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The thermoelectric transport coefficients are calculated in a generic lattice model of multi-Weyl semimetals
with a broken time-reversal symmetry by using the Kubo’s linear response theory. The contributions connected
with the Berry curvature-induced electromagnetic orbital and heat magnetizations are systematically taken into
account. It is shown that the thermoelectric transport is profoundly affected by the nontrivial topology of
multi-Weyl semimetals. In particular, the calculation reveals a number of thermal coefficients of the topological
origin which describe the anomalous Nernst and thermal Hall effects in the absence of background magnetic
fields. Similarly to the anomalous Hall effect, all anomalous thermoelectric coefficients are proportional to the
integer topological charge of the Weyl nodes. The dependence of the thermoelectric coefficients on the chemical
potential and temperature is also studied.
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I. INTRODUCTION

Weyl materials realize a topologically nontrivial matter with
low-energy electron excitations described by gapless chiral
fermions. (For recent reviews, see Refs. [1–3].) The nontrivial
topology of Weyl materials is directly related to the Weyl nodes
which act as sources of the Berry curvature in the reciprocal
space [4] with the corresponding topological charges (n =
1,2,3) determined by the crystallographic point symmetries
[5–7]. Because of the chiral nature of low-energy excitations,
the Weyl materials allow for the realization of the chiral
anomaly [8] in condensed matter physics. One of its direct ob-
servable consequences is a negative magnetoresistance [9–12]
which was observed experimentally in Refs. [13–17].

The materials with the topological charges of the Weyl
nodes greater than one are generically called multi-Weyl
semimetals. The double-Weyl (n = 2) and triple-Weyl (n = 3)
semimetals have the quadratic and cubic energy dispersion
relations, respectively. (Note that only the Weyl nodes with
topological charges less than or equal to 3 are permitted
by the crystallographic point symmetries [6].) By using the
first-principles calculations, it was suggested that the double-
Weyl nodes are realized in HgCr2Se4 [5,6] and SrSi2 [7].
While the usual Weyl semimetals (n = 1) can be viewed as
three-dimensional (3D) analogs of graphene, the double- and
triple-Weyl semimetals can be considered as 3D counterparts
of bilayer [18] and ABC-stacked trilayer [19,20] graphene,
respectively.

A widely used method for studying the transport properties
of Weyl semimetals is the chiral kinetic theory [21–23].
The latter takes into account the Berry curvature effects and
correctly describes the chiral anomaly in parallel electric and
magnetic fields. Unfortunately, it also implies a local noncon-
servation of the electric charge when both electromagnetic and
strain-induced pseudoelectromagnetic fields are present. This
nonconservation in the chiral kinetic theory can be fixed by
adding the Bardeen-Zumino (or, equivalently, Chern-Simons)
term in the definition of the current [24]. The corresponding

term is essentially the same [25] as in relativistic quantum
field theory which defines the consistent anomaly. (For an
instructive discussion of the Bardeen-Zumino current in the
context of Weyl semimetals, see Refs. [26,27]).

In the four-vector notation, the Bardeen-Zumino current
reads j

μ

BZ = −e2εμναβbνFαβ/(4π2) [25–27], where the chiral
shift four-vector is bν = (b0, − b). Here b0 and b describe the
energy and momentum-space separations between the Weyl
nodes, respectively. As it turns out, without the Bardeen-
Zumino term with its explicit dependence on bν , the chiral
kinetic theory cannot describe correctly the chiral magnetic
effect [28,29], the anomalous Hall effect [30–35], and even
some collective excitations [24] in Weyl materials.

The principal difference between the realization of the
chiral anomaly in high energy physics and Weyl semimetals
is the absence of ultraviolet divergences in the latter. Indeed,
because of the finite size of the Brillouin zone in lattice models,
one can perform unambiguous calculations for the electric
and chiral (or, equivalently, valley) currents in the presence
of background electromagnetic and pseudoelectromagnetic
fields [36,37]. As expected, the complete result includes the
Bardeen-Zumino contributions.

In the case of the electric current, the Bardeen-Zumino
current is universal and topologically protected in Weyl
semimetals [36] in the limit of vanishing temperature and
chemical potential. It is determined by the winding number
of the mapping of a two-dimensional cross section of the
Brillouin zone onto a unit sphere. The situation is different in
the case of the chiral charge and current densities. While they
also contain contributions due to the chiral Bardeen-Zumino
current, the latter is not topologically protected [37]. In fact,
it depends on the definition of the chirality, as well as on the
specific values of model parameters. While the result may seem
surprising, it stems from the fact that the concept of chirality
(unlike the electric charge) is ambiguous on the lattice.

In the present paper, we will extend our studies in
Refs. [36,37] to thermoelectric phenomena in a generic lattice
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model of multi-Weyl semimetals. One of our main results
will be the derivation of anomalous thermal coefficients in
a systematic way. While having a topological origin, they
are not the exact analogs of the Bardeen-Zumino term in
the electric current. Largely, this is due to the fact that the
corresponding currents appear only at finite temperatures.
Nevertheless, because of their explicit dependence on the
chiral shift parameter b, these anomalous currents do resemble
the Bardeen–Zumino current. In the context of the chiral
kinetic theory, for example, they also need to be added by
hand.

In the literature, the thermal conductivity and thermopower
of Weyl semimetals in the presence of electromagnetic fields
were investigated in Refs. [38–41] by using a semiclassical
approach of the Boltzmann equation. The corresponding
approach for Weyl semimetals is conventionally based on
the linearized chiral kinetic theory. Although such a theory
simplifies calculations significantly, it is unable to naturally
reproduce the topological response coefficients proportional to
the chiral shift. Even when the anomalous terms proportional to
b were neglected, it was shown that the chiral anomaly plays
an important role. In particular, the characteristic quadratic
dependence of the thermal conductivity on the magnetic field
was predicted in the case of the temperature gradient parallel
to the field. Such a behavior is similar to the dependence
of the anomalous electric conductivity on the longitudinal
magnetic field strength. However, it was also shown [38] that
the magnetic field enters the electric and thermal conductivi-
ties differently implying the breakdown of the Wiedemann-
Franz law. This was claimed to be another hallmark of
the Weyl metallic phase that originates from its nontrivial
topology.

