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Anomalous thermodynamic properties of the electron accumulation layer in SrTiO3
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Due to the nonlinear dielectric response within SrTiO3 (STO), an accumulation layer created by positive charges
at the surface of the STO sample (x = 0) has an electron density profile n(x) that slowly decays as 1/x12/7. Here
we show that the long tail of n(x) causes the magnetization and the specific heat of the accumulation layer to
diverge at large x. We explore the truncation of the tail by the finite sample width W , the transition from the
nonlinear to linear dielectric response with dielectric constant κ , and the use of a back gate with a negative
voltage −|V |. We find that both the magnetization and specific heat are anomalously large and obey nontrivial
power law dependences on W , κ , or |V |. We conclude with a discussion of how the capacitance as a function of
the back gate voltage may be used to study the shape of the n(x) tail in thin samples.
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I. INTRODUCTION

There is growing interest in the investigation of ABO3

perovskite crystals, which are important for numerous techno-
logical applications and show intriguing magnetic, supercon-
ducting, and multiferroic properties [1]. Special attention [2,3]
is paid to heterostructures involving SrTiO3 (STO), which is
a semiconductor with a band gap Eg � 3.2eV [4] and a large
dielectric constant κ = 2 · 104 at liquid helium temperatures.
STO can be used as a building block for different types of
devices, with reasonably large mobility [5,6].

Many devices are based on the accumulation layer of
electrons near a heterojunction interface in a moderately n-type
doped STO. For example, one can get an accumulation layer
with two-dimensional (2D) concentration N = 3 × 1014 cm−2

of electrons on the STO side of the GTO/STO heterojunction
induced by the electric field resulting from the “polar catas-
trophe” in GdTiO3 (GTO) [7] (see Fig. 1). The role of GTO
can also be played by perovskites LaAlO3 [2,5,6], NdAlO3,
LaVO3 [8], SmTiO3, PrAlO3, NdGaO3 [9], LaGaO3 [10], and
LaTiO3 [11]. One can accumulate an electron gas using a field
effect [12–14]. In Refs. [15,16], the authors accumulated up to
1014cm−2 electrons on the surface of STO using ionic liquid
gating. Inside bulk STO δ-doping by large concentrations of
donors can be used to introduce two accumulation layers of
electrons [17–19]. Not surprisingly, the potential and electron
density depth profiles in such devices have attracted a lot of
attention [7,15,20–27].

To describe the accumulation layer, we imagine that the
effect of the doping, gate, or polar catastrophe can be thought
of as a concentration N of positive charge that lies at the STO
surface. This charge attracts electrons to the surface, creating
the accumulation layer illustrated in Fig. 1. In Ref. [28],
authors calculated the three-dimensional (3D) electron density
profile n(x) of the accumulation layer with a large 2D density
N as a function of the distance x from the surface. To
account for the nonlinear dielectric response in STO, they
used the Landau-Ginzburg free energy expansion [29,30]
while describing the degenerate electron gas with the Thomas-
Fermi approximation [31]. They arrived at the self-consistent
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where a = 3.9 Å is the lattice constant, b = h̄2/m∗e2 =
0.30 Å, m∗ = 1.8me is the effective mass of the electron, me

is the electron mass, and d is the characteristic decay length
of the electron density:

d = C3

A3/5
b
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b

)2/5
(Na2)−7/5. (3)

Here, C1, C2, and C3 are dimensionless constants, and A

is a numerical constant describing the nonlinear dielectric
response.

