figure 4(a) shows AR coefficients A1,
A2, and A versus the incident energy E at the normal incidence
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FIG. 4. AR coefficients A1, A2, and A as functions of the incident
energy E. The parameters are (a) μ = 0.5, v1 = 2, ky = 0; (b) μ =
0.5, v1 = 2, ky = 0.2; (c) v1 = 2, ky = 0.2; and (d) ky = 0.2, μ =
0.5.

(α = 0). The results coincide with Eq. (17) and are attributed
to the modes symmetry discussed in Fig. 3(b). For the oblique
incidence case (α �= 0), both retro-AR and specular AR happen
[see Fig. 4(b)]. When E = 0, i.e., at the zero-energy incidence,
we find A1 = 1 and A2 = 0. As the energy E increases, the
specular AR A2 goes up and the retro-AR A1 falls down,
and they both get a sharp decline when E > �. The total AR
coefficient A shows the same variation behaviors in Figs. 4(a)
and 4(b) because A only depends on the incident energy E and
superconductor gap �. In Figs. 4(c) and 4(d), we change the
potential μ and the tilt parameter v1 to see how the retro-AR
coefficient A1 varies. As the potential μ increases, A1 gets
higher and approaches A1 = T A(E) in the large μ limit. The
retro-AR A1 also shows the similar asymptotic behavior in the
large tilting limit [see v1 = 30 in Fig. 4(d)]. However, when
the tilt is very small (see v1 = 1.01), we find A1 
 	(μ − E),
which is similar to the normal incident case.

The incident energy E and incident angle α dependence
of the AR coefficients A1 and A2 is investigated exhaustively
in Fig. 5. The tilt v1 is chosen to be

√
2, then the incident

angle α has an up limit αc = 45◦ from the analysis of Fig. 2.
Below the chemical potential (E < μ), the retro-AR A1 first
gets down and then goes up to T A with the increasing of α

[see Fig. 5(a)]. While A1 just increases monotonically with α

when E > μ. For the ultimate angle incidence (α = αc), A1 =
T A, and A2 = 0, so only the retro-AR happens. The specular
AR A2 shows the opposite behavior as the retro-AR A1 due
to the relation A1 + A2 = T A. Note that for an appropriate
incident energy E and angle α, the retro-AR and specular
AR, which have opposite reflection angles, happen with nearly
equal probabilities (see the green regions in Fig. 5). Another
interesting thing we find is that for μ = 0, the retro-AR A1

and specular AR A2 are independent of E when E < � [see
Figs. 5(c) and 5(d)], which means once the incident angle α is
given, the AR coefficients are determined.

Up to now, we have only considered the incident electron
from the valence band Ee−. Similarly, the AR coefficients
A1e+ and A2e+ for the incident electron from the conduction

FIG. 5. The incident energy E and incident angle α dependence
of the retro-AR A1 [(a) and (c)] and specular AR A2 [(b) and (d)]
with v1 = √

2 and μ = 0.5 [(a) and (b)] and 0 [(c) and (d)].

band Ee+ can be calculated also [here, A1e+ and A2e+ are the
coefficients for holes reflected into the valence band Eh+ and
the conduction band Eh−, respectively]:

A1/2e+ =
∣∣∣∣ (k′

± ∓ kz)(v1k
′
± ∓ v2k

′
x±)

(k+ + kz)(v1k+ + v2kx+)

∣∣∣∣|r1/2e+|2, (18)

where

r1/2e+ = (kx+ + iky)(k′
∓ ± kz) ∓ (k+ + kz)(k′

x∓ + iky)

(k′+ − kz)(k′
x− + iky) + (k′

x+ + iky)(k′− + kz)
e−iβ .