In order to describe anomalous responses, one can use
the consistent chiral kinetic theory [24], where the Bardeen-
Zumino term is added in the definition of the electric current.
A more advanced way is to employ the chiral kinetic theory
with the Berry curvature obtained in lattice models similarly
to Ref. [41]. In the case of Weyl materials with a broken
time-reversal (TR) symmetry, it was found that, in addition to
the usual magnetic-field-dependent Nernst effect, which was
recently measured in NbP [42], there is also an anomalous
Nernst response [41]. Similarly to the anomalous Hall effect,
the anomalous Nernst effect is determined by a nonzero
chiral shift. (It is worth noting that the effect was also
predicted in Dirac semimetals [43], where the chiral shift is
generated by magnetic field.) Therefore, in the framework
of the kinetic theory, it was predicted only when lattice
models were employed [41], but absent in linearized models
of Weyl semimetals [39]. The thermoelectric properties of
double-Weyl semimetals were studied in Ref. [44], where
it was shown that (i) the transport exhibits an interesting
directional dependence and (ii) the anomalous contributions
to the thermoelectric coefficients are doubled compared to the
case of linearly dispersing Weyl nodes. The anomalous Nernst
and thermal Hall effects in a linearized low-energy model of
type-II Weyl semimetals [45], i.e., materials with a large tilt of
Weyl nodes, were investigated in Refs. [46,47].

This paper is organized as follows. In Sec. II, we introduce
a generic lattice model of multi-Weyl semimetals (n = 1,2,3)
with a broken TR symmetry and outline the key details of the

formalism for studying the thermal transport. The response to
a background electric field and thermal gradient is considered
in Sec. III. The thermoelectric coefficients are calculated in
Sec. IV. The thermal conductivity, the Seebeck tensor, the
Wiedemann-Franz law, and the Mott relation are investigated
in Sec. V. The results are summarized and discussed in Sec. VI.
Technical details of derivations are given in several appendixes
at the end of the paper. Throughout the paper, we use the units
with h̄ = c = 1.

II. LATTICE MODEL OF MULTI-WEYL SEMIMETALS

Generalizing the low-energy effective Hamiltonian of a
multi-Weyl semimetal with a broken TR symmetry given in
Refs. [6,48,49], one can find that the corresponding lattice
model can be defined by the Hamiltonian,

Hlatt = d0 + d · σ , (1)

where σ = (σx,σy,σz) are the Pauli matrices and functions d0

and d are periodic in quasimomentum k = (kx,ky,kz).
In the case of Weyl semimetals with the unit topological

charge n = 1, the functions d0 and d take the following form:

d0 = g0 + g1 cos (azkz) + g2[cos (axkx) + cos (ayky)], (2)

d1 = � sin (axkx), (3)

d2 = � sin (ayky), (4)

d3 = t0 + t1 cos (azkz) + t2[cos (axkx) + cos (ayky)], (5)

where ax, ay , and az denote the lattice spacings and the energy
parameters g0, g1, g2,�, t0, t1, and t2 are material dependent.
Their characteristic values can be obtained, for example, by
fitting the dispersion relations of low-energy excitations in
Na3Bi. The corresponding values are given in Appendix A and
are used in our numerical calculations throughout the paper.
For the sake of simplicity, below we will assume that the lattice
is cubic, i.e., ax = ay = az = a.

For a double-Weyl semimetal with the topological charge
n = 2, one should replace d1 and d2 in Eqs. (3) and (4) with
the following functions:

d1 = �
sin2 (axkx) − sin2 (ayky)√

2
, (6)

d2 = �
sin (axkx) sin (ayky)√

2
. (7)

Similarly, in the case of the Weyl nodes with the topological
charge n = 3, one should use

d1 = �
sin3 (axkx) − 3 sin (axkx) sin2 (ayky)

2
, (8)

d2 = −�
sin3 (ayky) − 3 sin (ayky) sin2 (axkx)

2
. (9)

As is easy to check, the dispersion relation of quasiparticles
described by Hamiltonian (1) is given by

εk = d0 ± |d|. (10)
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FIG. 1. The low-energy part of the quasiparticle spectrum in the lattice model (1) describing multi-Weyl semimetals with the topological
charges of Weyl nodes (a) n = 1, (b) n = 2, and (c) n = 3. For simplicity, we set d0 = 0 and plotted the energy as a function of kx and kz at
fixed ky = 0. We also used a characteristic energy scale set by the size of the “dome” between the Weyl nodes ε0 ≡ |d|k=0. Black points label
the positions of the Weyl nodes. The complete set of model parameters is given in Appendix A.

When the parameters are such that |t0 + 2t2| � |t1|, this model
has two Weyl nodes separated in momentum space by distance
2bz, where the chiral shift parameter bz is given by the
following analytical expression:

bz = 1

a
arccos

(−t0 − 2t2

t1

)
. (11)

For simplicity, we will assume that the quasiparticle energy
vanishes at the position of Weyl nodes. In terms of the model
parameters, this implies that g0 + 2g2 − g1(t0 + 2t2)/t1 = 0.
In a general case, this condition can be enforced by an
appropriate redefinition of the reference point for the chemical
potential μ. Furthermore, in order to simplify the technical
details of the analysis, we will drop the term d0 altogether.
While a nonzero d0 introduces an asymmetry between the
valence and conduction bands, it does not affect the key
topological features of the Weyl nodes and, therefore, should
not affect the main qualitative features of the thermoelectric
transport. The low-energy parts of the quasiparticle spectrum
in the lattice models of multi-Weyl semimetals are presented
in Fig. 1(a) for n = 1, Fig. 1(b) for n = 2, and Fig. 1(c) for
n = 3.

