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Enhancement of conductance fluctuations in a mesoscopic system of strong scatterers
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We study how the conductance fluctuations change in a disordered ensemble of strongly scattering (non-Born)
centers. Diagrammatic calculations of the conductance variance are carried out beyond the standard Born
definition for the Hikami vertex. For a system of strong pointlike scatterers, the enhancement of the conductance
fluctuations is found in the crossover between ballistic and diffusive regimes. The incoherent contribution arising
from random spatial variations in the scatterer concentration is primarily responsible for the enhancement of
fluctuations. In the limit of resonant scatterers, the coherent contribution to the conductance variance also peaks
in the crossover regime and its maximum exceeds the UCF value.
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I. INTRODUCTION

The phase-coherent transport through disordered systems
has motivated a rather intensive research activity for three
decades. The subject is common to several areas of physics
ranging from solid state and mesoscopic physics to classical
wave scattering. Different phenomena in quantum electron
transport and in propagation of electromagnetic waves are
closely connected by underlying chaotic dynamics and subject
to universal statistical laws [1].

Mesoscopic conductance fluctuations represent one of the
most famous manifestations of phase-coherent transport in
electron conductors (quantum wires, dots, etc.) [2–8] and
disordered waveguides [9–12]. Much previous work has been
focused on the universal statistical properties which are
inherent to the diffusive regime of wave propagation, where
the effect of the universal conductance fluctuations (UCF)
is observed (see, e.g., [1–5,9,13,14]). Due to the coherence
of the wave motion over the entire sample, the variance
of dimensionless conductance is of order unity, with no
dependence on the system size and the scattering properties.

There are also a number of studies where the crossover from
the ballistic to diffusive transport was investigated [15–23].
The results [15–23] suggest an enhancement of fluctuations
at subdiffusion scales. Specifically, the conductance variance
can exceed the value that is achieved in the diffusive regime
(i.e., the UCF value). Of particular interest is to clarify the con-
ceivable reasons for such behavior of conductance fluctuations
and its correlation with the specific features of disorder. Small-
angle scattering [24] by large-scale inhomogeneities is one rea-
son [23,25–27]. The other reason can be associated with strong
individual scatterers [28]. The latter case is studied below.

We consider the mesoscopic conductance fluctuations in
a disordered system of strong scatterers. Going beyond the
Born approximation, we take simultaneously into account both
random interference of waves and the effect from random
local deviations of the scatterer concentration from its average
value. As has been suggested previously [24,29–33], both these
mechanisms can cause conductance fluctuations.

The interference mechanism dominates provided that the
coherence length is much greater than the elastic mean free
path (the “universal” conductance fluctuations is observed
where the coherence length exceeds the sample size). This

mechanism, as applied to electron transport, dominates at
low temperatures. The conductance fluctuations due to local
variations in scattering properties (see, e.g., [24,29–31]) are
believed to prevail at relatively high temperatures. Although
both mechanisms act simultaneously, they have never been
considered within any unified theoretical treatment. Up to now
the contribution of the second mechanism of fluctuations to the
conductance variance was estimated only within a number of
particular models oriented to the specific conditions of electron
scattering in solids [29–33] and also in the weak scattering
limit [24].

For classical waves (light, microwaves) there are no restric-
tions that are inherent to electron transport (e.g., the decrease in
the phase coherence length with increasing temperature), and
both mechanisms of conductance fluctuations should equally
be taken into account.

In this paper we present a novel result for the variance
of sample-to-sample conductance fluctuations in a quasi-one-
dimensional (1D) system (a waveguide with bulk disorder).
The diagrammatic calculations are carried out beyond the
standard Born definition for the Hikami vertex. The variance is
expressed explicitly in terms of the amplitude of scattering by
a single center and the propagators that obey the conventional
transport equation. Allowance for all necessary correlations
between wave fields (not only the pair correlations) enables us
to include the effect of random variations in the scatterer con-
centration. This leads to the appearance of an incoherent con-
tribution (having noninterference origin) to the conductance
variance. The coherent contribution also changes as compared
to the result obtained previously [23]. For a system of pointlike
centers, the obtained analytical expression for the conductance
variance extends the well-known random matrix theory (RMT)
result [34,35] to the case of strong single-center scattering. We
show that the conductance variance reaches its maximum in
the crossover between the quasiballistic and diffusive regimes,
and tends to the UCF value in the large-length limit.

II. SEMICLASSICAL ANALYSIS

Consider transmission of monochromatic waves through
a disordered waveguide of length L. The dimensionless
conductance (or transmittance) of the waveguide can be
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defined as the sum of transmission coefficients Tab connecting
incoming and outgoing modes a and b, respectively (see, e.g.,
[1,14]):

G =
∑
a,b

Tab. (1)

The transmission coefficients Tab depend on spatial configura-
tion of the scattering centers and vary from sample to sample.

To give insight into the physical origin of mesoscopic
conductance fluctuations, we first consider this phenomenon
qualitatively within semiclassical analysis of wave transport
in a disordered system.

The transmission coefficient Tab entering into Eq. (1) can
be expressed in terms of the square of the sum over all paths of
the semiclassical amplitude to transit from incoming mode a

at the input boundary to outgoing mode b at the output one.
The amplitude is proportional to the product of a set of the
Green functions which describe the sequence of scattering

events along a given path [4]. This gives

Tab =
∣∣∣∣∣
∑

i

Aab
i

∣∣∣∣∣
2

=
∑

i

∣∣Aab
i

∣∣2 +
∑
i �=j

Aab
i Aab∗

j , (2)

where the summation over all paths i is carried out. The
first term is the sum of classical transition probabilities and
is responsible for ray- or particlelike transport through the
sample. The second term describes interference of the waves
propagating along differing paths.

Only the first term of Eq. (2) makes a contribution to the
disorder-averaged conductance 〈G〉. The “interference” term
appearing in Eq. (2) fluctuates with changes in configuration of
scattering centers because of the difference in phases between
the waves propagating along differing paths, and vanishes
when averaged over disorder.