In this paper, we first study the low-temperature magne-
tization Ms and the specific heat cs per unit area of such an
accumulation layer. Because the neutrality condition

N =
∫ ∞

0
n(x)dx (4)

converges, one might suspect that Ms and cs are similar to that
of a degenerate electron gas in a uniform layer, with a thickness
d, surface concentration N , and a bulk density n(N ) = N/d.
For the purpose of comparison, we denote these quantities in
the uniform layer as M̃s and c̃s . Instead, we find that Ms and cs

are strongly enhanced above M̃s and c̃s . The reason for this is
that in calculating these quantities, we must integrate the local
magnetization M(x) and specific heat c(x) per unit volume
across the entire layer. Both these quantities are proportional
to the local density of states at the Fermi level, which decreases
slowly as n(x)1/3 ∝ 1/x4/7. As a result, integrating M(x) and
c(x) over the accumulation layer causes Ms and cs to diverge,
and the integral must be truncated at a large x = L. There are
several possible mechanisms for the truncation, such as the
finite width of the sample W , the crossover to a linear dielectric
response with a dielectric constant κ , and the application of a
back gate with negative voltage −|V | as shown in Fig. 2. As
a result, the magnetization Ms(L) and the specific heat cs(L)
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FIG. 1. Schematic electron potential energy −eϕ(x) diagram of
an accumulation layer in a moderately n-doped STO where x is the
distance from the surface. The electron (blue) is attracted by the
positive charges (pluses) at x = 0. The characteristic width of the gas
is d . In the bulk of STO the Fermi level εF is near the bottom of the
conduction band. Other positions of the Fermi level in the bulk are
discussed in Sec. V.

per unit area of the accumulation layer are enhanced above
their uniform layer values M̃s and c̃s by a power law factor
that depends on the truncation length L. This introduces a
power law dependence on the width W , the linear dielectric
constant κ , and the magnitude of the back gate voltage
|V |, depending on which mechanism is responsible for the
truncation. Similar anomalous behavior of kinetic coefficients
for STO accumulation layers dominated by surface scattering
has previously been studied [32]. We emphasize that, in this
paper, we are only discussing thermodynamic properties of the
electrons in which the different scattering mechanisms play
no role.

The second half of this paper describes the capacitance
formed between the accumulation layer and a back gate located
at the x = W edge of the sample. When the magnitude of
the voltage |V | is small, the capacitance can be described
with the usual Debye screening radius and an effective
dielectric constant determined by the electric field E(W ) at
the sample edge. We find that the capacitance in this region is
approximately constant with respect to the back gate voltage.

(a) (b)

(c) (d)

FIG. 2. Schematics of the density profile n(x) for an accumulation
layer in STO with (a) no truncation, (b) truncation by the finite
sample width W , (c) truncation by the linear-nonlinear crossover, and
(d) truncation by the back gate voltage V . Here, x is the distance from
the surface. The dotted lines in (b)–(d) correspond to the density
profile without truncation.

TABLE I. Specific heat per unit area cs of the STO accumulation
layer for the different truncation mechanisms. Here c̃s is the specific
heat per unit area of a degenerate gas in a uniform layer of thickness d

and bulk concentration N/d , W is the width of the STO sample, κ is
the linear dielectric constant of STO, and V is the back gate voltage.
C4, C6, and C7 are numerical constants.

Truncation cs(L)

Finite Sample Width W C4c̃s

(
W

d

)3/7

Crossover to Linear
Dielectric Constant κ
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(
b

d

)3/7(a

b

)6/35
κ3/10

Back gate Voltage V C7c̃s

(
b

d

)3/7(
b

a

)8/35(
eW

b2|V |
)1/5

However, when the voltage is increased beyond the limit of
the Debye theory, the electrons are confined to a region of
thickness LV as measured from the x = 0 surface, leaving
a fully depleted region of size W − LV near the back gate.
We show that the capacitance in this limit can be described
with an effective width W + βLV and a dielectric constant
κ(V ) ∝ V −2/3 that changes with the back gate voltage. What
is surprising is that the coefficient β is positive, leading to
an effective width larger than the width of the sample. As
we explain in detail below, this counterintuitive result comes
from a combination of the dependence of LV on V and the
dependence of the dielectric constant on LV .

This paper is organized as follows. In Sec. II, we describe
the magnetization of the gas in both the uniform layer and
the accumulation layer, and describe the different truncation
mechanisms. In Sec. III, we repeat the same discussion for the
specific heat and summarize the results in Table I. In Sec. IV,
we discuss how capacitance measurements as a function of
the negative back gate voltage −|V | may be used to measure
the truncation length LV and the concentration n(W ), and thus
as an experimental verification of the tail of the distribution.
Finally, we conclude in Sec. V.

