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Ab initio theory of the N2V defect in diamond for quantum memory implementation
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The N2V defect in diamond is characterized by means of ab initio methods relying on density functional theory
calculated parameters of a Hubbard model Hamiltonian. It is shown that this approach appropriately describes
the energy levels of correlated excited states induced by this defect. By determining its critical magneto-optical
parameters, we propose to realize a long-living quantum memory by N2V defect, i.e., H3 color center in diamond.
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I. INTRODUCTION

Paramagnetic point defects in diamond are candidates for
quantum bit and quantum information applications. Various
defects were identified as optically active color centers
[1]; most notable is the nitrogen-vacancy (NV) [2]. NV is
formed in diamond by the trapping of a mobile vacancy by
the substitutional nitrogen atom. In nitrogen rich diamond
aggregation of substitutional nitrogen atoms may occur. The
neighbor substitutional nitrogen pair is an example for such
aggregation (A aggregate). Similar to the NV defect, the
N2V defect is formed by an A aggregate trapping a mobile
vacancy [3]. Uniaxial stress measurements already established
the N-V -N structure of the N2V defect with C2V symmetry [see
Fig. 1(a)] [4]. The effective one-electron picture of the defect
is described by Lowther [5]. The defect in its neutral charge
state was assigned to H3 color center [6] with a zero-phonon
line (ZPL) of 2.463 eV, where this signal was associated with
the optical transition between 1A1 ground and 1B1 excited
states [7]. The H3 photoluminescence (PL) center has a PL
lifetime of 17.5 ns and an outstanding 0.95 quantum yield
[8] that makes the defect a stable single-photon source [9].
An optically inactive 1A1 state with an absorption line at
2.479 eV was revealed under uniaxial stress measurements
[7]. Furthermore, an H13 absorption band with ZPL at
3.364 eV was also observed and interpreted as a transition
to higher excited states [10]. The H3 center shows delayed
luminescence, that was interpreted as a reversible transition
from the 1B1 excited state to metastable triplet states, with
radiative decay time in the order of tens of milliseconds
[11]. Its paramagnetic metastable triplet state was investi-
gated by electron-spin resonance (ESR) spectroscopy, called
W26 center, under illumination at room temperature. The
experimental zero-field splitting (ZFS) tensor principal values
are Dxx = 1.43 GHz and Dzz = −2.63 GHz. The measured
hyperfine parameters of 14N nuclei are A⊥ = 10.2 MHz and
A‖ = 21.5 MHz [12].

Our study is motivated by the success of optically
detected magnetic resonance (ODMR) applications of a
single NV defect [13] and the readout and control of
single nuclear spin with ST1 ODMR center in diamond
[14]. The latter employs optical pumping to metastable
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triplet state where initialization of the nuclear spin
is achieved by spin-polarization transfer exploiting the
hyperfine level anticrossing (LAC). As the metastable triplet
state relaxes to the singlet ground state, the nuclear-spin
coherence time is not reduced by the persistent electron
spin. As the H3 center exhibits a singlet ground state and
an optically accessible metastable triplet state we wished to
explore the properties of the N2V defect for quantum memory
applications.

To this end, we characterize this defect in diamond by means
of advanced density functional theory (DFT) calculations.
In this paper, we demonstrate that optical spin polarization
of the triplet state and spin polarization transfer to the
existing nuclear spins is principally feasible, i.e., a long-living
quantum memory may be realized with N2V defect. Their
magneto-optical parameters are determined by means of DFT
calculations that go beyond the conventional Kohn-Sham DFT
methods. By combining von Barth theory [15] and the Hubbard
model we developed an ab initio method to calculate the energy
of highly correlated multiplets using only Kohn-Sham DFT
wave function and energies, and we apply this to the neutral
N2V defect.

We organized our paper as follows. In the next section
(Sec. II), details about the computational method are given
including test results on the negatively charged N2V defect.
We focus then on the proposed quantum memory application
of the neutral N2V defect in Sec. III that is the main topic of
our paper. In Sec. IV we describe the Hubbard Hamiltonian
analysis of the electronic structure of the neutral N2V defect.
We report the calculated ab initio magneto-optical parameters
in Sec. V that are taken in the quantum memory discussion in
Sec. III.