The variance of conductance fluctuations can be written as

〈(δG)2〉 =
∑
abcd

⎛
⎝〈 ∑

i

∣∣Aab
i

∣∣2 ∑
j

∣∣Acd
i

∣∣2
〉
−

〈∑
i

∣∣Aab
i

∣∣2
〉〈∑

j

∣∣Acd
j

∣∣2
〉⎞⎠ +

∑
abcd

〈∑
i �=j

Aab
i Aab∗

j

∑
k �=l

Acd
k Acd∗

l

〉
, (3)

where the brackets 〈· · · 〉 mean averaging over all positions of
scattering centers. Due to the rapid phase dependence, all the
rest terms in (δG)2 disappear upon averaging.

The conductance variance (3) contains two contributions
which are different by their nature.

The first term in Eq. (3) presents the contribution of non-
wave origin and, following Ref. [24], can be referred to as the
“incoherent” one. This term is nonzero only provided that both
classical trajectories contributing to Eq. (3) pass through the
same scattering center [see Fig. 1(a)]. Uncorrelated trajectories
govern the square of the disorder-averaged conductance and
do not contribute to the variance. The term 〈(δG)2〉incoh is
phase independent and results from fluctuations of the modulus
|Aab

i | of the transition amplitude. Physically, the incoherent

(a) 

(b) 

FIG. 1. Examples of wave paths contributing to the conductance
variance. Scattering centers are shown by circles. Solid lines denote
the transition amplitude or its complex conjugate.

contribution is due to random variations of classical trajectories
in sample-to-sample changes of local scattering properties of
the system. This contribution appears only upon averaging
over positions of scattering centers. When averaged only over
the wave phases (e.g., by changes of the wave frequency or,
in electron transport, the energy of carriers), the incoherent
contribution does not arise. In this case, the phase-independent
terms in Eq. (3) cancel each other.

The last term in Eq. (3), the coherent contribution
〈(δG)2〉coh, is the result of interference of the waves propa-
gating along split paths, some parts of which are coincident
[an example of such paths is shown in Fig. 1(b)]. This term
remains due to those combinations of paths for which the rapid
phase dependence cancels out. The effect of UCF [1–5] in the
phase-coherent transport is explained just by this configuration
of wave paths.

The average conductance 〈G〉 and the two contributions
to the conductance variance 〈(δG)2〉 can be easily estimated
in the diffusive limit of wave propagation (waveguide length
L is much greater than mean free path l). The average
conductance 〈G〉 is proportional to Nl/L where N is the
number of propagating modes. This result can be understood
by considering the sample as a network of classical parallel-
and series-connected parts. Then 〈G〉 is an additive function
of the constituent conductances of N individual modes (or
channels). The resistance of one mode (i.e., the reciprocal of
its conductance) is the sum of L/l series-connected resistances
of the parts into which the sample can be divided.

The incoherent contribution 〈(δG)2〉incoh can be estimated
analogously to 〈G〉 as a result of summing the fluctuations from
uncorrelated parts of length l. In this case, the conductance
fluctuations from each mode are added up, while, within a
given mode, the conductance fluctuations are expressed in
terms of the sum of independent fluctuations of the part’s
resistances. As a result, the incoherent contribution proves to
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be proportional to

〈(δG)2〉incoh ∼ N (l/L)3. (4)

Because of the coherence of the waves, the value of
〈(δG)2〉coh is governed by the wave interference in the
whole sample, but not by the sum of the contributions from
individual parts of the sample. The coherent contribution to
the conductance variance can be estimated as the product of
the square of the average conductance 〈G〉2 ∼ (Nl/L)2 by the
probability that the trajectories cross twice each other (see,
e.g., [1]), (L/Nl)2. This gives the well-known UCF result

〈(δG)2〉coh ∼ 1. (5)

The coherent contribution to 〈(δG)2〉 proves to be a universal
quantity of the order of unity which is independent of
the number of propagating modes, the size and scattering
properties of the system [1–5].

Note that the estimate of the incoherent contribution as
the product of the square of the average conductance by the
probability of single intersection of two trajectories, gives
adequate N dependence but underestimates the exponent
of decrease of the conductance variance with increasing
the waveguide length L. As follows from the calculations
presented below, this is due to the fact that the probability
of passing the two rays through the same center differs
from the probability of field exchange in splitting the wave
paths. In particular, in the case of weak (Born) scattering
the probability of passing through the same center vanishes
[4]. Therefore, the estimate (4) should be supplemented by
a factor which is governed by the strength of single-center
scattering. From dimensional reasoning based on the fact that
ratio 〈(δG)2〉incoh/〈G〉2 is a wavelength-independent quantity,
it is clear that this factor is proportional to k2

0σ where k0 is the
wave number and σ is the single-scattering cross section [36].

As follows from the estimates presented above, there is a
range of waveguide lengths where the fluctuations of classical
origin are in excess of those from the wave interference.
In the case Nk2

0σ � 1, the incoherent contribution to the
conductance variance can be dominant even after the onset
of the UCF regime in the phase-coherent transport. In the
quasiballistic limit (L � l), the probability of scattering and,
correspondingly, the conductance fluctuations disappear. Thus,
from the above reasoning it follows that the conductance
variance should peak at subdiffusion scale L ∼ l, and, under
condition Nk2

0σ � 1, the peak value of 〈(δG)2〉incoh exceeds
noticeably the UCF one.

The coherent contribution to 〈(δG)2〉 results from the
so-called speckle [1] arising in the bulk of the sample
due to the interference of multiply scattered waves. From
sample to sample, this interference pattern changes owing to
both variations in the wave phases and local fluctuations of
scattering properties of the medium. These latter cause random
changes of the modulus |Aab

i | of the transition amplitude and,
under conditions of strong single-center scattering, as shown
below, are reflected in the value of 〈(δG)2〉coh.