In order to study a linear electromagnetic response, we
include an interaction with the gauge field through the usual
interaction term,

Hint = j · A, (12)

where the electric current density operator in the momentum
space is given by

j(k) = −e∇kHlatt = −e

3∑
i=1

σi∂kdi, (13)

and e is a fermion charge. The thermal current operator can be
defined as (see, e.g., Refs. [50,51])

jQ(ω; k) = e−1ωj(k) = −ω

3∑
i=1

σi∂kdi. (14)

Here we assume that the energy of quasiparticles ω is measured
from the Fermi level. In accordance with such a convention,
the Green’s function in the model described by the lattice

Hamiltonian (1) is given by

G(0)(ω ± i0; k) = i

2|d|
∑
s=±

s
ω + μ + (d · σ )

ω + μ − s|d| ± i0
. (15)

III. TRANSPORT CURRENTS AND MAGNETIZATIONS

In this study, in order to investigate the anomalous thermo-
electric response of multi-Weyl semimetals to a background
electric field and a temperature gradient, we will follow the
approach of the Kubo’s linear response theory similar to that
in our paper [36], where the topological Bardeen-Zumino
contribution to the electric current density was derived in a
lattice model of Weyl semimetals.

Before proceeding to the calculation of the relevant cor-
relators in the Kubo’s linear response theory, let us recall
the phenomenological expressions for the electric and heat
transport current densities in terms of the background electric
field and temperature gradient (see, e.g., Ref. [52]),

Jn = e2L11
nmEm + eL12

nm∇m

(
1

T

)
, (16)

JQ
n = e

1

T
L21

nmEm + L22
nm∇m

(
1

T

)
, (17)

where n and m are the spatial indices (i.e., x, y, or z) and
the thermodynamic forces are defined so that the transport
coefficients obey the Onsager reciprocal relation L12

nm = L21
mn.

(Note that our definition of L11
nm differs from that in Ref. [52]

by a factor of T .) As is clear from Eq. (16), the transport
coefficients L11

nm and L12
nm define the electric current densities

induced by a background electric field and temperature
gradient, respectively. The coefficient L11

nm is directly related
to the electric conductivity tensor σnm, i.e., L11

nm ≡ σnm/e2.
From Eq. (17), we see that L21

nm and L22
nm define the heat

current density in response to an electric field and temperature
gradient, respectively.

Let us start by reminding why the standard Kubo’s
formalism is unable to capture the thermoelectric coefficients
L12

nm, L21
nm, and L22

nm correctly in a general case. In particular,
it may fail when nonzero gradients of the chemical potential
and/or temperature are present [53,54]. The root of the problem
is connected with the thermodynamic nature of driving forces,
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which cannot be captured by an interaction Hamiltonian alone
without a simultaneous adjustment of a local (as opposed to
global) thermodynamic equilibrium.

By following the Luttinger’s approach [53], it was shown
in Refs. [55,56] that there are additional terms in the local
currents that are related to the electromagnetic orbital mag-
netization M and the so-called heat magnetization MQ. (The
latter is a combination of the gravitomagnetic energy and or-
bital magnetizations MQ = ME − μM/e.) The corresponding
magnetizations are responsible for two different types of local
currents. One of them is the divergence-free current ∼∇ × M
(or ∼∇ × MQ) that circulates locally and, therefore, does not
affect the net transport current flowing through the system. The
other is an additional transport current which is proportional to
the thermodynamic forces and the local magnetization [55,56].
The inclusion of the latter is essential for the correct description
of the thermoelectric response, as well as for reproducing the
Onsager reciprocal relations. According to Refs. [55,56], the

transport coefficients L
αβ
nm with α,β = (1,2) are given by the

following relations:

L11
nm = K11

nm, (18)

L12
nm = K12

nm − T

e
εnmlMl, (19)

L21
nm = K21

nm − T

e
εnmlMl, (20)

L22
nm = K22

nm − 2T εnmlM
Q
l , (21)

where K
αβ
nm denote the corresponding coefficients calculated

in the standard Kubo’s linear response theory and εnml is an
antisymmetric tensor. We will derive the expressions for the
coefficients K

αβ
nm, as well as the relevant magnetizations M and

MQ in the next two subsections.

A. Kubo’s linear response theory

In the Kubo’s linear response theory the transport coefficients K
αβ
nm are defined in terms of the current-current correlation

functions. By making use of the electric and heat current operators in Eqs. (13) and (14), respectively, we derive the following
general expressions for the relevant coefficients:

K11
nm = − 1

e2
Re

(
lim
�→0

i

�
T

∞∑
l=−∞

∫
d3k

(2π )3

∫∫
dωdω′ tr

[
jn(k)A(ω; k)jm(k)A(ω′; k)

]
(iωl + μ − ω)(iωl − � − i0 + μ − ω′)

)
, (22)

K12
nm = −T

e
Re

(
lim
�→0

i

�
T

∞∑
l=−∞

∫
d3k

(2π )3

∫∫
dωdω′ tr

[
jn(k)A(ω; k)jQ

m (k)A(ω′; k)
]

(iωl + μ − ω)(iωl − � − i0 + μ − ω′)

)
, (23)

K21
nm = −T

e
Re

(
lim
�→0

i

�
T

∞∑
l=−∞

∫
d3k

(2π )3

∫∫
dωdω′ tr

[
jQ
n (k)A(ω; k)jm(k)A(ω′; k)

]
(iωl + μ − ω)(iωl − � − i0 + μ − ω′)

)
, (24)

K22
nm = −T Re

(
lim
�→0

i

�
T

∞∑
l=−∞

∫
d3k

(2π )3

∫∫
dωdω′ tr

[
jQ
n (k)A(ω; k)jQ

m (k)A(ω′; k)
]

(iωl + μ − ω)(iωl − � − i0 + μ − ω′)

)
, (25)

where ωl = (2l + 1)πT (with l ∈ Z) are the fermionic Matsubara frequencies. In the derivation, we used the spectral
representation for the unperturbed Green’s function,