II. COMPUTATIONAL METHOD

We carried out DFT calculations for electronic structure cal-
culation and geometry optimization within the spin-polarized
HSE06 hybrid functional [16] using the plane-wave and
projector augmented-wave (PAW) formalism based Vienna Ab
initio Simulation Package (VASP) [17–21]. The model of N2V
in bulk diamond was constructed using a 512-atom diamond
simple cubic supercell within the �-point approximation. The
�-point approximation simplifies the process of ensuring the
proper symmetry of the Kohn-Sham wave functions which is
advantageous in our method. The �-point sampling of the
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(a) (b) (c)

FIG. 1. (a) Geometry of N2V defect in diamond. (b) Representation of defect levels of double negatively charged N2V with closed-shell
orbitals relative to the valence-band maximum (VBM). (c) Analysis of ODMR contrast of the neutral N2V. Straight line illustrates radiative
decay, dashed and dotted lines represent ISC with first-order and second-order spin-orbit couplings (λ), respectively. Curved lines and blue
arrows indicate phonon and microwave transition, respectively. The calculated zero-field splitting parameters are given for 3B1 state at 0 K
temperature.

Brillouin zone has proven sufficient for various defects in
diamond for 512-atom supercell [22,23]. This implies that the
employed parameters provide sufficiently converged results
for N2V. Most of the calculations were performed with 370-eV
plane-wave cutoff energy that is sufficient for electronic
structure of nitrogen-vacancy-type defect calculations [22].
Hyperfine interaction parameters were obtained with core
correction included [24] with an increased cutoff energy of
500 eV. Zero-field splitting parameters were calculated with
a home-built code with the use of the same parameters and
methods that are given in Ref. [25].

The HSE06 calculations provide excellent results for the
negatively charged N2V defect which has a spin doublet
with no high correlation between the electron states. To
demonstrate this, we compare the experimental hyperfine
constants [26] with our HSE06 DFT calculations in Table I,
and we found excellent agreement. This supports applying
the HSE06 functional for orbitals that are not highly cor-
related. However, we found that the neutral N2V is very
challenging for Kohn-Sham DFT functionals because of the
highly correlated open-shell orbitals. We present a method in
Sec. IV that properly calculates these states that involves a
Hubbard model Hamiltonian. Our method can be useful in the
study of other quantum bits with highly correlated electronic
states.

TABLE I. HSE06 DFT calculated and experimental (in paren-
theses) hyperfine principal values for the first-neighbor nitrogen and
first carbon atoms around the vacancy of the negatively charged N2V
defect. The experimental data are taken from Ref. [26].

Atom Axx (MHz) Ayy (MHz) Azz (MHz)

15N 4.0 (3.47) 4.5 (4.09) 5.0 (4.51)
13C 190.8 (202.3) 191.6 (202.3) 314.3 (317.5)