The results for the conduction band Ee+ incidence are shown
in Fig. 6. One can see that A1e+ and A2e+ have the same values
as A2 and A1 in the valence band Ee− incidence by comparison
with Figs. 4(a) and 4(b), due to the unitarity of the scattering
matrix. For the conduction band Ee+ incidence, the incident
direction is symmetric with that of Ee− about the normal
(see Fig. 2), so A1e+ becomes specular AR and A2e+ becomes
the retro-AR. Therefore, for given energy E and wave vectors
ky and kz, no matter which incident mode the electron locates
in, the coefficient of the specular AR (the retro-AR) has the
same values.

FIG. 6. AR coefficients A1e+, A2e+, and Ae+ = A1e+ + A2e+ as
functions of the incident energy E for the conduction band Ee+
incidence. The parameters are μ = 0.5, v1 = 2, ky = 0 in (a) and
μ = 0.5, v1 = 2, ky = 0.2 in (b). One can see that A1e+ and A2e+
have the same values as A2 and A1 in the Ee− incidence [see Figs. 4(a)
and 4(b)].

155305-5



ZHE HOU AND QING-FENG SUN PHYSICAL REVIEW B 96, 155305 (2017)

FIG. 7. Double AR coefficients A1 and A2 vs the incident energy
E for different barrier width d . The barrier strength χ is fixed to 1.
The other parameters are the same as Fig. 4(b).

C. Influence of the interface barrier on the double ARs

In this section, we introduce an interface barrier in the
type-II WSM-superconductor junction and study the influence
of the barrier on the double ARs in detail. A rectangular barrier
[45] is considered in the interface and the Hamiltonian is the
same with Eq. (3), but the potential μ(r) has the form

μ(r) =
⎧⎨
⎩

μ, x < −d

−V0, −d < x < 0
U, x > 0

.

So the WSM, the barrier, and the superconductor are in x <

−d, −d < x < 0 and 0 < x regions, respectively. Here we
choose the Ee− band as the incident mode for electrons as we
have done in Sec. III B.

By calculating the wave functions inside the barrier region
and using the matching conditions at interfaces x = −d and
x = 0 (see Appendix A), we give the numerical results of the
AR coefficients A1,A2 as functions of the incident energy E

in the presence of the rectangular barrier with finite width d

and height V0 (see Fig. 7). Here we fix the barrier strength
χ = dV0 and gradually decrease the barrier width. The other
parameters are the same as Fig. 4(b). One can see from Fig. 7
that when d = 10, A1 and A2 oscillate as varying the incident
energy E due to the Fabry-Pérot interference inside the barrier
region. With decreasing d, the oscillation gradually disappears
(see d = 5 in Fig. 7). When the width d = 1 (in the order of the
wavelength of the incident electron), the values of A1 and A2

approach the values in Fig. 4(b). With further decrease of the
width d, the AR coefficients A1 and A2 do not change almost.
In the thin barrier limit (d → 0), the AR coefficients are the
same as Fig. 4(b) (see d < 1 in Fig. 7), which is also consistent
with the analytical derivations of A1 and A2 in Eq. (A6) in
Appendix A. The total AR coefficient A in Fig. 7 equals to

(a)

(b) (c)

FIG. 8. (a) Schematic diagrams of the AR A1, A2, and the normal
reflection (NR) when changing the type-II WSM-superconductor
interface orientation angle θ . (b) The AR angles αA1, αA2, and normal
reflection angle αNR as functions of θ . (c) The coefficients of AR A1,
A2, A, and normal reflection vs θ . Here the incident angle α is fixed
to be 30◦, the incident energy E = 0.5, μ = 0, and v1 = 1.1.

1 when E < � (see the black doted lines), which means that
the perfect AR happens in the type-II WSM-superconductor
junction even in the presence of a large interface barrier [46].