G(0)(iωl ; k) =
∫ ∞

−∞
dω

A(ω; k)

iωl + μ − ω
, (26)

where the spectral function A(ω; k) is defined as usual in terms of the retarded and advanced Green’s functions,

A(ω; k) ≡ i

2π
[G(0)(ω + i0; k) − G(0)(ω − i0; k)]μ=0 = i

∑
s=±

|d| + s(d · σ )

2|d| δ(ω − s|d|). (27)

As indicated by the δ function on the right-hand side, the spectral function A(ω; k) describes noninteracting quasiparticles with
the vanishing decay width. In realistic models, of course, the quasiparticle decay width is generically nonzero. This can be
implemented phenomenologically by replacing the δ function with a Lorentzian distribution, i.e.,

δ
(ω − s|d|) ≡ 1

π


(ω)

(ω − s|d|)2 + 
2(ω)
. (28)

In this study we will use the following energy-dependent ansatz for the quasiparticle width 
(ω) = 
0(1 + ω2/ε2
0 ), where

ε0 ≡ |d|k=0 is a characteristic energy scale set by the size of the “dome” between the Weyl nodes; see Fig. 1. The ansatz for

(ω) is motivated, in part, by the study of Weyl semimetals with a short-range disorder in Ref. [57], which revealed a quadratic
dependence of the quasiparticle width on the energy, 
(ω) ∝ ω2. In addition, we also included a nonzero constant term 
0 in our
model expression for 
(ω). Such an extra term may mimic effects of other types of disorder. For simplicity of the presentation,
in the following we will omit the argument of 
.
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By making use of the formulas in Appendix B, we can easily perform the summations over the Matsubara frequencies in
Eqs. (22)–(25). Then, we will arrive at the following expressions for the transport coefficients:

K11
nm = − 1

e2
Re

(
lim
�→0

i

�

∫
d3k

(2π )3

∫∫
dωdω′ nF (ω) − nF (ω′)

ω − ω′ − � − i0
tr
[
jn(k)A(ω; k)jm(k)A(ω′; k)

])
, (29)

K12
nm = −T

e
Re

(
lim
�→0

i

�

∫
d3k

(2π )3

∫∫
dωdω′ (ω − μ − �)nF (ω) − (ω′ − μ)nF (ω′)

ω − ω′ − � − i0
tr
[
jn(k)A(ω; k)jm(k)A(ω′; k)

])
,

(30)

K21
nm = −T

e
Re

(
lim
�→0

i

�

∫
d3k

(2π )3

∫∫
dωdω′ (ω − μ)nF (ω) − (ω′ − μ + �)nF (ω′)

ω − ω′ − � − i0
tr
[
jn(k)A(ω; k)jm(k)A(ω′; k)

])
,

(31)

K22
nm = −T Re

(
lim
�→0

i

�

∫
d3k

(2π )3

∫∫
dωdω′ (ω − μ)(ω − μ − �)nF (ω) − (ω′ − μ + �)(ω′ − μ)nF (ω′)

ω − ω′ − � − i0

× tr
[
jn(k)A(ω; k)jm(k)A(ω′; k)

])
, (32)

where nF (ω) = 1/[e(ω−μ)/T + 1] is the Fermi-Dirac distribution function.

B. Electromagnetic orbital and heat magnetizations

The electromagnetic orbital magnetization M can be calculating by inverting the Streda formula [58],

σ II
nm = −eεnml

∂Ml

∂μ
, (33)

where σ II
nm denotes the thermodynamical part of the electric conductivity, originating from filled states below the Fermi level.

By making use of the Kubo–Streda formalism [58], one can derive the following formal result for the electric conductivity
tensor (see, e.g., Refs. [59,60]):

σ II
nm = − 1

4π
Re

(∫
d3k

(2π )3

∫ ∞

−∞
dω nF (ω) tr

[
jn(k)G(0)(ω − μ + i0; k)jm(k)

(
∂ωG(0)(ω − μ + i0; k)

)

− jn(k)
(
∂ωG(0)(ω − μ + i0; k)

)
jm(k)G(0)(ω − μ + i0; k) − H.c.

])
. (34)

Here all diagonal components of the above tensor vanish. Now, by using the explicit expression for the Green’s function in the
clean limit given by Eq. (15) and calculating the trace, we obtain

σ II
nm = −e2

π
Re

( ∫
d3k

(2π )3

∫ ∞

−∞
dω nF (ω) i

∑
s=±

�nm(k)

[ −1

(ω − s|d| + i0)(ω + s|d| + i0)
+ 1

(ω − s|d| + i0)2

])

= e2
∫

d3k
(2π )3

�nm(k)
{
[nF (|d|) − nF (−|d|)] − |d|[n′

F (|d|) + n′
F (−|d|)]}, (35)

where we integrated by parts to obtain the second term in the curly brackets and introduced the following Berry curvature tensor:

�nm(k) = 1

2|d|3
(
d · [

(∂kn
d) × (∂km

d)
])

. (36)

Since the magnetization should vanish in the limit μ → −∞ [56], we can integrate the relation in Eq. (33) and obtain the
following result:

Ml = −εnml

2e

∫ μ

−∞
dμ0σ

II
nm(μ0) = −e

εnml

2

∫
d3k

(2π )3
�nm(k)

{
T ln

(
1 + e(μ−|d|)/T

1 + e(μ+|d|)/T

)
+ |d|[nF (|d|) + nF (−|d|)]

}
. (37)

By noting that the expression on the right-hand side contains the Berry curvature tensor, we conclude that this magnetization has
a topological origin. This becomes even more transparent in the limit of small chemical potential and zero temperature, i.e.,

Ml � eμ
εnml

2

∫
d3k

(2π )3
�nm(k) = n

eμbl

2π2
, (38)
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where the result is determined by the same winding number of the mapping of a two-dimensional section of the Brillouin zone
onto a unit sphere as the electric Bardeen-Zumino current in Ref. [36].