III. PROPOSED QUANTUM MEMORY
APPLICATION OF THE N2V DEFECT

By using HSE06 we found in an earlier study [22] that the
(+|0) and (0|−) charge transition levels of N2V defect are at
EC − 4.8 eV and EV + 3.3 eV, respectively, where EC and
EV are the conduction- and valence-band edges, respectively.
This explains the stability of its neutral charge state at various
doping concentrations. Furthermore, its H13 absorption band
can be associated with the transitions from the valence band
to the empty in-gap defect level of the neutral defect. The
method to calculate the lower energy states and electronic
structure is given in the next sections. Our basic results are
summarized in Fig. 1, which shows the optically induced
electron spin-polarization process. We find two optically active
excited states (1B1 and 1A1 with small energy gap) and an
optically forbidden dark state (1A2). After the excitation to
the phonon sideband of the optically allowed singlet excited
states, it can relax to the vibronic ground state of 1B1, and then
back to the 1A1 electronic ground state with emitting a photon.
Alternatively, intersystem crossing (ISC) from 1B1 to 3B1 may
take place too as a second-order process, where mixing of the
excited 1B1 and 1A1 states caused by B1-type phonons makes
the intersystem crossing feasible via spin-orbit interaction. At
elevated temperatures, the 1A1 excited state may be thermally
occupied (experimental gap is 16 meV in Ref. [7]) and then
a first-order ISC to 3B1 can occur. This is a spin selective
transition to mS = ±1 as only λy of B1 symmetry can couple
these states, where λy is the y component of the spin-orbit
coupling. We note that the spin sublevels of the triplet split
even at zero magnetic field that is caused by the electron-spin–
electron-spin dipolar interaction (zero-field splitting) because
of the low-symmetry crystal field. Thus, the spin selective
ISC will indeed populate only the mS = ±1 states. From this
metastable triplet, an ISC can occur to the singlet ground state.
Again, the transition from the triplet mS = ±1 and mS = 0
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FIG. 2. Visualization of geometric structure and defect wave
functions of N2V. Brown and blue balls represent the carbon and
nitrogen atoms, respectively. Defect states are labeled by their
irreducible representation and localization. (a) a1(N), (b) b2(N),
(c) a1(C), (d) b1(C), (e) defect levels.

substates to the singlet 1A1 ground state is a first-order and
a second-order process, respectively, because of the selection
rules. The singlet-triplet ISC is expected to be significantly
slower than the rate of the radiative decay, because of the
large gap between the excited-state singlet and the metastable
triplet according to our ab initio result. This is in contrast to the
interpretation of an experiment [11] that we will discuss below.
This ab initio result may explain the large quantum yield of the
defect. In the optical cycle, ODMR contrast can be achieved
by microwave excitation, owing to the lifetime differences of
first- and second-order transitions from the different triplet
substates to the singlet ground state.

The system shows characteristics that makes it a promising
candidate for quantum memory applications. Electron spin
polarization can be achieved in the ODMR cycle by populating
the mS = ±1 sublevel of the metastable triplet. The 14N (or 15N
nuclei of the defect and 13C nuclei in their vicinity are candi-
dates for quantum memory. The calculated hyperfine constants
are listed for these nuclear spins in Sec. V. Spin-polarization
transfer between electron and nearby nuclear spins can be
realized at the LAC condition by optical pumping of the defect
(see a detailed analysis of this process in Refs. [27,28]). LAC
condition can be realized by a constant external magnetic field
which is perfectly aligned with the symmetry axis of the defect
and its magnitude equals the zero-field splitting [14,29]. After
the nuclear spin was set, the electron will naturally decay to the
singlet ground state that does not decohere the nuclear spin.

IV. HUBBARD MODEL OF THE ELECTRONIC STATES

Next, we discuss the nature of electronic structure of the
neutral N2V and methods to calculate it properly. The four
dangling bonds of the defect under C2v symmetry produces b2,
a1, and b1 Kohn-Sham levels in the gap, in ascending energy
order (see Fig. 2), that may be derived from a split t2 state of
the vacancy. In addition, another a1 forms resonant with the
valence band. These states are occupied by six electrons. The
highest energy occupied in-gap a1 state (HOMO) is a stretched
C-C bonding state while the lowest energy empty b1 state
(LUMO) is a C-C antibonding state [30]. As we will show
below, HSE06 DFT calculations cannot describe the various

multiplet states of the defect caused by the strong correlation
of open-shell orbitals. In the following we will use a Hubbard
model Hamiltonian to represent the strongly correlating
electrons. We particularly focus on the HOMO a1 and LUMO
b1 states as active space for the correlated electrons that
contribute to the lowest energy excitation configurations.