IV. ANDREEV REFLECTIONS WHEN THE
WSM-SUPERCONDUCTOR INTERFACE

ORIENTATION ANGLE θ �= 0

In this section, we consider the case of the nonzero orien-
tation angle (θ �= 0) of the WSM-superconductor interface.
We consider that the normal of the WSM-superconductor
interface is still in the x-y plane, but it has an intersection
angle θ with the x axis [see Fig. 8(a)]. If the normal of
the WSM-superconductor interface is not in the x-y plane,
one can do a rotation transformation around the x axis to
make the normal in the x-y plane, because the Hamiltonian
of the WSM in Eqs. (1) and (2) has rotational symmetry
around the x axis. For a finite orientation angle θ , the WSM
is in the x < −y tan θ region and the superconductor is in
the x > −y tan θ region. In this case, the incident angle
α lies in the range [max(−π/2,θ − αc), min(π/2,θ + αc)]
with αc = arctan(v2/

√
v2

1 − v2
2 ). For example, when θ = 0, the

incident angle α lies in the range [−αc,αc], while α is restricted
within [π/2 − αc,π/2] for θ = π/2.

In order to calculate the double AR coefficients, we first
take a coordinate transformation:

(
x̃

ỹ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
. (19)

After the coordinate transformation, the BdG Hamiltonian in
Eq. (3) becomes (for simplicity, we set pz = 0)

H̃BdG =
(

H+(p̃) − μ(x̃) �(x̃)
�∗(x̃) −H+(p̃) + μ(x̃)

)
, (20)
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where H+(p̃) is

H+ = v1σ0(p̃x cos θ − p̃y sin θ ) + v2σx(p̃x cos θ − p̃y sin θ )

+ v2σy(p̃x sin θ + p̃y cos θ ), (21)

where p̃x = −ih̄∂x̃ , p̃y = −ih̄∂ỹ . μ(x̃) and �(x̃) are,
respectively,

μ(x̃) =
{
μ x̃ < 0
U x̃ > 0

, �(x̃) =
{

0 x̃ < 0
� x̃ > 0

. (22)

The energy dispersion in the WSM region is

Ee±(k̃) = h̄v1(k̃x cos θ − k̃y sin θ ) ± h̄v2|k̃| − μ, (23)

where |k̃| =
√
k̃2
x + k̃2

y . In the new coordinate system, the WSM
and superconductor are respectively in x̃ < 0 and x̃ > 0
regions, but the band tilts in both x̃ and ỹ directions. Since the
energy E and wave vector k̃y are conserved upon reflection at
the interface x̃ = 0, by performing similar calculations as in
Sec. III B we can obtain the directions and the amplitudes of
the double ARs (see Appendix B).

Figure 8(a) is the schematic diagram of the evolutions
of the double ARs A1 and A2 when varying the WSM-
superconductor interface orientation angle θ at the fixed
incident angle α = 30◦ and incident energy E = 0.5. The
corresponding reflection angles αA1 and αA2 are shown in
Fig. 8(b). When θ = 0, the retro-AR A1 has the same angle
as the incident angle (αA1 = 30◦), and the specular AR A2 is
symmetric with A1 with αA2 = −30◦. With the increasing of
the orientation angle θ , the retro-AR angle αA1 decreases and
the specular AR angle αA2 increases. At θ ≈ 2◦, αA2 becomes
positive, indicating A2 jumps into the other side of the normal
and becomes the retro-AR. Now double retro-ARs occur with
both αA1 and αA2 being positive while 2◦ � θ � 5◦. At θ ≈ 5◦,
αA1 drops from positive to negative, leading to a retro-AR
and a specular AR again. Note that now A2 is retro-AR
and A1 is specular AR. Further increasing θ , αA2 goes up
straight to 90◦, then the AR A2 disappears at the critical angle
θc = arccos v2/v1 and the normal electron reflection arises
with its reflection angle αNR = −90◦. At the critical angle θc,
the double ARs evolve into one specular AR and one normal
reflection due to the band tilt in x̃ direction changing from the
type-II (v1 cos θ > v2) into the type-I (v1 cos θ < v2). Note
that although the WSM still belongs to the type-II one, only
the tilt along the normal direction (x̃ axis) plays a decisive
role in generating the double ARs. With further increase of
the orientation angle θ from θ = θc, both αA1 and αNR go
up. Finally, when θ = 90◦, the normal reflection angle αNR

increases to −30◦ and A1 turns back to the retro-AR but
with smaller AR angle αA1 than α, which is similar with
the normal metal-superconductor junction case. Figure 8(c)
shows the amplitudes for the double ARs A1, A2, and the
normal reflection. One can see that both A1 and A2 have large
value with A = A1 + A2 = 1 at θ < θc. A1 = 1 and A2 = 0
at the critical angle θc. Further increasing θ , A2 disappears and
the normal reflection arises with its coefficient RN increasing
with θ except for θ near 90◦. All the analysis above shows the
spatial anisotropy of the double ARs.