II. MAGNETIZATION

Let us explore the magnetization of an STO accumulation
layer. We assume that the magnetic field is applied perpendic-
ular to the surface, and is weak in the sense that μBB � kBT ,
where μB = |e|h̄/2mec is the Bohr magneton, T is the
temperature, and kB is the Boltzmann constant. We know
that, under these conditions, there are two contributions to the
magnetization of a degenerate electron gas—the paramagnetic
effect from the spins of the electrons and the diamagnetic effect
due to the orbital motion of electrons in the applied magnetic
field.

First, let us discuss Pauli paramagnetism within the accu-
mulation layer [30]. In the weak field limit (μBB � EF ), the
magnetization per unit volume is given by

M = μ2
BBg(n), (5)

where

g(n) = m∗

π2h̄2 (3π2n)1/3 = 3

2

n

EF (n)
(6)
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is the density of states at the Fermi level and we have
used EF = (h̄2/2m∗)(3π2n)2/3 to relate the density to the
Fermi energy. This formula has a very simple interpretation.
The Zeeman splitting of the different spins gives rise to an
additional occupancy of electrons whose spin is aligned with
the magnetic field. In the weak field limit, the response is
linear, so that each electron within an energy range μBB of
the Fermi level contributes a moment μB to the magnetization.
The total density of electrons that contribute is then μBBg(n),
giving rise to Eq. (5). It is important to note that Eq. (5) is
valid both in the uniform layer and the accumulation layer, so
long as we identify n = n(x) as the bulk density at a distance
x from the surface, and M = M(x) as the magnetization per
unit volume at the distance x.

To calculate the total magnetization per unit area Ms , M(x)
must be integrated over the entire layer:

Ms =
∫ ∞

0
M(x)dx. (7)

Using this definition, we now discuss how Ms differs between
the uniform layer and the accumulation layer.

In the case of a uniform layer of thickness d and bulk density
n(N ) = N/d, Eq. (7) shows that the magnetization is

M̃s = α
3

2
μ2

BB
N

EF (N/d)
, (8)

where EF (N/d) is the Fermi energy of a uniform layer
with bulk density N/d. Additionally, we have introduced
a correction factor α < 1 to account for the diamagnetic
contribution (see below).

When the layer is not uniform, we use Eq. (2) for the local
density. The magnetization of the accumulation layer is then
found to be

Ms ∝
∫ ∞

0

1

(x + d)4/7
dx. (9)

We see that the integral diverges as x3/7 for large x, and so we
truncate the integral at a value x = L. With this truncation, the
leading order contribution to the magnetization per unit area
is found to be

Ms(L) = C4M̃s

(
L

d

)3/7

, (10)

where M̃s is defined by Eq. (8) and C4 is a numerical constant.
The value of this constant and all other numerical constants
can be found in Table II in Appendix B.

The truncation length L can be a result of i) the finite width
of the sample, ii) truncation due to the transition to a linear
dielectric response, and iii) the application of a back gate to
the layer. The details of each truncation mechanism will be
discussed individually below and the smallest of these values
is to be substituted into Eq. (10).

A. Finite Sample Width

In a sample with a very small width, such as
GTO/STO/LSAT heterostructures with an STO layer of width
W , the truncation is due to the finite sample width. Here
LSAT stands for (LaAlO3)0.3(Sr2AlTaO6)0.7 In this case, the

magnetization is given simply by

Ms(W ) = C4M̃s

(
W

d

)3/7

. (11)

For symmetric quantum wells such as GTO/STO/GTO with
an STO layer of width W , an accumulation layer forms on
each GTO/STO interface and the density profile is symmetric
about the center of the well [33]. When W > 8a = 3.2 nm,
these accumulation layers are essentially separate and one can
calculate the magnetization using the above method for each
of the layers, using a truncation length of W/2 instead of W .