Our active space with a1 and b1 states may be labeled
simply a and b, respectively. Then these states may be given
as a = 1√

2
(A + B) and b = 1√

2
(A − B) where A and B are

dangling bonds on the two nearest-neighbor carbon atoms.
The singlet determinants with A1 symmetry are |1A1(g)〉 =
|a↑a↓〉, |1A1(e)〉 = |b↑b↓〉, |1B1〉 = 1√

2
(|a↑b↓〉 − |a↓b↑〉). The

triplet determinants are |3B1〉 = |a↑b↑〉; |a↓b↓〉 for mS = ±1,
respectively, and |3B1〉 = 1√

2
(|a↑b↓〉 + |a↓b↑〉) for mS = 0.

Substituting a and b in the above formulas, the atomic-orbital
form of the determinants can be obtained. The electronic
structure of the neutral N2V defect can be described by a
Hamilton operator derived from configurational interaction
with zero differential overlap (ZDO) approximation and
Heisenberg spin coupling. The full Hamiltonian then can
be described as a Hamiltonian familiar with the Hubbard
model [31] (Ĥ ′) plus the Hamiltonian of the bath of weakly
interacting electrons (Ĥ0)

Ĥ = Ĥ ′ + Ĥ0

= U (n̂A↑ n̂A↓ + n̂B↑ n̂B↓ )

− t

4
(ĉ†

A↑ ĉB↑ + ĉ
†
A↓ ĉB↓ + ĉ

†
B↑ ĉA↑ + ĉ

†
B↓ ĉA↓ )

+ C(n̂A↑ n̂B↑ + n̂A↓ n̂B↓ + n̂A↑ n̂B↓ + n̂A↓ n̂B↑ )

− 2J (ĉ†
A↑ ĉA↓ ĉ

†
B↓ ĉB↑ + ĉ

†
A↓ ĉA↑ ĉ

†
B↑ ĉB↓ )

− J (n̂A↑ n̂B↑ + n̂A↓ n̂B↓ − n̂A↓ n̂B↑ − n̂A↑ n̂B↓ ) + Ĥ0,

(1)

where the first term is the on-site repulsion, the second is the
hopping, the third is the Coulomb repulsion, and the last two
terms in Ĥ ′ are from the Heisenberg exchange interaction in
the Hubbard Hamiltonian. n̂ is the particle number operator
while ĉ† and ĉ is the creation and annihilation operators,
respectively. The eigenvalue of H0 is E0 that is the total energy
of the bath of weakly interacting electrons that should be added
to the solution of Ĥ ′. We use the symmetry adapted basis above
to write down the matrix of the Ĥ ′ Hubbard Hamilton operator,

H ′ =

⎛
⎜⎜⎝

|1A1(g)〉 |1A1(e)〉 |1B1〉 |3B1〉
U−t+C+3J

2
U−C−3J

2
U−C−3J

2
U+t+C+3J

2
U

C − J

⎞
⎟⎟⎠, (2)

where we neglected the zero-field splitting in the 3B1 state. In
the HSE06 DFT functional calculations the off-diagonal terms
are completely neglected, with resulting in �1 and �3 states
with 1A1 symmetry. The 1B1 state is a multideterminant state,
and HSE06 DFT cannot calculate the true eigenstate or, as a
consequence, the true eigenenergy of the system. Instead, one
can calculate

E(�2) = 〈a↑b↓|H |a↑b↓〉 = U + C − J

2
+ E0. (3)
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Finally, one can calculate the HSE06 DFT total energies for �1,
�3, 3B1 [corresponding diagonal terms in Eq. (2)] and for �2

[Eq. (3)], that provides four equations for the full Hamiltonian
parameters. In the full Hamiltonian there are five parameters,
however, we are interested in the excitation energies for which
three combined parameters, t , J , and U − C, are left [see
Eqs. (A5)–(A7) in Appendix A] that can be derived from the
total-energy expressions of �1−3 and 3B1.