Note that the same general reasons as those discussed
above underlie sample-to-sample conductance fluctuations in
electron transport through a quantum dot (a ballistic cavity
with two multichannel contacts) [8]. The classical (i.e., ray-
or particlelike) transport is responsible for fluctuations of

if

FIG. 2. Diagram for the average conductance. Each circle corre-
sponds to the scattering amplitude (or its complex conjugate). Dashed
lines connect identical scatterers. Converging solid lines to a point
denotes summation over all outgoing f (or incoming i) modes.

incoherent origin. In Ref. [8], such fluctuations result from
a chaotic walk of classical trajectories undergoing multiple
reflections from the cavity walls. The coherent regime of
fluctuations is due to the splitting of classical trajectories into
interfering components [37]. The splitting can be caused by
diffraction from the cavity contacts or by bulk disorder [38].
In the ballistic cavity, depending on the system parameters,
either wave interference or classical propagation is realized
[8,37]. The separation of these two regimes of wave transport
is complete. For a given number of propagating modes N , the
incoherent conductance fluctuations are observed in a cavity
of relatively small sizes [8]. As the cavity size L increases, the
law 〈(δG)2〉incoh ∼ N4/(k0L)2 is changed by the UCF value
〈(δG)2〉coh = 1/8 for a quantum dot. The specific results for a
quantum dot [8] and a disordered waveguide (see below) differ
because of different patterns of wave propagation in two such
systems.

Relatively simple laws of multiple scattering of waves in a
disordered waveguide enable us to carry out diagrammatic
calculations of the conductance variance analytically with
allowance for both mechanisms of fluctuations.

III. DIAGRAMMATIC CALCULATIONS
OF THE CONDUCTANCE VARIANCE

Averaging over disorder can be easily performed for great
number N of propagating modes (N = k2

0A/4π,A is the area
of the waveguide cross section). In this case, the summation
over modes can be replaced by integration over directions �

of wave propagation (see, e.g., Refs. [14,23]),

∑
a

· · · =
∫

Adqa

(2π )2
· · · = k2

0A

(2π )2

∫
d�a|μa| · · · , (6)

where qa is the transverse momentum (qa < k0), μa = �az,
and the z axis is directed along the waveguide. Hemispheres
�az > 0 and �az < 0 correspond to the waves that propagate
in the forward and backward directions, respectively.

Under conditions of weak localization (G � 1), the value
of conductance averaged over an ensemble of disordered
samples can be calculated with the standard impurity technique
as the sum of ladder diagrams (see Fig. 2). With Eq. (6) the
average conductance is written as (see, e.g., [14,23])

〈G〉 = N

π

∫∫
d�ad�b|μa||μb|Iab(zf = L|zi = 0), (7)

where propagator Iab(z|z′) = I (z,�a|z′,�b) denotes the inten-
sity at depth z in direction �a from a source placed at depth z′
and emitting waves in direction �b. The intensity Iab is subject
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FIG. 3. Diagram for the incoherent contribution to the conduc-
tance variance.

to the transport equation [39](
μa

∂

∂z
+ nσtot

)
Iab(z|z′)

= δ(z − z′)δ(�a − �b) + n

∫
d�c|fac|2Icb(z|z′), (8)

where n is the average number of scattering centers per unit
volume, fac = f (�a�c) is the amplitude of single scattering,
σtot = σ + σa is the total cross section of interaction, and σ and
σa are the cross sections of elastic scattering and absorption,
respectively.

A relation similar to Eq. (7) can also be given for the
reflectance 〈R〉. It differs from Eq. (7) only by substitution
of zf = 0 for zf = L. For a waveguide with no absorption,
the conductance and reflectance are subject to the equality
G + R = N .

The variance of conductance fluctuations can be expressed
in terms of the ensemble-average fourth moment of a wave
field [see Eq. (3)] and represented as expansion in orders of
interaction between ladder graphs.

A. The incoherent contribution

The most simple diagram that contributes to the conduc-
tance variance has the form shown in Fig. 3. The central block
entering into this diagram involves all possible connections
between four solid lines that denote the wave fields.

Within the Born approximation, only the pair correla-
tions between wave fields are taken into account (see, e.g.,
Refs. [3,4,14]) and, therefore, the corresponding contribution
to 〈(δG)2〉 is reduced to the first four diagrams. These
diagrams, as were shown in Ref. [4], cancel one another
provided that the scattering amplitude is taken in the Born
approximation. Thus, in such an approximation, this contribu-
tion to the conductance variance does not arise.

The situation changes beyond the Born approximation
where all graphs shown in Fig. 3 should be taken into account.
In this case, the terms entering into the central block can be
combined together, to give

hab,cdh
∗
a′b′,c′d ′ , (9)

where

haa′,bb′ = 2πi

k0
(fabδa′b′ − f ∗

a′b′δab) + fabf
∗
a′b′ (10)

and asterisks denote the complex conjugation. In Eq. (10), the
brief notation δab = δ(�a − �b) is used for the delta function.
Then, attaching four ladders to the central block, we obtain

〈(δG)2〉=A

(
k0

2π

)4

n

∫ L

0
dz

∣∣∣∣
∫∫

d�ad�b I f
a (z)haa,bbI

i
b(z)

∣∣∣∣
2

.

(11)

The incoming and outgoing propagators entering into Eq. (11)
are expressed in terms of the solution Iab(z|z′) to the transport
equation (8) as follows:

I i
a(z) =

∫
d�b |μb| Iab(z|zi = 0), (12)

I f
a (z) =

∫
d�b |μb| Iba(zf = L|z). (13)

With allowance for the optical theorem

Imfaa = k0σtot

4π
, (14)

the h function appearing in Eq. (11) is written as

haa,bb = −σtotδab + |fab|2. (15)

The obtained result (11) is the incoherent contribution to the
conductance variance 〈(δG)2〉incoh which has been discussed
qualitatively in Sec. II. If the incident waves differ in fre-
quency, 〈(δG)2〉incoh proves to be insensitive to the frequency
shift.