The heat magnetization MQ can be calculated in a similar way. The starting point is the Streda-like formula for the heat
magnetization:

σ II,Q
nm = −eεnml

∂M
Q
l

∂μ
, (39)

where the tensor σ II,Q
nm is defined by the mixed current-current correlator,

σ II,Q
nm = − 1

4π
Re

( ∫
d3k

(2π )3

∫ ∞

−∞
dω nF (ω) tr

[
jn(k)G(0)(ω − μ + i0; k)jQ

m (ω − μ; k)
(
∂ωG(0)(ω − μ + i0; k)

)

− jn(k)
(
∂ωG(0)(ω − μ + i0; k)

)
jQ
m (ω − μ; k)G(0)(ω − μ + i0; k) − H.c.

])
. (40)

By making use of the explicit expression for the Green’s function (15) and integrating over the energy ω, we derive

σ II,Q
nm = e

∫
d3k

(2π )3
�nm(k)

{
[(|d| − μ)nF (|d|) + (|d| + μ)nF (−|d|)]

− |d|[∂ω(ω − μ)nF (ω)]
∣∣∣
ω→|d|

− |d|[∂ω(ω − μ)nF (ω)]
∣∣∣
ω→−|d|

}
. (41)

Following the same approach as in the derivation of the electromagnetic orbital magnetization, we integrate the relation in
Eq. (39) over μ and arrive at the final result for the heat magnetization,

M
Q
l = −εnml

2e

∫ μ

−∞
dμ0σ

II,Q
nm (μ0) = εnml

2

∫
d3k

(2π )3
�nm(k)

{
T (μ − |d|) ln

(
1 + e(μ−|d|)/T

)
− T (μ + |d|) ln

(
1 + e(μ+|d|)/T

) + T 2Li2
(−e(μ−|d|)/T

) − T 2Li2
(−e(μ+|d|)/T

)
− |d|[(|d| − μ)nF (|d|) − (|d| + μ)nF (−|d|)]

}
. (42)

Before concluding this section, let us mention that the results in Eqs. (37) and (42) have a topological origin. This is evident
from the fact that the corresponding expressions contain the Berry curvature in their integrands. As we will see below, the tensor
structure of these magnetizations is the same as that of the nondissipative parts of the Kubo’s coefficients. This is not accidental,
however, since the latter have a similar topological origin.

IV. THERMOELECTRIC TRANSPORT COEFFICIENTS Lαβ
nm

By using the results for the Kubo’s transport coefficients and the magnetizations from the previous section, here we obtain the
Kubo’s response coefficients K

αβ
nm and then provide the results for the thermoelectric transport coefficients L

αβ
nm.

A. Coefficient L11
nm

The transport coefficient L11
nm = K11

nm ≡ σnm/e2 describes the electric conductivity. The corresponding conductivity tensor
σnm was calculated by us in the same lattice model in Ref. [36]. Therefore, here we provide only the final result generalized to
the case of nonzero temperature, i.e.,

L11
nm = L11,D

nm + L11,ND
nm , (43)

where the dissipative and nondissipative parts of the corresponding transport coefficient are given by

L11,D
nm = 2π

∫
d3k

(2π )3

∫
dω

4T cosh2
(

ω−μ

2T

) ∑
s,s ′=±

ss ′

4|d|2 δ
(ω − s|d|)δ


(
ω − s ′|d|)

×
[
(ss ′ − 1)|d|2((∂kn

d) · (∂km
d
)) + 2

(
d · (∂kn

d)
)(

d · (∂km
d)

)]
, (44)

and

L11,ND
nm = 4

∫
d3k

(2π )3

∫∫
dωdω′

[
nF (ω) − nF (ω′)

]
(ω − ω′)2

|d|2δ
(ω − |d|)δ


(
ω′ + |d|)�nm(k), (45)
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(a) (b) (c)

FIG. 2. The dependence of the transport coefficients L11
xx, L

11
zz , and L11

xy on the chemical potential in a Weyl semimetal (red solid line),
a double-Weyl semimetal (blue dashed line), and a triple-Weyl semimetal (green dotted line) at fixed T = 0.1 ε0. In panels (a) and (b), the
quasiparticle transport width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0.
The numerical values of other model parameters are defined in Appendix A.

respectively. As is easy to check, the only nonzero components of the dissipative part are L11,D
xx = L11,D

yy and L11,D
zz . They describe

the electric charge transport in the transverse and longitudinal directions with respect to the chiral shift b. The corresponding
components of the conductivity tensor are σxx = σyy ≡ e2L11,D

xx and σzz ≡ e2L11,D
zz .

By noting that the integrand on the right-hand side of Eq. (45) is proportional to the Berry curvature, we conclude that the
nondissipative part has a topological origin. In the lattice model used, the only nontrivial components of the corresponding
antisymmetric tensor are L11,ND

xy = −L11,ND
yx . They remain finite even in the clean limit 
 → 0 and describe the anomalous Hall

effect. Therefore, for simplicity, in the following we will consider these nondissipative terms only in the clean limit, i.e.,

lim

→0

L11,ND
nm =

∫
d3k

(2π )3
[nF (|d|) − nF (−|d|)]�nm(k). (46)

As is easy to check, in the limit of zero temperature T → 0
and vanishing chemical potential μ = 0, this leads to the well-
known result for the anomalous Hall conductivity [30–35]:

σAHE ≡ lim
T →0

lim
μ→0

e2L11
xy = −n

e2bz

2π2
. (47)

In terms of the currents, this corresponds to the topologi-
cal Bardeen-Zumino contribution JBZ = −ne2[E × b]/(2π2)
[36] (see also Refs. [26,27] for the related discussions in the
case of n = 1 Weyl semimetals).