The HSE06 DFT total energies for these various states can
by obtained by �SCF calculations [32]. In order to work with
a “noncorrelated” basis for �SCF energy calculations required
in the Hubbard Hamiltonian, we used the basis functions of
the closed-shell system of the defect in its double negatively
charged state N2V [Fig. 1(b)], calculated in the N2V

0 ground-
state geometry. This choice provides a basis that is free from
spin contamination and strong correlation effects. We note
that the relaxed orbitals within unrestricted spin-polarized
DFT Kohn-Sham formalism result in lower total energies
(see Appendix B). However, our main purpose here is to
calculate the excitation energies. As the same restriction on the
Kohn-Sham orbitals applies in all the electronic configurations
(ground state and excited states), we implicitly assumed that
this restriction has the same effect for all the electronic config-
urations. Finally, the calculated excitation energies are in order.

Another basis that prevents spin contamination could be the
neutral state with partially occupied defect levels. However,
these basis functions cannot prevent strong correlation effects
via Coulomb interaction because of the open-shell electronic
structure. We conclude that the only proper basis is to
select the Kohn-Sham wave functions (orbitals) from the
closed shell (2−) charge state. The total energies in the
various occupation of Kohn-Sham states representing the �1,
�2, �3, 3B1 multiplets were calculated by keeping these
orbitals fixed. We note that this procedure is very different
from the usual self-consistent unrestricted spin-polarized DFT
method. Consequently, the two approaches result in different
excitation energies by the �SCF method (see Appendix B).
Our procedure with fixed orbitals guarantees the proper spin
state and symmetry of the single determinant many-body state.

By calculating the HSE06 DFT energies for the �1−3

and 3B1 states (summarized in Table II), the parameters
in the Hubbard Hamiltonian can be calculated ab initio,
and the resultant values are t = 2.23 eV, U − C = 2.05 eV,
and J = 0.05 eV, respectively. The singlet-triplet coupling is
minor, and the U − C terms and the hopping term t dominate,
U − C ≈ t ≈ 2 eV. A very important finding is that the

TABLE II. HSE06 total energies of considered states of neutral
N2V relative to that of �1 obtained by fixed orbital calculation from
the double negatively charged N2V basis states in the optimized
geometry of the neutral N2V by the self-consistent spin-polarized
HSE06 calculation. We note that the chosen relative energies
correspond to an energy shift of t−U−C−3J

2 in (H ′) [see Eq. (2)].

State Relative energy (eV)

�1 0.00
�2 1.01
�3 2.23
3B1 −0.05

calculated �1 → �2 excitation energy by the self-consistent
spin-polarized DFT method scales up by ≈1 + √

2/2 ≈ 1.7,
with respect to the the correct 1A1(g) → 1B1 excitation energy
obtained by the Hubbard model. In other words, the vertical
excitation energy associated with the 1B1 state increases in the
order of eV in the Hubbard model with respect to the HSE06
Kohn-Sham DFT result. As a consequence, the excitation
energies of the 1A1(g) → 1B1 and 1A1(g) → 1A1(e) transitions
are close to each other in the Hubbard model. The error in the
self-consistent spin-polarized Kohn-Sham DFT HSE06 func-
tional is much larger than the usual 0.1 eV [22]. Our Hubbard
model Hamiltonian derivation clearly shows that the 1B1 state
is a particularly highly correlated multiplet which cannot be
properly treated by Kohn-Sham hybrid density functionals.

V. AB INITIO MAGNETO-OPTICAL PARAMETERS

For direct comparison to the experimental ZPL data, one
has to calculate the relaxation energy of ions upon excitation.
The relaxation energy was very roughly estimated by self-
consistent spin-polarized HSE06 �SCF method on �1−3

states. We find that the relaxation energy on the 1A1(e) state is
≈0.6 eV whereas it is ≈0.2 eV on the 1B1 state. The relaxation
energy on 3B1 is small, 0.06 eV. The final results are depicted
in Fig. 3 that are directly compared to experimental data and
the self-consistent spin-polarized Kohn-Sham HSE06 results.
Our Hubbard model Hamiltonian with ab initio parameters
provides significantly improved results over those obtained
by the usual self-consistent unrestricted spin-polarized Kohn-
Sham HSE06 method. We find that the 1A1(g) → 1B1 ZPL
energy is indeed around 2.4 eV, and the 1A1(g) → 1A1(e)

ZPL energy is slightly above that. These are the optically
allowed transitions. Higher energy singlet and triplet states
with b2 → b1 excitation may form with optically forbidden
A2 symmetry. The 1A2 state cannot absorb light but can play
a role in the nonradiative decay when the electron is excited
to the H13 band which corresponds to the valence band to
b1 transition (see Fig. 3). The total energy of the 3A2 could
be a calculated �SCF procedure from 3B1 → 3A2 excitation
energy whereas the total energy of 1A2 should be slightly
higher due to the small singlet-triplet coupling J .