B. Transition to linear dielectric response

Within the layer, the electric field decays with increasing x

as 1/x15/7. As a result, the field at large x becomes so small that
the dielectric response of the STO sample becomes linear with
a large dielectric constant κ . It has been shown in Ref. [32]
that this crossover occurs at a distance:

Lκ = C5bκ7/10
(a

b

)2/5
, (12)

where C5 is a numerical constant [32]. Substituting this into
Eq. (10), the magnetization of the layer becomes

Ms(κ) = C6M̃s

(
b

d

)3/7(a

b

)6/35
κ3/10, (13)

where C6 is a numerical constant.

C. Truncation by the back gate voltage

In an STO sample of width W , a back gate can be used
to apply a voltage V to the gas and alter the structure of the
layer. When V < 0, electrons are repelled away from the back
gate.1 Let us assume that n(x) vanishes at x = LV , and that
LV � W , where W is the width of the STO sample. Then
we can think that the magnitude of the back gate electric
field is Ex = |V |/W . Conversely, we mentioned before that
the electric field within the accumulation layer Ex = −dϕ/dx

decays like 1/x15/7, where ϕ(x) is given by Eq. (1). The length
LV can then be defined as the distance in which these two
electric fields are equal and we find

LV = γ b

(
b

a

)8/15( |V |b2

eW

)−7/15

. (14)

Here we have introduced a numerical constant γ which
cannot be determined from the qualitative description above. A
numerical calculation using the Thomas-Fermi approach finds
γ ≈ 3.94, and the details of the procedure are described in
Appendix A. Using LV as the truncation length in Eq. (10), we

1When V > 0, extra electrons are brought to STO. They form
an accumulation layer at the interface with a gate, similar to the
symmetric wells GTO/STO/GTO. As a result, the magnetization
and specific heat will grow with V and, in the symmetric case, are
enhanced by a factor 24/7 compared to when V = 0 and the truncation
was by the finite sample width W .
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arrive at the magnetization as a function of back gate voltage:

Ms(V ) = C7M̃s

(
b

d

)3/7(
b

a

)8/35(
eW

b2|V |
)1/5

, (15)

where C7 is a numerical constant.

D. Diamagnetism

Now we address the correction factor α due to the
diamagnetic effect. In a uniform system, this effect leads to
the well-known value −(1/3)M̃s , with one major difference.
Because the diamagnetic effect is a result of the orbital
motion, we must use the effective mass m∗ instead of the
bare electron mass me in the definition of the magnetic
moment μB = |e|h̄/2m∗c. Because M̃s ∝ μ2

B , we find that
the correction factor α is then given by

α = 1 − 1

3

(me

m∗
)2

. (16)

In the case of STO, we use the fact that m∗ = 1.8 me and find
that α ≈ 0.90.

III. SPECIFIC HEAT

The specific heat per unit volume of a uniform gas at low
temperatures is known to depend linearly on the temperature
and described by the formula

c = π2

3
k2
BT g(EF ). (17)

This equation is similar in nature and interpretation to that of
the magnetization for a uniform gas, with μBB replaced by
kBT .

Just as before, to describe the specific heat of the accu-
mulation layer, Eq. (17) must be expressed through its local
value and integrated over the entire layer. Because the only
dependence on position enters through the density of states,
the divergence of the integration is identical to that of the
magnetization. Therefore, it can easily be shown that the
specific heat of the accumulation layer is given by

cs(L) = C4c̃s

(
L

d

)3/7

, (18)

where c̃s = (π2/2)k2
BT N/EF (N/d) is the specific heat per

unit area of the uniform layer of thickness d and bulk density
N/d, C4 is the same numerical constant that appears in
Eq. (10), and L is the truncation length. The truncation
mechanisms discussed in the previous section are the same
for the specific heat leading to the results in Table I.