For multi-Weyl semimetals with n = 1,2,3, the dependence
of the transport coefficients L11

xx, L
11
zz , and L11

xy on the chemical
potential is shown in Fig. 2. The corresponding numerical
results are obtained at a small, but nonzero temperature,
T = 0.1 ε0. We used the quasiparticle transport width 
 =

0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0 in the calculation of the
dissipative transport coefficients, shown in Figs. 2(a) and 2(b),
and set 
 = 0 in the calculation of the nondissipative transport
coefficient, shown in Fig. 2(c). The numerical values of other
parameters of our model are defined in Appendix A.

As we see from Fig. 2, all multi-Weyl semimetals with n =
1,2,3 share a similar behavior of their transport coefficients
L11

nm as functions of μ. We note, however, that the Weyl
materials with larger values of n tend to have a steeper
dependence on the chemical potential in the region of small μ.
We also find that the dissipative coefficients L11

xx and L11
zz tend

to be more nonmonotonous in the double- and triple-Weyl
semimetals than in the n = 1 Weyl semimetals. While this
feature appears to be quite robust in the model used, it is
hard to say how generic it is in reality. By noting that the
maximum values of L11

xx and L11
zz are obtained at μ ∼ ε0, one

might suggest that the nonmonotonic behavior is connected
with qualitative changes in the density of states near/above the
Lifshitz transition in the present model. In realistic materials,
however, the band structures are much more complicated than
in our model and, therefore, the above predictions are hard to
justify away from the region of small μ.

As we see from Fig. 2(c), the results for the anomalous Hall
conductivity are slightly smaller than σAHE in Eq. (47) even
when the chemical potential approaches zero. This is due to the
fact that we fixed a small, but nonzero temperature T = 0.1 ε0

when presenting the results. In this connection, we note that
the anomalous Hall conductivity generically decreases with
increasing μ and/or T [see also Fig. 3(c)]. The corresponding
dependence is again much steeper in multi-Weyl semimetals
with higher n.

The temperature dependence of the same three transport
coefficients is shown in Fig. 3 for a fixed value of the chemical
potential μ = 0.1 ε0. As expected, the dissipative coefficients
L11

xx and L11
zz for multi-Weyl semimetals with n = 2,3 are

nonmonotonic functions of temperature. We see that the slopes
generically increase with the value of the topological charge
n. In connection to the anomalous Hall conductivity, shown
in Fig. 3(c), we note that the results differ slightly from σAHE

in Eq. (47) even in the limit T → 0. The deviation comes
from the fact that a nonzero value of the chemical potential
μ = 0.1 ε0 was used in the calculation. As expected, increasing
the temperature tends to gradually wash away the anomalous
Hall effect.

Before concluding the discussion of the electric conduc-
tivity, let us compare the diagonal components of σnm from
the Kubo’s formalism with those obtained in the linearized
chiral kinetic (Boltzmann) theory [39]. At low temperatures,
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(a) (b) (c)

FIG. 3. The dependence of the transport coefficients L11
xx, L

11
zz , and L11

xy on the temperature in a Weyl semimetal (red solid line), a double-Weyl
semimetal (blue dashed line), and a triple-Weyl semimetal (green dotted line) at fixed μ = 0.1 ε0. In panels (a) and (b), the quasiparticle transport
width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical values
of other model parameters are defined in Appendix A.

the latter predicts the following behavior:

σxx ∝ 1




(
μ2 + σ0T

2
)
, (48)

where σ0 is a numerical coefficient. (By assuming that the
temperature is sufficiently low, one can replace ω with μ in
the expression for 
.) As one can check, such a dependence
on μ and T agrees well with our results in Fig. 2(a), as well as
Fig. 3(a) at sufficiently low temperatures.

B. Coefficient L21
nm

As is clear from Eq. (17), the flow of the heat current
in response to the external electric field E is quantified by
the transport coefficient L21

nm = K21
nm − T εnmlMl/e, where the

associated Kubo’s coefficient is defined by Eq. (31) and the
orbital magnetization M is given by Eq. (37).

After calculating the trace in Eq. (31), we find that the
expression for the Kubo’s coefficient contains dissipative and
nondissipative parts, i.e.,

K21
nm = K21,D

nm + K21,ND
nm , (49)

where

K21,D
nm = 2π T

∫
d3k

(2π )3

∫
dω

ω − μ

4T cosh2
(

ω−μ

2T

) ∑
s,s ′=±

ss ′

4|d|2 δ
(ω − s|d|)δ


(
ω − s ′|d|)

× [(ss ′ − 1)|d|2((∂kn
d) · (∂km

d
)) + 2

(
d · (∂kn

d)
)(

d · (∂km
d)

)
], (50)

and

K21,ND
nm = T

∫
d3k

(2π )3

∫∫
dωdω′ [nF (ω) − nF (ω′)](ω + ω′ − 2μ)

(ω − ω′)2
2|d|2δ
(ω − |d|)δ


(
ω′ + |d|)�nm(k). (51)

It is straightforward to check that the only nontrivial compo-
nents of the nondissipative part are K21,ND

xy = −K21,ND
yx . These

are topological terms that remain finite even in the clean limit

 → 0. Therefore, by following the same assumptions as in
the calculation of the magnetization, below we will consider
these nondissipative terms in the clean limit, i.e.,

lim

→0

K21,ND
nm = −T μ

∫
d3k

(2π )3
[nF (|d|) − nF (−|d|)]�nm(k).

(52)

By combining the results for the Kubo’s coefficients in
Eqs. (50) and (52) with the magnetization in Eq. (37), we
can now calculate the thermoelectric transport coefficient
L21

nm = K21
nm − T εnmlMl/e. As is easy to check, the only

nonzero components of tensor L21
nm are L21

xx = L21
yy, L

21
zz , and

L21
xy = −L21

yx .
The dependence of the transport coefficients L21

xx, L
21
zz , and

L21
xy on the chemical potential at fixed temperature T = 0.1 ε0

is presented in Fig. 4 for multi-Weyl semimetals with different
values of the topological charge n = 1,2,3. As in the rest
of this paper, we plot the results for the dissipative parts
L21

xx, L
21
zz using the model of quasiparticles with nonzero

width 
 = 
0(1 + ω2/ε2
0 ). In contrast, the results for the

nondissipative coefficient L21
xy are presented in the clean limit,


 → 0. Note that these are the same assumptions that we used
in the calculation of the electrical conductivity in the previous
subsection.