The incoherent contribution to 〈(δG)2〉 describes conduc-
tance fluctuations resulting from random variations in the
spatial distribution of scatterers. The physical origin of the
incoherent contribution to 〈(δG)2〉 was first pointed out in
Ref. [24]. This result is of classical nature and has the same
origin as fluctuations of the distribution function obeying
the Boltzmann kinetic equation [40]. Equation (11) can also
be derived directly from the transport equation (8) as a
response of the transmitted flux to variations in the scatterer
concentration. Introducing a local perturbation δn in the spatial
scatterer distribution n + δn we can find the corresponding
variation in the intensity propagator I + δI . Then, under
the assumption that the scattering centers are positioned
randomly and fluctuations of the scatterer distribution are
δ-correlated, we can determine the correlation function 〈δIδI 〉
and, correspondingly, 〈(δG)2〉incoh (see Appendix A).

The h function (10) was first introduced in Ref. [41] where
the effects arising beyond the Born approximation in the
coherent and incoherent intensity correlations were considered
in the plane wave geometry (in this case only a single input
mode is excited). Equation (11) extends the corresponding
result of Ref. [41] to the case of conductance fluctuations in a
disordered waveguide where all input modes are excited.

Note that, within the Born approximation, the above-
mentioned cancellation of the first four diagrams (see Fig. 3)
occurs only in the Fraunhofer limit l � k0a

2 [l = (nσ )−1 is
the elastic mean free path and a is the radius of scattering
inhomogeneities] [42]. In the opposite case, k0a

2 � l, these
diagrams do not cancel [42] and are responsible for long-
range intensity correlations in a random medium with ex-
tremely large inhomogeneities (e.g., in turbulent atmosphere)
[43,44].

The diagrams of the next order in the ladder propaga-
tors govern the leading terms of the coherent contribution
to 〈(δG)2〉 (see below). Among these diagrams there are
ones that contribute also to the incoherent part of 〈(δG)2〉.
However, the allowance for the diagrams of such a type
gives only corrections of order σ/l2 = 1/(nl3) to the leading
term (11).
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FIG. 4. Diagrams for the coherent contribution to the conduc-
tance variance. The paired lines correspond to ladder propagators. The
shaded boxes are the Hikami vertices beyond the Born approximation.

B. The coherent contribution

Within the Born approximation, where only pair correla-
tions between wave fields are considered, the conductance
variance 〈(δG)2〉 is governed solely by the coherent contri-
bution (there is no incoherent contribution in such a case).
Up to now, all diagrammatic calculations of 〈(δG)2〉coh were
performed in this approximation (see, e.g., [1–4,14]). The main
contribution to 〈(δG)2〉coh is governed by two diagrams of
the second order in interference events between ladders (see
Fig. 4). Each interference event is described by the Hikami
vertex [45]. In the presence of time-reversal symmetry, the
diagrams shown explicitly in Fig. 4 should be supplemented
by their time-reversed counterparts which are obtained by
interchanging initial i and final f states in one pair of
conjugated wave fields.

Beyond the Born approximation, the well-known dia-
grams contributing to 〈(δG)2〉coh should be generalized with
allowance for additional terms [14,41] in the Hikami box
(see Fig. 4). It can be shown (see Appendix B) that the
contribution from the single Hikami box with four attached
ladders is expressed in terms of the product of two h functions
[see Eqs. (9) and (10)]. Each term in the Hikami box shown
in Fig. 4 corresponds to the product of a certain number of the

+...++...

(b) 

+...

+…
i 

i 

f

f

= + +…

+ +…

f

f

i 

i 

(a) 

FIG. 5. (a) Additional diagrams contributing to the local term
of the conductance variance beyond the Born approximation.
(b) Representation of these diagrams in terms of the six-point Hikami
box.

scattering amplitudes appearing in Eq. (9). This enables us to
express the conductance variance in terms of the h functions
as a direct extension of the expression [23] for 〈(δG)2〉coh

obtained within the Born approximation.
Contrary to the treatment carried out within the Born

approximation [23], the specific graphs that are responsible
for the local term in the expression for 〈(δG)2〉coh cannot be
included completely into the two-Hikami-box diagrams shown
in Fig. 4. A number of additional diagrams [see Fig. 5(a)]
which contribute to the local term should be taken into account
beyond the Born approximation. These diagrams are among
the six-point Hikami box contribution depicted in Fig. 5(b).

The diagrams shown in Figs. 4 and 5 can be evaluated by a
straightforward manner. The technique of calculations without
resorting to the diffusion approximation has been elaborated
in Ref. [23]. In what follows, we take into account the ladders
incorporating an arbitrary number of scattering events, among
them the graphs without any scattering. These latter describe
nonscattered waves. Extending diagrammatic calculations [23]
to the case of the Hikami vertices beyond the Born definition
(see Appendix B), we derive the following expression for the
conductance variance:

〈(δG)2〉coh =
(

k0

2π

)4

n2
∫∫ L

0
dz dz′

∫
d�a · · ·

∫
d�d1 hab,a1a1h

∗
ab,b1b1

h∗
cd,c1c1

hcd,d1d1

× {
I f
a1

I
f

b1
Iac Ibd I i

c1
I i
d1

+ I f
a1

I i
−b1

Iac Ibd I
f
−c1

I i
d1

+ [
I f
a1

I i
b + I

f

−bI
i
−a1

]
Iad1I−b1−c

[
I f
c1
I i
d + I

f

−dI
i
−c1

]}

+
(

k0

2π

)2

n

∫ L

0
dz

∫∫
d�ad�b

∣∣∣∣
∫

d�a1hab,a1a1

(
I f
a1

I i
b + I

f

−bI
i
−a1

)∣∣∣∣
2

I
(sc)
ab (z|z)

+
(

k0

2π

)4

n

∫ L

0
dz

∫
d�a · · ·

∫
d�c1hab,a1a1

(
I f
a1

I i
b + I

f

−bI
i
−a1

)
h∗

ac,c1c1

(
I f
c1
I i
c + I

f
−cI

i
−c1

)
hbc,b1b1I

(sc)
ab1

(z|z), (16)

where the function haa′,bb′ is defined by Eq. (10), the internal
propagator Iab = Iab(z|z′) obeys Eq. (8), and the incoming Ii

and outgoing If propagators are defined by Eqs. (12) and (13),
respectively. The propagator I

(sc)
ab is the intensity of waves that

undergo one or more acts of scattering.
The change of sign in a subscript of any propagator

entering into Eq. (16) implies the reverse of the direction (i.e.,
substitution of −�a for �a into the propagator). The incoming
and outgoing propagators appearing in Eq. (16) with subscripts

±a1, ± b,±b1 are functions of z, while those with subscripts
±c1, d1,±d are functions of z′. The propagators entering into
the local term [see the third and fourth lines of Eq. (16)] are
functions of z.