IV. BACK GATE CAPACITANCE OF THIN STO SAMPLES

In the previous sections, we have discussed the effect of
the long tail of n(x) on various thermodynamic quantities, and
found that the magnetization and specific heat are enhanced
by a factor proportional to L3/7. In principle, the dependence
of Ms and cs on the truncation length can be used for an
experimental study of the tail of the distribution. Here we
would like to describe how the capacitance as a function of
the back gate voltage may also be used to study the tail of
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FIG. 3. Schematic image of the STO layer of width W with a
back gate at a negative voltage (right side). The back gate depletes
the accumulation layer, so that the electron gas shown in blue (grey)
lies in a region of size LV and a depletion layer of size W − LV is
created. A small number of electrons are “stolen” by the back gate,
resulting in a negative surface charge −σ , while the left side (dotted
box) gains a net positive surface charge σ and forms a capacitor with
the back gate.

the distribution. A similar study of the quantum capacitance
of the accumulation layer has previously been suggested as a
tool to measure the characteristic length d of the layer [28].
Earlier negative compressibility in LAO/STO structures was
discovered by capacitance studies [34,35].

In the following discussion, we assume that, prior to the
application of the back gate, the tail is truncated by the sample
width W . Let us now imagine that a negative back gate voltage
−|V | is applied to the STO sample by a metallic gate mounted
on the x = W edge. Let us further assume that part of the tail
has been depleted so that the length of the layer is LV � W ,
where LV is defined in Eq. (14). This means that the back
gate has “stolen” a small amount of electrons and acquires a
negative charge −σ while leaving a net positive charge σ =
e(N − ∫ LV

0 n(x)dx) on the STO side as illustrated in Fig. 3.
Thus a capacitor is formed between the accumulation layer
and the back gate with charge σ , voltage V , and the inverse
differential capacitance per unit area C−1 = dV/dσ .

To calculate the differential capacitance C−1, we must first
relate the potential V across the capacitor to the charge per
unit area σ . We proceed as follows. The region between the
plates is fully depleted of electrons. As a result, the electric
field E within this region is given by E = |V |/(W − LV ).
Additionally, we know from Gauss’s law that the displacement
field D is such that D = 4πσ . Using the Landau-Ginzburg
description of the dielectric response of the STO lattice,
one finds that E = AD3/((4π )3P 2

0 ), where P0 = e/a2 is the
characteristic polarization of STO. Combining these three
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equations we find that

A
σ 3

(e/a2)2
= |V |

W − LV

. (19)

Taking the derivative dV/dσ , we find

C−1 � 3A
σ 2

(e/a2)2
(W − LV ) − A

dLV

dσ

σ 3

(e/a2)2
. (20)

Using Eq. (19) with Eq. (20) and keeping only the first order
in LV /W , we find the capacitance to be

C−1(V ) = 4π

κ(V )
(W + βLV ), (21)

where β = 2/15 and

κ(V ) = 4π

3

(
A1/2|V |a2

We

)−2/3

(22)

is the dielectric constant when the accumulation layer is fully
depleted.

We see from Eq. (21) that the correction to first order in LV

increases the effective width. The fact that this correction is
positive may seem counterintuitive as the effective thickness
of the capacitor becomes larger than the sample width W .
However, we see from Eq. (20) that this is not the real width
of the capacitor. Instead, the positive correction comes from
the combined dependence of LV on the charge σ and the
dependence of the dielectric constant on LV to give an overall
positive correction to the main term of order W . If one wishes
to verify Eq. (21) and the positive correction, one may plot
[4πCV /κ(V )]−1 − W vs. V and examine whether it agrees
with the |V |−7/15 behavior given by Eq. (14).

If the applied voltage is sufficiently small so that LV = W ,
then there is no fully depleted region. Instead, we can linearize
the small depletion of the layer around the density n(W ) at the
right edge of the sample. The capacitance is then given by the
familiar expression

C−1 = 4πRD

κeff
, (23)

where

R2
D = κeff

4πe2g(W )
(24)

is the Debye screening radius, g(W ) is the density of states
at x = W , and κeff = (1/3)D/E is the effective dielectric
constant defined by the derivative δD/δE at the right edge.
Using E = AD3/((4π )3P 2