Regarding the triplet energy levels, their energies in the
region of 270–480 meV below the 1B1 level were proposed
from PL lifetime measurements where they found a delayed
luminescence of millisecond lifetime [11] that they associated
with a spin-orbit mediated tunneling process [33] from the
metastable triplets to the lowest energy singlet excited state
with the formula

W (T ) = K√
kT ∗ coth

(
h̄ω

2kT

)
exp

(
− Ea

kT ∗

)
, (4)

K = |Csl |2ω
√

2π√
2EM

, (5)

Csl = 〈s|ĤSO|l〉Jsl

Es − El

, (6)

with kT ∗ = 1
2 h̄ω coth (h̄ω/2kT ), Ea is the barrier energy

between the corresponding states, h̄ω is the dominant phonon
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FIG. 3. Excitation energies of the neutral N2V defect in diamond.
States that are very close in energy are enclosed with brackets. The
lowest optically allowed excitation energies are highlighted with red.
Left panel: self-consistent unrestricted spin-polarized Kohn-Sham
HSE06 �SCF results. The tilde on the labels of the wave functions
denotes that not the true eigenstate of the system is calculated (see
text for more details). Middle panel: experimental zero-phonon-
line energies for the singlets (Ref. [7]) and the proposed energies
of triplets (Ref. [11]). Right panel: Hubbard model Hamiltonian
results.

frequency, EM is the relaxation energy between the two states,
k is the Boltzmann constant, and T is the temperature in K.
Csl is the coupling of states s and l where ĤSO is the spin-orbit
coupling operator; Jsl is the electron-phonon coupling. We
found that the 3B1 level is rather far (>2 eV) from the excited
singlet states, thus we estimated its delayed luminescence. As
the transition from 3B1 to 1B1 is a second-order process which
should be presumably slow, we calculated the transition to
1A1 with the first-order ISC process. The estimated strength of
spin-orbit coupling is around 10 GHz and that of the electron-
phonon coupling is 0.1

√
eV, similar to the values in the

NV center [34,35]. From our vibrational analysis, calculated
with the computationally less expensive PBE functional [36]
using PBE optimized geometries, we obtained the average
phonon energy of 84 meV weighted by the partial Huang-Rhys
factors [37] for the vibrational coupling for this transition. The
relaxation energy between 1A1 and 3B1 is estimated to be
0.4 eV. With these parameters we obtain a lifetime in the order
of 106 s at various temperatures. This implies that the observed
delayed luminescence is not intrinsic to the defect. As the
delayed luminescence was observed for the ensemble of N2V
defects we speculate that it originates from the interaction with
other defects in diamond. Future single defect measurements
may conclude the nature of this emission.

In the following, we present the calculated hyperfine
interaction of the electron spin with 14N and proximate 13C

FIG. 4. Visualization of atomic sites with dominant hyperfine
parameters shown in Table III for N2V

0.

nuclear spins. The identification of 13C sites with dominant
hyperfine parameters in the vicinity of N2V defect is of great
importance in quantum memory realization with this defect
as they can store the quantum information for a relatively
long time. These sites are highlighted in Fig. 4 and the
corresponding calculated hyperfine parameters are listed in
Table III.