Equation (16) has the presented form provided that the
time-reversal symmetry is not violated. The terms that contain
products of the incoming and outgoing propagators with sub-
scripts of opposite sign (e.g., I f

a1I
i
b[ · · · ]I f

−dI
i
−c1

) correspond to
the cooperon contribution. The cooperon contribution includes
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the maximally crossed internal graphs and, in the low-order
scattering limit, the internal graphs that describe the waves
propagating in opposite directions [23].

Expressions similar to Eqs. (11) and (16) are also valid
for the reflection geometry. The reflectance variance 〈(δR)2〉
differs from Eqs. (11) and (16) only by substitution of zf = 0
for zf = L in all outgoing propagators.

Equations (11) and (16) are the principal results of our
work. Formula (16) for 〈(δG)2〉coh generalizes the results
derived previously [1,4,14,23] in two aspects. On one hand,
Eq. (16) extends the result of Ref. [23] beyond the Born
approximation. On the other, Eq. (16) (as well as the
corresponding formula of Ref. [23]) generalizes the result of
the diffusion approximation [1,4,14], much as the transport
equation generalizes the equation of diffusion. Equation (16)
establishes the interrelation between the conductance variance
and the characteristics of scattering centers of the disordered
system, and enables us to study evolution of the fluctuations
in going from the quasiballistic propagation to the diffusive
regime.

In practice, the incoherent and coherent contributions to
〈(δG)2〉 can be separated from each other with the frequency
dependence of the conductance fluctuations. If the incident
waves differ in frequency, the correlation function of conduc-
tance fluctuations 〈δG(ω0 + �ω/2)δG(ω0 − �ω/2)〉 can be
introduced [14]. The incoherent contribution to the correlation
function is independent of the frequency shift �ω, while
the coherent one falls off with increasing �ω. Equation (16)
can easily be extended to determine the correlation function
〈δG(ω0 + �ω/2)δG(ω0 − �ω/2)〉. The frequency shift �ω

appears only in the internal propagators entering into Eq. (16).
The internal propagators in the second line of Eq. (16)
take the form IacIbd = Iac(�ω)Ibd (−�ω) and Iad1I−b1−c =
Re{Iad1 (�ω)I−b1−c(�ω)}. The internal propagator in the local
terms transforms to Re{Iab(�ω)}. The propagator Iab(�ω) =
I (z,�a|z′,�b,�ω) obeys the transport equation that is ob-
tained from Eq. (8) by substitution of complex absorption
coefficient (nσa + i�ω/c) for nσa (c is the velocity of waves).

IV. CROSSOVER BETWEEN THE QUASIBALLISTIC
AND DIFFUSIVE REGIMES

As an illustration of application of Eqs. (11) and (16) to
calculating the conductance variance beyond the diffusion
approximation, we find 〈(δG)2〉 within the two-stream version
of the discrete-ordinate method [39]. This simplest model
enables us to perform integration in Eqs. (11) and (16)
explicitly and to derive an analytical result for 〈(δG)2〉 which
describes the crossover between the quasiballistic and diffusive
regimes.

Within this approach, each integral over � is supposed to
be equal to the sum of the values of an integrand quantity at
�z = ±μ0,

∫
d�aI (z,�a) = 2πI+(z) + 2πI−(z), (17)

where I±(z) = I (z,�z = ±μ0), and ±μ0 are the discrete
ordinates [39]. We apply this rule to evaluating each integral
over directions appearing in Eqs. (11) and (16).

Most of the calculations of the conductance variance were
carried out within the model of pointlike centers (see, e.g.,
[2–4,14]). In this case, the scattering amplitude is independent
of directions fab = f and

haa′,bb′ = 2πif

k0
(δa′b′ − δab) + (|f |2 − σtotδab). (18)

The first term in Eq. (18) can be considered responsible for
fluctuations of interference nature. This term differs from that
obtained within the Born approximation only by substitution
of the exact scattering amplitude for the Born one. The second
term in Eq. (18) is coincident with Eq. (15) and, therefore,
can be thought of as resulting from variations in number of
scatterers per unit volume.

Substituting the propagators calculated within two-stream
approximation [23] to Eqs. (11) and (16), we arrive at the
following result for the conductance variance:

〈(δG)2〉 = 〈(δG)2〉incoh + 〈(δG)2〉coh, (19)

where the incoherent and the coherent contributions are equal
to

〈(δG)2〉incoh = N
k2

0σ

4π

2s

(1 + s)4
, (20)

〈(δG)2〉coh = 2

15

(
1 − 1 + 6s

(1 + s)6

)

− k2
0σ

4π

4s

(1 + s)4

(
1 − 1

(1 + s)2

)

+
(

k2
0σ

4π

)2 4s

(1 + s)4

(
1 − 2 − s

2(1 + s)2

)
, (21)

s = (1/2μ0)(L/l) and N is the number of propagating modes.
The first term in Eq. (21) coincides with the result obtained

previously with the RMT approach [34,35]. As was shown
in Ref. [23], this term is also derived by the impurity
diagrammatic technique within the Born approximation for
the Hikami box [46].