0 ), E = −dϕ/dx with ϕ(x) from
Eq. (1), we find

κeff = Cκ

A1/7

(
b

a

)4/7(
W

b

)10/7

, (25)

where Cκ is a numerical coefficent. Combining Eq. (25) with
g(W ) = g(n(W )) from Eq. (6), we find that

C−1 = C8
4πW

κeff
, (26)

where C8 is a numerical coefficient. If we compare Eq. (26)
with our earlier expression Eq. (21), we see that, as the
magnitude of the voltage is decreased, the capacitance first

grows, and then saturates at a constant value related to
the electron density n(x) near the sample edge. Therefore,
measurements of the peak capacitance near zero voltage allow
for a study of the tail of the density distribution.

Let us discuss in more detail the necessary conditions for
this to be observed. In the above discussion, we assumed that
the truncation prior to the application of the back gate was
by the sample width W . This need not be the case, as when
the sample width becomes too large the main truncation will
be due to the crossover to a linear dielectric response. This
does not change any of the results, so long as we require
that LV � Lκ whenever W is too large. We can estimate the
maximum size of the sample from Eq. (12), where we find
that Lκ ≈ 328 nm. From this we can use Eq. (14) and equate
it to the min(Lκ,W ) to find the minimum voltage needed to
observe the effects of the back gate. Samples such as W � Lκ

have been studied and their capacitance qualitatively agrees
with our above predictions [14].

V. DISCUSSION

A. Effective Mass

In the above discussion, we have assumed that the band
structure of STO near the bottom of the conduction band
consists of a single isotropic band with an effective mass m∗.
In truth, near the conduction band bottom of STO are three
degenerate bands formed by xy, xz, and yz Ti d-orbitals. This
degeneracy is lifted by the spin-orbit interaction and results
in two low-energy bands that are nearly degenerate, and a
higher energy band offset by 20 meV [36]. The mass m∗
used in the single band Thomas-Fermi approximation comes
from the total density of states of all three bands at the Fermi
surface. When EF � 20 meV or equivalently n > 1019 cm−3,
all three bands contribute to m∗. At smaller concentrations,
the high-energy band is empty and no longer contributes
to the density of states. This will slightly lower m∗. This
minor difference in m∗ does not affect the dependence of the
magnetization and specific heat on W , κ , and V , and instead
only changes the parameter b in all formulas.

B. Rashba Interaction

The Rashba spin-orbit interaction due to the breaking of
inversion symmetry at the interface has been measured in
LAO/STO gated structures. This interaction is characterized by
the Rashba parameter αR , which is proportional to the electric
field E [37]. Near the surface where the field is largest, it results
in a splitting between bands by an amount � = 2αRkF � 10
meV at surface concentrations N = 4.5 × 1013 cm−2. At such
concentrations, the Fermi energy EF (0) = 18 meV � 10 meV,
so that, near the surface, the Rashba spin-orbit interaction
is marginally small. Far from the surface, in the tail of the
electron density, which is most important for our results,
� � EF . The reason for this is that even though the local
Fermi energy EF (x) ∝ x−8/7 at large x, the electric field
E ∝ x−15/7 and kF ∝ x−4/7. Therefore �/EF ∝ x−11/7 and
the splitting quickly becomes irrelevant.
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C. Bulk Fermi level

Above we have assumed that the bulk of STO is lightly
doped by donors, so that the bulk Fermi level lies near the
bottom of the conduction band and the density of electrons
tends to zero at large x. Actually, bulk STO is believed to be
heavily compensated so that Fermi level in the bulk is in the
middle of the gap [38]. This does not affect the structure of
the accumulation layer, as the Fermi level does not acquire its
bulk value until distances comparable to the screening radius
of thermally activated carriers which is exponentially large at
low temperatures.