FIG. 9. (a) Conductance G(eV ) vs the bias eV with the interface
orientation angle θ = 0 and (b) the zero-bias conductance G(0) as a
function of θ . The parameter v1 = 2/

√
3 and the cutoff value q̃ is set

to be 30.

V. THE CONDUCTANCE OF THE TYPE-II
WSM-SUPERCONDUCTOR JUNCTION

After obtaining the AR and normal reflection coeffi-
cients, the differential conductance of the type-II WSM-
superconductor junction can be derived from the BTK
formula [44]:

G(eV ) = 2e2S

π2h

∫
dk̃y

∫
dkz[1 + A(k̃y,kz,eV )

−RN (k̃y,kz,eV )], (24)

with S being the cross-sectional area of the junction. Here
the spin and valley degeneracies [47] are already considered.
While the interface orientation angle θ < θc, the double ARs
still exist and we have the total AR coefficient A = T A(E),
the normal reflection coefficient RN = 0, so the conductance
G(eV ) can reduce into 2e2q̃2S

πh
[1 + T A(eV )], where q̃ is the cut-

off value of the integral area (i.e., k̃2
y + k2

z � q̃2). Figure 9(a)
shows the conductance G(eV ) versus the bias for the angle
θ = 0. Here, G(eV ) is normalized by the conductance GN (eV )
of the normal junction. One can see that the conductance
exhibits a plateau within the superconductor gap and decreases
in the same way for different chemical potentials μ, which
shows a universal behavior. We also calculate the zero-bias
conductance G(eV = 0) as a function of the orientation
angle θ [48–50]. A remarkable conductance behavior due to
the double ARs can be seen from Fig. 9(b). The zero-bias
conductance shows a plateau within the critical angle θc, but it
decreases quickly when θ > θc because the normal reflection
arises and the total AR coefficient A < 1. Increasing μ would
moderately enhance the conductance. These unique features
are robust against the interface barrier because that the double
ARs are not affected by the barrier, which is different from the
normal metal-superconductor and graphene-superconductor
junctions [34,35,37,44]. Therefore the strong conductance
anisotropy that characterizes the type-II WSM-superconductor
junction should be unambiguously observable in experiments.
What’s more, by experimentally observing the critical angle θc,
the band tilting v1/v2, the important parameter of the type-II
WSM, can be obtained.

VI. CONCLUSION AND DISCUSSIONS

In conclusion, we investigate the Andreev reflection (AR) at
the type-II Weyl semimetal(WSM)-superconductor interface
and find a new kind of AR: the double ARs, where for one
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incident electron beam, two beams of holes are reflected back.
This phenomena is similar to the double reflections of light
in anisotropic crystals and shows another opticslike property
of the Weyl fermion. A little difference between the double
ARs and the optical double reflections is that the reflected
holes are in the retro and specular directions of the incident
electron respectively, not both in the specular directions. By
varying the WSM-superconductor interface orientation angle
θ , the directions of the double ARs show strong anisotropy
and in some small range of θ we may even observe the
double retro-ARs. The essential physical reason behind the
double ARs is the violent band tilt in type-II WSMs, so that
both interband and intraband electron-hole conversions happen
at the interface. Interface barriers has little influence on the
double ARs due to the band tilt. The double ARs should be
a unique phenomena in type-II WSMs, and we may expect
more interesting phenomena associated with the double ARs
in type-II WSMs-superconductor hybrid system, such as the
Josephson effect, double ARs under magnetic fields, and so on.
These findings pave the way to new opticslike phenomenon in
quantum transport.