The incoherent contribution (20) and the second and
third terms appearing in Eq. (21) arise beyond the Born
approximation. All these terms are proportional to powers of
k2

0σ/4π . As has already been discussed above (see Sec. II A
and Appendix A), the incoherent contribution is due to the
scattering coefficient fluctuations caused by random variations
in the scatterer spatial distribution. The same origin underlies
the last term in the coherent contribution (21). This term can
be construed as resulting from perturbation of the interference
pattern [47] by random variations in the scatterer distribution.
The second term in Eq. (21) is due to the combined effect of the
wave interference and the above-mentioned perturbation of the
interference pattern on conductance fluctuations. The negative
sign of this term comes from the fact that a local deviation in
the scatterer concentration leads to changes of opposite signs
in the coherent (nonscattered) wave field and the scattered one.

From Eqs. (19)–(21) it follows that the variance 〈(δG)2〉
peaks at subdiffusion scales s ∼ 1. In the limit of a long
waveguide s � 1, the variance of the conductance fluctuations
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FIG. 6. Coherent contribution to the conductance variance as
a function of the waveguide length. From lower to upper curves
k2

0σ/(4π ) = 0.1, 0.5, 0.8, 0.95, and 1.0. The horizontal line is the
UCF value 2/15.

approximates

〈(δG)2〉 = 2

15
+ N

k2
0σ

2π

1

s3
+ · · · (22)

and always tends to the UCF value from above.
The dependence of the conductance variance on the

waveguide length is illustrated in Figs. 6 and 7.
The first of the figures shows the impact of the scattering

strength on the coherent contribution to 〈(δG)2〉. For pointlike
scatterers the scattering amplitude can be written in the form

f = − α

1 + ik0α
, (23)

FIG. 7. Length dependence of the conductance variance (solid
curve). The coherent and incoherent contributions are shown by
dotted and dashed curves, respectively. N = 10, k2

0σ/(4π ) = 0.1.
The inset shows the waveguide length s∗ at which the coherent
contribution becomes equal to the incoherent one versus N . The
dashed line is the law s∗ = [15Nk2

0σ/(4π )]1/3.

where α is the scattering length [48]. The scattering strength
is characterized by parameters k0α or k2

0σ/(4π ) = k2
0α

2/(1 +
k2

0α
2). In the Born limit, the both parameters are much less than

unity, while in the resonance limit k0α � 1 and k2
0σ/(4π ) = 1.

For different values of the parameter k2
0σ/(4π ), the length

dependence of the conductance variance is illustrated in Fig. 6.
The variable s/(k2

0σ/4π ) plotted on the abscissa axis is
independent of the scattering cross-section σ . Therefore, the
presented graphs give insight into changes of the variance
〈(δG)2〉coh with increasing the scattering strength. As follows
from Fig. 6, the effect of strong scattering manifests itself
at relatively short waveguide lengths. The influence of the
non-Born terms of Eq. (21) increases with the scattering
strength, resulting in an appearance of the local maximum
in the length dependence of 〈(δG)2〉coh. For the limiting value
σ = 4π/k2

0 , the conductance variance peaks at s = 1 and its
maximum value is 〈(δG)2〉coh = 3/20.

The total value of the conductance variance (19) as
a function of the waveguide length is shown in Fig. 7.
For Nk2

0σ/4π > 1, the variance peaks at s ≈ 1/3, and its
maximum value is approximately Nk2

0σ/2π times greater
than the UCF one. The incoherent contribution proves to be
dominant at scales s � (Nk2

0σ )1/3. The coherent contribution
to the conductance fluctuations becomes principal in the limit
s > (Nk2

0σ )1/3 where 〈(δG)2〉 is described by the UCF.
From Eqs. (20) and (21) it follows that the ratio

〈(δG)2〉coh/〈(δG)2〉incoh is of order s/(Nk2
0σ/4π ) at s � 1.

This result is in agreement with the estimates obtained in
Ref. [24]. However, the opposite conclusion was drawn in
Ref. [24] regarding the role of the incoherent contribution to
〈(δG)2〉. The matter is that, in Ref. [24], the number of modes
were moderate and the scattering potential was assumed to
be weak (i.e., the parameter Nk2

0σ/4π was thought of to be
small).

V. DIFFUSIVE REGIME

For a long waveguide L � l, the main contributions to the
integrals over z and z′ in Eqs. (11) and (16) are governed
by the distances that are far away from the input and output
waveguide boundaries, and the diffusion approximation can
be applied to calculating the intensity propagators appearing
in these equations. In this case, the propagators turn out to
depend only slightly on the directions and can be expanded in
terms of the Legendre polynomials [39].

Substituting the diffusion expansion of the incoming and
outgoing propagators (see, e.g., Ref. [23]) into Eq. (11) and
using the relation

∫
d�c hab,ccI

i,f
c (z) = 2πi

k0
(f μb − f ∗μa)

3Ji,f (z)

4π
, (24)

where

Ji,f (z) =
∫

d�aμaI
i,f
a (z), (25)

we arrive at the following result for the incoherent contribution:

〈(δG)2〉incoh = 9

(2π )4

k2
0σ

4π
N

∫ L

0

dz

l
J 2

f (z)J 2
i (z). (26)
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Calculations with Eq. (26) give

〈(δG)2〉incoh = 16

9

k2
0σ

4π
N

(
l

L

)3

. (27)

This result is in agreement with the leading term of expansion of Eq. (20) in inverse powers of the waveguide length L.
Application of the diffusion approximation to Eq. (16) gives rise, as a first approximation, to the well-known diffusion formula

for the conductance variance (see, e.g., Refs. [14,23,49])

〈(δG)2〉coh =
(

3

32π3l

)2 ∫∫ L

0
dzdz′{J 2

f (z)
2(z|z′)J 2
i (z′) + Jf (z)Ji(z)
2(z|z′)Jf (z′)Ji(z

′)

+ [Jf (z)
i(z) − Ji(z)
f (z)]J (z|z′)J (z′|z)[Jf (z′)
i(z
′) − Ji(z

′)
f (z′)]
}

+ 6

(4π )5l

∫ L

0
dz[Jf (z)
i(z) − Ji(z)
f (z)]2
(z|z), (28)

where


i,f (z) =
∫

d�aI
i,f
a (z), (29)


(z|z′) =
∫∫

d�ad�bIab(z|z′), (30)

J (z|z′) =
∫∫

d�ad�b μaIab(z|z′). (31)

Within the diffusion approximation, the current J is expressed
in terms of the derivative of the density 
,

Ji,f (z) = ∓ l

3

∂
i,f (z)

∂ z
, J (z|z′) = − l

3

∂
(z|z′)
∂ z

.