VI. CONCLUSION

In this paper, we have studied the thermodynamic properties
of electron accumulation layers in STO created by positive
charge at the surface. We have shown that the slow decay of
the density profile causes divergence of the magnetization and
specific heat per unit area at large distances from the surface.
This anomalous behavior creates a dependence of these
quantities on a truncation length, and we have proposed several
possible mechanisms for truncation. They lead to a nontrivial
power law dependence of the magnetization and specific heat
on the sample width W , the linear dielectric constant κ , or back
gate voltage V . Additionally, we have studied the capacitance
as a function of back gate voltage in thin samples where
the tail of the electron gas has been partially depleted. The
anomalous behavior of the magnetization, specific heat, and
back gate capacitance due to the truncation of the tail allows
for an experimental study of the shape of n(x) and, therefore,
a verification of the density profile given by Eq. (2).
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APPENDIX A: CALCULATION OF THE NUMERICAL
CONSTANT γ IN THE BACK GATE TRUNCATION

LENGTH

Equation (14) was derived from a qualitative argument
in which the electric fields from the back gate and the
accumulation layer were matched. While this procedure should
produce the correct scaling behavior, it is not reasonable
to expect an accurate numerical coefficient in this way. To
calculate the coefficient γ , we instead use the Thomas-Fermi
approximation in which the self-consistent potential ϕ(x) is
found to satisfy

d

dx

(
d

dx

ϕ

e/b

)1/3

= 23/2

3π2

A1/3

b4/3

(a

b

)4/3
(

ϕ

e/b

)3/2

, (A1)

where b = h̄2/m∗e2 ≈ 0.30 Å has been introduced and A =
0.9 [28]. This equation was derived for the case of no back
gate. To account for a back gate with voltage −|V |applied
to the sample, we simply change ϕ → ϕ − |V | in Eq. (A1).
To prepare for numerical calculations, it is useful to rewrite

Eq. (A1) in a dimensionless form. Using y = x/b and χ =
(ϕ − |V |)/(e/b), we can write this as

d

dy

(
dχ

dy

)1/3

= θχ3/2, (A2)

where θ = 23/2A1/3(a/b)4/3/(3π2). It can be verified that this
equation can be integrated to find

dχ

dy
= −

(
8

5
θχ5/2 + g1

)3/4

, (A3)

where g1 is a constant of integration that can be related to
the electric field at LV in the following way. We assume
that the electrons only occupy a region 0 < x < LV , and so
the density profile n(x) vanishes at LV . Within the Thomas-
Fermi approximation, we assume that the density is such that
h̄2(3π2n)2/3/2m∗ = e(ϕ − |V |), from which it follows that
n(x) ∝ χ3/2. Therefore, χ must also vanish at LV . From this
and Eq. (A3), it immediately follows then that

g1 =
(

dχ

dy

)4/3∣∣∣∣
LV

. (A4)

Because χ is the dimensionless form of the electric potential,
it follows that −dχ/dy is the electric field E in units of e/b2,
and so g1 = E4/3 in units of e/b2.

Now that we understand the meaning of g1, we can find γ

as follows. We first guess a value of E(LV ). Once we make
this guess, then we know both g1 and the value of χ at LV ,
and so χ is uniquely defined. Equation (A3) may then be used
to numerically integrate from LV to any other value of y. In
particular, we know what the value of the electric field is at x =
0 where it must match the electric field of the positive charges
near the surface given by Eq. (4). Thus, we may perform the
integration until the value of dχ/dy = A(Nb2)3(a/b)4. If we
track the change in y during this procedure, we can find LV /b

for this particular choice of E(LV ). We can then repeat this
process many times to generate a curve of LV vs. E(LV ). Once
this curve is obtained, we fit the data to the equation

LV = γ

(
b

a

)8/15

E
−7/15
V , (A5)

where we have assumed the dependence of LV on b/a and
EV from Eq. (14) and LV and EV are in units of b and e/b2.
Performing this procedure at a concentration N = 1014 cm−2

gives us γ = 3.94. Performing this at concentrations N =
3 × 1014 cm−2 does not change this value within the precision
of our calculation.

APPENDIX B: TABLE OF COEFFICIENTS

TABLE II. Values of the numerical coefficients for the Eqs. in the
text.

C1 C2 C3 C4 C5 C6 C7 A

5.8 1.3 2.4 2.1 3.9 3.7 3.7 0.5–1.5
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