As the results in Fig. 4 demonstrate, all three transport
coefficients are nonmonotonic functions of μ. Moreover, as
we see from Figs. 4(a) and 4(b), the dissipative parts L21

xx

(transverse electrothermal coefficient) and L21
zz (longitudinal

electrothermal coefficient) in the double-Weyl (dashed blue
lines) and triple-Weyl (dotted green lines) semimetals change
their signs at sufficiently large values of the chemical potential,
μ ∼ ε0. This is in contrast to the situation in Weyl semimetals
with the topological charge n = 1 (solid red lines), where the
corresponding coefficients remain positive at given values of
μ. Moreover, a similar qualitative behavior with the change of
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(a)

× × ×

(b) (c)

FIG. 4. The dependence of the transport coefficients L21
xx, L

21
zz , and L21

xy on the chemical potential in a Weyl semimetal (red solid line),
a double-Weyl semimetal (blue dashed line), and a triple-Weyl semimetal (green dotted line) at fixed T = 0.1 ε0. In panels (a) and (b), the
quasiparticle transport width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0.
The numerical values of other model parameters are defined in Appendix A.

sign at T ∼ ε0 is also observed in the temperature dependence
of these coefficients. The corresponding results are shown in
Figs. 5(a) and 5(b).

Guided by our findings, it might be tempting to suggest that
the change of sign in the dissipative electrothermal coefficients
at sufficiently large chemical potentials and/or temperatures is
a signature property of the multi-Weyl semimetals with n > 1.
We think that this is indeed a reasonable hypothesis which
should be tested carefully in future experiments. However, we
would like to point out that the chemical potentials and/or
temperatures of the order of ε0 probe the band structure
sufficiently far from the Weyl nodes. Therefore, in that region
our model predictions may not be very reliable for real
materials. This is not so critical since the topological properties
of Weyl semimetals become muted there anyway.

By the same token, we can argue that the lattice model
(1) should be reliable (at least qualitatively) in the region of
sufficiently small chemical potentials and temperatures. From
the results shown in Figs. 4 and 5, we find that, in the region
of small chemical potentials (temperatures), the multi-Weyl
semimetals with n > 1 have a much steeper dependence on
μ (T ) than their counterparts with the Weyl nodes of the
topological charge n = 1. In fact, this observation might be
rather useful in applications, e.g., when one wants to induce a
large heat flow by applying weak electric fields.

A few words are in order about the off-diagonal coefficient
L21

xy . Its dependencies on the chemical potential and temper-
ature are shown in Figs. 4(c) and 5(c), respectively. From a
physics viewpoint, this coefficient describes the response in
the form of a heat current perpendicular to the external electric

field applied, i.e.,

JQ
Ett = e

T
L21

xy[E × b̂], (53)

where b̂ ≡ b/b. As is easy to check from the analytical
expression, the ratio L21

xy/T vanishes in the limit when both
the chemical potential and temperature vanish. In essence, the
relation in Eq. (53) describes the inverse of the Nernst effect
and is sometimes called the Ettingshausen-Nernst effect. It
is clear from our analysis that both effects have topological
roots in the multi-Weyl semimetals. The results in Figs. 4(c)
and 5(c) suggest that the corresponding effect is much more
pronounced in the multi-Weyl semimetals with n > 1 than in
the Weyl semimetals with n = 1.

Last but not least let us note that, in view of the Onsager
reciprocal relation, L21

nm = L12
nm, all results obtained in this

subsection are also valid for the thermoelectric transport
coefficients in the electric current. In particular, the Nernst
conductivity is defined by L12

xy and the corresponding current
reads

JNer = eL21
xy

[
∇

(
1

T

)
× b̂

]
. (54)

This is in agreement with the previous findings in Ref. [41],
where the anomalous Nernst response was predicted for the
multi-Weyl semimetals. Because of its explicit dependence
on the chiral shift parameter b, such a contribution would
not appear naturally in the conventional chiral kinetic theory.
Thus, in a way, heat and electric currents (53) and (54) can
be viewed as analogs of the Bardeen-Zumino current. Such

(a) (b) (c)

× × ×

FIG. 5. The dependence of the transport coefficients L21
xx, L

21
zz , and L21

xy on temperature in a Weyl semimetal (red solid line), a double-Weyl
semimetal (blue dashed line), and a triple-Weyl semimetal (green dotted line) at fixed μ = 0.1 ε0. In panels (a) and (b), the quasiparticle
transport width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical
values of other model parameters are defined in Appendix A.
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(a) (b) (c)

× ×

FIG. 6. The dependence of the transport coefficients L22
xx, L

22
zz , and L22

xy on the chemical potential in a Weyl semimetal (red solid line),
a double-Weyl semimetal (blue dashed line), and a triple-Weyl semimetal (green dotted line) at fixed T = 0.1 ε0. In panels (a) and (b), the
quasiparticle transport width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0.
The numerical values of other model parameters are defined in Appendix A.

a characterization is not rigorous, however, because these
currents stem from thermally excited quasiparticles.

C. Coefficient L22
nm

Finally, let us calculate the transport coefficient which
describes the flow of the heat current in response to a

temperature gradient, i.e., L22
nm = K22

nm − 2T εnmlM
Q
l , where

the corresponding Kubo’s coefficient is defined by Eq. (32)
and the heat magnetization is given by Eq. (42).