Finally, we also discuss the conductance through the type-II
WSM-superconductor junction and find two distinct conduc-
tance behaviors, which originate from the double ARs. One is
the conductance plateau within the superconductor gap when
the interface orientation angle θ = 0 and the other is the zero-
bias conductance anisotropy with respect to the orientation
angle. Since the system consisting of the WSM coupled with
superconductor has been fabricated in experiment, the double
ARs and these two remarkable conductance behaviours should
be observable in the present technology.
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APPENDIX A: THE DERIVATIONS OF THE DOUBLE
AR COEFFICIENTS OF THE

WSM-BARRIER-SUPERCONDUCTOR JUNCTION

In this appendix, we give the detailed derivations of the
double AR coefficients in the presence of the interface barrier.
In the normal WSM region (x < −d), the wave function �(r)
can be written as

�(r) = �e−(r) + r1�h+(r) + r2�h−(r) (A1)

with �e−(r),�h+(r), and �h−(r) defined in Eq. (8). In the
barrier region (−d < x < 0), the wave function �(r) can be
written as

�(r) = c1�
B
e+(r) + c2�

B
e−(r) + c3�

B
h+(r) + c4�

B
h−(r),

(A2)

where

�B
e+(r) =

⎛
⎜⎝

kB
+ + kz

kB
x+ + iky

0
0

⎞
⎟⎠ exp

(
ikB

x+x + ikyy + ikzz
)
,

�B
e−(r) =

⎛
⎜⎝

−kB
− + kz

kB
x− + iky

0
0

⎞
⎟⎠ exp

(
ikB

x−x + ikyy + ikzz
)
,

(A3)

�B
h+(r) =

⎛
⎜⎜⎝

0
0

−kB ′
+ + kz

kB ′
x+ + iky

⎞
⎟⎟⎠ exp

(
ikB ′

x+x + ikyy + ikzz
)
,

�B
h−(r) =

⎛
⎜⎜⎝

0
0

kB ′
− + kz

kB ′
x− + iky

⎞
⎟⎟⎠ exp

(
ikB ′

x−x + ikyy + ikzz
)
,

and

kB
x± =

v1(E − V0) ∓ v2

√
(E − V0)2 + h̄2

(
v2

1 − v2
2

)
q2

h̄
(
v2

1 − v2
2

) ,

kB ′
x± =

−v1(E + V0) ± v2

√
(E + V0)2 + h̄2

(
v2

1 − v2
2

)
q2

h̄
(
v2

1 − v2
2

) ,

(A4)

kB
± =

√
kB
x±

2 + q2,

kB ′
± =

√
kB ′
x±

2 + q2,

where q2 = k2
y + k2

z .
In the superconducting region (0 < x), the outgoing wave

functions �(r) can be written as Eq.(13) in the main text. The
wave function �(r) must satisfy the matching conditions at
the interfaces x = −d and x = 0:

�(r)|x=−d− = �(r)|x=−d+ ;

�(r)|x=0− = �(r)|x=0+ . (A5)

Using the above boundary conditions, the AR amplitudes r1

and r2, then the AR coefficients A1 and A2, can numerically
be calculated. After some straightforward but cumbersome
algebra, we give the expressions for r1 and r2 in the thin barrier
limit (d → 0 and V0 → ∞, but dV0 remains finite):

r1/2 = (kx− + iky)(k′
∓ ± kz) ± (k− − kz)(k′

x∓ + iky)

(k′+ − kz)(k′
x− + iky) + (k′

x+ + iky)(k′− + kz)
e−iβ .