Calculations with Eq. (28) give the UCF result 〈(δG)2〉coh =
2/15.

Corrections to Eq. (28), however, cannot be found within
the standard diffusion approximation. The matter is that these
corrections are governed by the contributions to the integrals
over z and z′ in Eq. (16) from rather short wave paths, i.e.,
|z − z′| � l. Allowance for such wave paths is beyond the
diffusion approximation. In addition to the two terms taken
into account in the diffusion approximation, the terms of
higher order should be kept in the propagator expansion in
the Legendre polynomials.

So, although the diffusion approach enables one to take into
account the effect of the scatterer concentration fluctuations on
the single-Hikami-box contribution [41], this approach fails
in calculating the corresponding corrections to the diffusion
formula for 〈(δG)2〉coh.

The results obtained above, Eqs. (26)–(28), can easily be
extended to an arbitrary single-scattering law. In this case, the
right-hand side of Eq. (24) is replaced by

(
2πi

k0
(fabμb − f ∗

abμa) +
∫

d�a1μa1faa1f
∗
a1b

)
3Ji,f (z)

4π
. (32)

With allowance for Eq. (32) and the generalized optical
theorem [48]

∫
d�a1faa1f

∗
a1b

= 2πi

k0
(f ∗

ab − fab), (33)

Eqs. (26)–(28) are transformed as follows: the transport cross
section

σtr =
∫

d�a(1 − �a�b)|fab|2 (34)

and transport mean free path ltr = (nσtr)−1 should be substi-
tuted to Eqs. (26)–(28) for σ and l, respectively.

The above-considered effects caused by strong single-
center scattering can be directly observed in microwave exper-
iments similar to those outlined in Refs. [10,11]. The coherent
and incoherent contributions can be separated from each
other by the dependence of conductance fluctuations on the
frequency shift �ω between the incident waves (see Sec. II B).
For �ω = 0, the conductance variance is equal to the sum
of both contributions. As �ω increases, only the incoherent
one survives. The appreciable magnitude of the frequency-
independent component of fluctuations measured in Ref. [11]
can be explained just by this contribution. With allowance for
absorption present in experiment [11], Eqs. (26) and (28) yield

〈(δG)2〉incoh

〈(δG)2〉coh
= 32

9

k2
0σtr

4π
N

l3
tr

Ll2
D

, (35)

where lD = (laltr/3)1/2, and la is the absorption mean free path.
In Eq. (35), the waveguide length L is assumed to be much
greater than lD . For the parameter values taken from the data
of Ref. [11], Eq. (35) gives the ratio equal to 0.2. The ratio of
the �ω-independent part to the �ω-dependent one measured
in Ref. [11] approximates 0.3 that correlates well with our
theoretical estimate.

VI. CONCLUSIONS

In conclusion, we have studied the effect of strong single
scattering on the mesoscopic conductance fluctuations in a
quasi-1D disordered system. The conductance fluctuations
have been shown to be enhanced in the crossover between
ballistic and diffusive regimes and can noticeably exceed the
UCF value. The Hikami vertex appearing in the diagrammatic
calculations of the conductance variance has been extended
beyond the standard Born definition. Our result relates the
variance of conductance fluctuations to the characteristics
of a disordered system (single center scattering amplitude,
the number of propagating modes, etc.) and enables us to
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find the conditions under which the conductance variance
exceeds the UCF value.

Going beyond the Born approximation for the Hikami
vertex has enabled us to take into account the effect of random
variations in the scatterer concentration on sample-to-sample
conductance fluctuations. Due to this effect, the incoherent
contribution to the variance arises. This contribution is
proportional to the number of propagating modes and can
be dominant in the crossover regime resulting in appearance
of the pronounced maximum in the length dependence of the
conductance variance. In the diffusive limit, the incoherent
contribution decreases as 1/L3. Beyond the Born approxima-
tion, additional terms appear in the coherent contribution to
the conductance variance along with the well-known term
obtained within both the RMT approach [34,35] and the
diagrammatic calculations for pointlike scatterers [23]. In the
limit of resonant scatterers, the maximum value of the coherent
contribution to the conductance variance is greater than the
UCF value and achieved at subdiffusion scales L ∼ l.

The results presented above can be useful for understanding
how the specific features of disorder reveal themselves in
transport through mesoscopic systems.
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APPENDIX A: DERIVATION OF THE INCOHERENT
CONTRIBUTION FROM THE TRANSPORT EQUATION

Response of the conductance to variations in the impurity
concentration can be derived directly from the transport
equation.

Let us introduce a local perturbation δn in the spatial
impurity distribution. Then, substituting n + δn for n into
Eq. (8) we obtain the transport equation for the perturbed
intensity propagator I + δI where I is a solution of the non-
perturbed equation. Neglecting the nonlinear terms containing
the product δIδn, we obtain the transport equation for δI

within a linear approximation with respect to δn,
(

�az

∂

∂z
+ nσtot

)
δIab(z|z′)

= n

∫
d�c

dσ

d�
(�a�c)δIcb(z|z′)

+ δn

(
−σtot +

∫
d�c

dσ

d�
(�a�c)Icb(z|z′)

)
. (A1)

Considering the last term that contains a perturbation δn as a
source we can find δI in the following form:

δIab =
∫ L

0
dzδn

∫∫
d�′

ad�′
b Iaa′ (|fa′b′ |2 − σtotδa′b′ )Ib′b.