VI. SUMMARY

We analyzed the neutral N2V defect in diamond by means
of ab initio calculations, and concluded that a quantum
memory can be realized by this defect controlled by optical
excitation and microwave manipulation. We showed that the
electronic structure of this defect is a prototype of highly
correlated states that can be treated by our method that is
a combination of density functional theory and a Hubbard
model.
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APPENDIX A: ADDITIONAL FORMULAS
FOR THE HUBBARD MODEL

In this section, we explicitly show the connection between
the DFT total energies of the single determinant states and
the multiplets, and write down the formulas that we applied

TABLE III. HSE DFT calculated hyperfine constants for N2V
0

for 14N and 13C nuclei. The location of 13C nuclei is depicted in Fig. 4.

Site Axx (MHz) Ayy (MHz) Azz (MHz)

14N 9.6 9.5 14.5
C1 82.3 81.7 198.9
C2 −11.5 −8.5 −12.1
C2’ −11.2 −8.3 −11.6
C3 15.9 15.7 24.2
C3’ 16.1 15.9 24.4
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TABLE IV. HSE06 total energies of considered states of neutral
N2V relative to that of

1
Ã1(g) are obtained by self-consistent unre-

stricted spin-polarized HSE06 calculation in the optimized geometry
of the neutral N2V. The tilde over the electronic states labels that
those states are not the true symmetrical eigenstates of the system.

State Relative energy (eV)

1
Ã1(g) 0.00

1
B̃1 1.67

1
Ã1(e) 2.92

3
B̃1 0.25

to obtain the Hubbard parameters and calculate the excitation
energies.

By using the definitions of a and b orbitals in the main text,
one can express the corresponding wave functions in terms of
A and B dangling bonds as

|1A1(g)〉 = 1
2 (|A↑A↓〉 + |B↑B↓〉) + 1

2 (|B↑A↓〉 − |B↓A↑〉),
(A1)

|1A1(e)〉 = 1
2 (|A↑A↓〉 + |B↑B↓〉) − 1

2 (|B↑A↓〉 − |B↓A↑〉),
(A2)

|1B1〉 = 1√
2

(|A↑A↓〉 − |B↑B↓〉), (A3)

|3B1〉 =
⎧⎨
⎩

|A↑B↑〉
1√
2
(|B↑A↓〉 + |B↓A↑〉)

|A↓B↓〉
. (A4)

By applying the Hubbard Hamiltonian in the main text, one
obtains Hamiltonian matrix in the basis of |1A1(g)〉, |1A1(e)〉,
|1B1〉, |3B1〉 as shown in the main text. After diagonalization
of the Hubbard Hamiltonian, the resultantt vertical excitation

TABLE V. Vertical excitation energies in the Hubbard model
calculated from self-consistent unrestricted spin-polarized HSE06
Kohn-Sham orbitals.

Excitation Vertical excitation energy (eV)

1A1(g) → 3B1 1.07
1A1(g) → 1B1 3.91
1A1(g) → 1A1(e) 4.39

energies are

E(1A1(g) → 1A1(e)) =
√

t2 + (U − C − 3J )2, (A5)

E(1A1(g) → 1B1) = U − C − 3J +
√

t2 + (U − C − 3J )2

2
,

(A6)

E(1A1(g) → 3B1) = C − U − 5J +
√

t2 + (U − C − 3J )2

2
.

(A7)

APPENDIX B: ADDITIONAL INFORMATION
ABOUT THE RAW DFT TOTAL ENERGIES

We show in Table V that calculation of the total energies
in the Hubbard model from unrestricted spin-polarized Kohn-
Sham DFT HSE06 orbitals is not appropriate.

The total energy of
1
Ã1(g) relative to that of �1 is −6.75 eV

as listed in Table IV because we applied restriction to the Kohn-
Sham orbitals as explained in the main text. The calculated
excitation energies within the Hubbard model taking the values
in Table IV are given in Table V. These results are very far from
the experimental data. This can be understood by considering
the fact that the unrestricted spin-polarized HSE06 Kohn-
Sham orbitals are spin contaminated and break the symmetry
of the system. Thus, these orbitals are not suitable for serving
as a basis for the Hubbard model as the Hubbard model requires
orbitals with appropriate symmetry and spin state.
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