The AR coefficients A1 and A2 are given as

A1/2(E) =
∣∣∣∣ (k′

± ∓ kz)(v1k
′
± ∓ v2k

′
x±)

(k− − kz)(v1k− − v2kx−)

∣∣∣∣|r1/2|2. (A6)

Comparing with the nonbarrier case, one can find that the
expressions in Eq. (A6) are exactly the same as Eq. (16) in
the main text.
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APPENDIX B: THE DERIVATIONS OF THE AR
COEFFICIENTS WHEN THE WSM-SUPERCONDUCTOR

INTERFACE ORIENTATION ANGLE θ �= 0

In Appendix B, we give the AR coefficients A1 and A2

and their directions when the WSM-superconductor interface
orientation angle θ �= 0. Note that there are two cases need to
be considered. The first one is v1 cos θ > v2, where the slopes
in the +x̃ direction of the tilted bands for the incident electrons
(reflected holes) are all positive (negative), and there exists
double ARs at the interface. The second case is v1 cos θ < v2,
where the band tilt in the +x̃ direction is not so violent that
only one reflected mode exists for holes. In this case, an AR
and a normal reflection happen at the WSM-superconductor
interface, which is similar to the normal metal-superconductor
junction or graphene-superconductor junction.

Next considering an electron incidence from the WSM side
to the WSM-superconductor interface with the incident angle
α and the incident energy E, and choosing the valence band
(Ee−) incidence, the modes for incident and reflected electrons
(holes) in the WSM region (x̃ < 0) can be given as follows:

�̃e− =

⎛
⎜⎜⎜⎜⎝

−
√

k̃2
x− + k̃2

y

(cos θ + i sin θ )k̃x− − (sin θ − i cos θ )k̃y

0

0

⎞
⎟⎟⎟⎟⎠

× exp(ik̃x−x̃ + ik̃y ỹ),

�̃h+ =

⎛
⎜⎜⎜⎜⎝

0

0

−
√

k̃2
xh+ + k̃2

y

(cos θ + i sin θ )k̃xh+ − (sin θ − i cos θ )k̃y

⎞
⎟⎟⎟⎟⎠

× exp(ik̃xh+x̃ + ik̃y ỹ),

�̃h− =

⎛
⎜⎜⎜⎜⎝

0

0√
k̃2
xh− + k̃2

y

(cos θ + i sin θ )k̃xh− − (sin θ − i cos θ )k̃y

⎞
⎟⎟⎟⎟⎠

× exp(ik̃xh−x̃ + ik̃y ỹ), if v1 cos θ > v2,

�̃r =

⎛
⎜⎜⎜⎜⎝

−
√

k̃2
xr + k̃2

y

(cos θ + i sin θ )k̃xr − (sin θ − i cos θ )k̃y

0

0

⎞
⎟⎟⎟⎟⎠

× exp(ik̃xr x̃ + ik̃y ỹ), if v1 cos θ < v2, (B1)

where the wave vectors for the incident electron and the
reflected holes (electron) are

k̃y = (E + μ)(v1 sin θ − v0 sin α)

h̄
[
v1v0 cos(θ − α) − (

v2
1 − v2

2

)] ,

k̃x− =
(E + μ̃)ṽ1 + v2

√
(E + μ̃)2 + h̄2k̃2

y

(
ṽ2

1 − v2
2

)
h̄
(
ṽ2

1 − v2
2

) ,

(B2)

k̃xr =
(E + μ̃)ṽ1 − v2

√
(E + μ̃)2 + h̄2k̃2

y

(
ṽ2

1 − v2
2

)
h̄
(
ṽ2

1 − v2
2

) ,

k̃xh± =
−(E − μ̃)ṽ1 ± v2

√
(E − μ̃)2 + h̄2k̃2

y

(
ṽ2

1 − v2
2

)
h̄
(
ṽ2

1 − v2
2

) ,

and we have defined

v0 = v1 cos(α − θ ) −
√

v2
1 cos2(α − θ ) − (

v2
1 − v2

2

)
,

ṽ1 = v1 cos θ, μ̃ = μ + h̄v1 sin θk̃y. (B3)