(A2)

Using Eq. (A2) we can relate the correlation function 〈δIδI 〉
and, correspondingly, 〈(δG)2〉 to the correlation function

+ ++

+=

(a) 

(b) 

+++

d'

c'

a' b'

FIG. 8. Hikami box with four attached ladder propagators.
(a) Empty box contribution. (b) Extra-scattering contribution beyond
the Born approximation.

〈δn(z)δn(z′)〉. Under the assumption that fluctuations of the
scatterer distribution are δ-correlated, we arrive at Eq. (11).

APPENDIX B: EXTENDING THE DIAGRAMMATIC
CALCULATIONS BEYOND THE BORN APPROXIMATION

The variance of conductance fluctuations can be expressed
in terms of the ensemble-average fourth moment of a wave
field and represented as expansion in orders of interference
between ladder graphs. Each interference event between the
ladders contains the Hikami vertex [45].

First we consider the diagram that involves the single
Hikami vertex with four attached ladder propagators. This
diagram can be thought as a building block appearing in
the diagrams shown in Fig. 4. According to Ref. [23] the
contribution from the “empty” Hikami box can be presented
in the form(

π

N

)3

n

∫
dz

∫∫
d�ad�b|fab|2 Ia′a(· · |z)Ib′a(· · |z)

× [Ibc′ (z| · ·)Iad ′ (z| · ·) + Iac′ (z| · ·)Ibd ′ (z| · ·)], (B1)

where N = k2
0A/4π is the number of propagating modes. As

has been shown in Ref. [23], the waves contributing to the
empty box propagate in an identical mode (or in a given
direction [50]). Therefore, we can establish the sequence of
scattering events along the z axis. Separating one scattering
event from either of two ladder propagators attached to
the opposite ends of the Hikami box we can display the
contribution (B1) in the diagrammatic form shown in Fig. 8(a).
The mutual arrangement of the scattering events depicted in
the second two graphs of Fig. 8(a) results from compensating
the phases of Green functions [23,50].

The single-Hikami diagrammatic block that involves the
Hikami box with extra scattering can be presented in the same
manner as in Fig. 8(a). Beyond the Born approximation, in
addition to pair correlations, the correlations between three and
four fields should be also taken into account [see Fig. 8(b)].

The sum of the graphs shown in Fig. 8 differs from the
incoherent diagrammatic contribution (see Fig. 8) only by
the manner of attaching the ladder propagators to the central
block. As a result the single-Hikami-box contribution can be
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expressed in terms of the above-introduced quantity hh∗:
(

k0

2π

)2(
π

N

)3

n

∫
dz

∫∫∫∫
d�ad�bd�a1d�b1Ia′a1 (··|z)

× Ib′b1 (··|z)ha1a1,abh
∗
b1b1,ab Iac′ (z|··)Ibd ′ (z|··). (B2)

The obtained result is confirmed by straightforward calcu-
lations of each diagram shown in Fig. 8. The propagators
entering into Eq. (B2) can also be “read” in the reverse
order [i.e., propagators Ia′a1 (··|z) and Ibd ′ (z|··) are replaced
by Ia1a′ (z|··) and Id ′b(··|z), respectively]. In addition, Eq. (B2)
can be rewritten in the form that is obtained by interchanging
pairs a′, b′ and c′, d ′. All these representations are equivalent
to each other and applied to evaluating the diagrams of the
second order in the Hikami vertex.

So, to generalize the contribution from the two-Hikami-
box diagrams to 〈(δG)2〉 beyond the Born approximation, we
should substitute(

k0

2π

)2 ∫∫
d�a1d�b1 Ia′a1 (··|z) Ib′b1 (··|z)ha1a1,abh

∗
b1b1,ab

(B3)

for

|fab|2[Ia′a(··|z) − Ia′b(··|z)] [Ib′a(··|z) − Ib′b(··|z)] (B4)

into Eq. (5) of Ref. [23]. The rule given by Eqs. (B3) and (B4)
is valid with one proviso regarding the local term entering into
the expression for 〈(δG)〉2.

Within the Born approximation the variance 〈(δG)〉2 can be
described completely by the diagrams shown in Fig. 4. As was
shown in Ref. [23] we need not introduce particular diagrams
containing only one internal ladder propagator and the six-
point Hikami vertex. Such diagrams are already contained
among the diagrams depicted in Fig. 4. They correspond to the
pair of nonscattered waves in either of two internal ladders.

Beyond the Born approximation the situation changes. De-
pending on the arrangement of scattering events in the Hikami
boxes, the diagrams shown in Fig. 4 make a contribution either
to the nonlocal term or to the local ones appearing in Eq. (16).
However, the two-Hikami-box diagrams describe only a part
of the local term containing three h functions. Beyond the
Born approximation, there are a number of diagrams which are

FIG. 9. Examples of the diagrams contributing to the local term
with three h functions. The right graphs show the spatial arrangement
of scattering events in the diagrams.

not managed to present as the diagrams with two four-point
Hikami boxes. The diagrams of such a type are depicted in
Fig. 5. We can also present these additional diagrams in terms
of the six-point Hikami box with one internal ladder propagator
[see Fig. 5(b)]. These diagrams make a contribution only to
the local term with three h functions.

The diagrams contributing to the local term with three h

functions are exemplified in Fig. 9. The spatial arrangement of
the scattering events appearing in these diagrams is sought
from the condition of compensating the Green function
phases (this procedure is a consequence of evaluating the
corresponding integrals with the stationary phase method
[39] and has already been discussed in Ref. [23]). The first
graph shown in Fig. 9(a) originates from the two-Hikami-box
diagram with the pair of nonscattered waves in either of two
internal propagators. The specific arrangement of scattering
events shown in Fig. 9(a) contributes to the local term.
The examples of the arrangement of scattering events in the
additional diagrams contained in the six-point Hikami box are
illustrated in Figs. 9(b) and 9(c).
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