In Eq. (B1), �̃e− is the incident mode for electron. The reflected
mode �̃h+ for hole always exists regardless of the angle θ ,
but the other reflected mode �̃h− for hole keeps only when
v1 cos θ > v2. If v1 cos θ < v2, the normal reflection mode �̃r

arises, replacing the reflected hole �̃h−. Therefore the wave
functions �(r) in the WSM region (the x̃ < 0 region) can be
written as follows:

�(r) =
{
�̃e− + r1�̃h+ + r2�̃h− if ṽ1 > v2,

�̃e− + r1�̃h+ + rNR�̃r if ṽ1 < v2.
(B4)

Here, r1, r2, and rNR are the amplitudes of the AR A1, the AR
A2 and the normal reflection, respectively.

The outgoing modes in the superconductor region (the x̃ >

0 region) are

�̃S+ =

⎛
⎜⎝

eiβ

(cos θ + i sin θ )eiβ

1
cos θ + i sin θ

⎞
⎟⎠ exp(ik̃x1x̃ + ik̃y ỹ − τ̃1x̃)

(B5)

and

�̃S− =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

eiβ

−(cos θ + i sin θ )eiβ

1
−(cos θ + i sin θ )

⎞
⎟⎠ exp(ik̃x2x̃ + ik̃y ỹ − τ̃2x̃), if ṽ1 > v2,

⎛
⎜⎝

e−iβ

−(cos θ + i sin θ )e−iβ

1
−(cos θ + i sin θ )

⎞
⎟⎠ exp(ik̃x2x̃ + ik̃y ỹ − τ̃2x̃), if ṽ1 < v2.

(B6)
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where

β =
{

arccos(E/�) if E < �,

−i arcosh(E/�) if E > �,

k̃x1 
 U

h̄(v1 cos θ + v2)
, k̃x2 
 U

h̄(v1 cos θ − v2)
, (B7)

τ̃1 = � sin β

h̄(v1 cos θ + v2)
, τ̃2 = � sin β

h̄|v1 cos θ − v2| .

After obtaining the outgoing modes, the wave-function �(r)
in the superconductor region (the x̃ > 0 region) is

�(r) = a�̃S+ + b�̃S−, (B8)

where a and b are constants to be determined by matching the
boundary conditions.

The matching condition at the interface x̃ = 0 of the
WSM-superconductor junction is �(r)|x̃=0− = �(r)|x̃=0+ . For
the v1 cos θ > v2 case, we have

(�̃e− + r1�̃h+ + r2�̃h−)|x̃=0− = (a�̃S+ + b�̃S−)|x̃=0+ ,

and the AR coefficients are

A1 =
∣∣∣∣ 〈�̃h+|J̃x |�̃h+〉
〈�̃e−|J̃x |�̃e−〉

∣∣∣∣|r1|2, A2 =
∣∣∣∣ 〈�̃h−|J̃x |�̃h−〉
〈�̃e−|J̃x |�̃e−〉

∣∣∣∣|r2|2.
(B9)

On the other hand, for the v1 cos θ < v2 case, we have

(�̃e− + r1�̃h+ + rNR�̃r )|x̃=0− = (a�̃S+ + b�̃S−)|x̃=0+ ,

and the AR coefficient A1 and normal reflection coefficient
RN are

A1 =
∣∣∣∣ 〈�̃h+|J̃x |�̃h+〉
〈�̃e−|J̃x |�̃e−〉

∣∣∣∣|r1|2, RN =
∣∣∣∣ 〈�̃r |J̃x |�̃r〉
〈�̃e−|J̃x |�̃e−〉

∣∣∣∣|rNR|2,
(B10)

where the particle current density operator is defined as J̃x ≡
τz ⊗ [v1 cos θσ0 + v2 cos θσx + v2 sin θσy]. The coefficients
in Eqs. (B9) and (B10) can be numerically obtained.

The incident and reflected angles for the electrons and
holes are

α = − arctan

(
∂E

∂k̃y

/
∂E

∂k̃x

)
, (B11)

where E is the energy dispersion for electrons or holes.
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