After calculating the trace in Eq. (32), the expression for the
Kubo’s coefficient can be written as a sum of the dissipative
and nondissipative terms,

K22
nm = K22,ND

nm + K22,D
nm , (55)

where

K22,D
nm = 2π T

∫
d3k

(2π )3

∫
dω

(ω − μ)2

4T cosh2
(

ω−μ

2T

) ∑
s,s ′=±

ss ′

4|d|2 δ
(ω − s|d|)δ


(
ω − s ′|d|)

× [(ss ′ − 1)|d|2((∂kn
d) · (∂km

d
)) + 2

(
d · (∂kn

d)
)(

d · (∂km
d)

)
], (56)

and

K22,ND
nm = 4T

∫
d3k

(2π )3

∫∫
dωdω′

[
nF (ω) − nF (ω′)

]
(μ − ω)(μ − ω′)

(ω − ω′)2
|d|2δ
(ω − |d|)δ


(
ω′ + |d|)�nm(k). (57)

In the clean limit 
 → 0, the latter reduces to

lim

→0

K22,ND
nm = T

∫
d3k

(2π )3
[nF (|d|) − nF (−|d|)](μ2 − |d|2)�nm(k). (58)

As in the case of other transport coefficients, after combining
the above results for the Kubo’s coefficients with the heat
magnetization in Eq. (42), we find that the only nonzero
components of the heat transport coefficient L22

nm are L22
xx =

L22
yy, L

22
zz , and L22

xy = −L22
yx .

The numerical results for the coefficients L22
xx, L

22
zz , and L22

xy

as functions of the chemical potential and temperature are
shown in Figs. 6 and 7. We used the same model parameters
and assumptions as in the calculations of other coefficients in
the previous two subsections.

The results for all multi-Weyl semimetals with topological
charges n = 1,2,3 appear to be qualitatively similar for
each of the three distinct components of the heat transport
coefficients L22

xx, L
22
zz , and L22

xy . As in the case of other
coefficients, the dependence on the chemical potential appears
to be nonmonotonic for the multi-Weyl semimetals with the
topological charge n > 1, but not for n = 1. This is in contrast
to the temperature dependence shown in Fig. 7, which is
monotonic for all three coefficients L22

xx, L
22
zz , and L22

xy .

It should be noted that the off-diagonal coefficient L22
xy

describes the thermal Hall effect. In multi-Weyl semimetals,
this is also an anomalous effect that is directly related to the
topological nature of the Weyl nodes. In the limit T → 0 and
μ → 0, as is easy to check from our analytical formulas, this
coefficient coincides with T 2κATHE, where

κATHE = −n
T bz

6
(59)

is the anomalous thermal Hall conductivity in a multi-Weyl
semimetal. In terms of the currents, this corresponds to

JQ
ATHE = −nT 3

6

[
∇

(
1

T

)
× b

]
. (60)

As we will see in Sec. V, this anomalous thermal Hall current
plays a principal role in reproducing the Wiedemann-Franz
law. Similarly to the Nernst current, this one also depends
explicitly on the chiral shift parameter b and, thus, may
resemble the Bardeen-Zumino term in the electric current.
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(a) (b) (c)

FIG. 7. The dependence of the transport coefficients L22
xx, L

22
zz , and L22

xy on temperature in a Weyl semimetal (red solid line), a double-Weyl
semimetal (blue dashed line), and a triple-Weyl semimetal (green dotted line) at fixed μ = 0.1 ε0. In panels (a) and (b), the quasiparticle
transport width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical
values of other model parameters are defined in Appendix A.

Strictly speaking, however, such a current is induced by
thermally excited quasiparticles and, therefore, cannot be
rigorously identified as the Bardeen-Zumino current.

V. THERMAL CONDUCTIVITY, SEEBECK TENSOR,
WIEDEMANN-FRANZ LAW, AND MOTT RELATION

By making use of the results obtained in the preceding
section, here we will study a range of physics characteristics
(e.g., the thermal conductivity and the Seebeck tensor) in
multi-Weyl semimetals that are relevant for experiment and
applications. Furthermore, we test the range of validity of the
Wiedemann-Franz law and the Mott relation in the Kubo’s
framework. Indeed, they hold for a generic system as long as
the quasiparticle description of electronic states remains valid
and, consequently, are applicable only in the limit T → 0. As
expected, the deviations from these relations will be seen when
the temperature is nonzero. In addition, a finite quasiparticle
width 
 tends to amplify the deviations.

A. Thermal conductivity and Seebeck tensor

Let us start from the definition of the thermal conductivity
tensor κnm. It can be given in terms of the transport coefficients
calculated in Sec. IV as follows:

κnm = 1

T 2

[
L22

nm − 1

T
L21

nl (L
11)−1

lj L12
jm

]
. (61)

Let us note that the last term in the square brackets comes
from enforcing a setup in which a thermal current is flowing,

but there is no electrical one. (For details, see, for example,
Ref. [52].)

Before proceeding with the numerical investigations of the
thermal conductivity, it is worth reminding about the approx-
imations that we used in the calculation of the tensor coeffi-
cients L

αβ
nm. In particular, all dissipative (diagonal) components

of the tensors were calculated by using a phenomenological
model of quasiparticles with a small, but nonzero quasiparticle
transport width. This was critical for resolving the otherwise
unavoidable singularities in the expressions for the dissipative
terms. At the same time, the nondissipative (off-diagonal)
components of the same tensors were obtained in the clean
limit. Of course, this is justifiable because the nondissipative
contributions are of topological origin and remain finite in
such a limit. Moreover, while introducing a small nonvanishing
width would considerably complicate the analysis, the results
would not change much anyway. In this section, we use the
same treatment even though the quantities such as the thermal
conductivity in Eq. (61) are defined in terms of mixture of
dissipative and nondissipative components.

We present our numerical results for the three independent
components of the thermal conductivity tensor, i.e., κxx =
κyy, κzz, and κxy = −κyx , in Figs. 8 and 9 as functions of the
chemical potential and temperature, respectively. As is easy
to see, the general trends in the dependence of the thermal
conductivity tensor on μ are rather similar to those of the
tensor L22

nm, shown in Fig. 6.
As in the case of the electric conductivity, it is instructive to

compare the diagonal components of the thermal conductivity

/ / /

(a) (b) (c)

FIG. 8. The dependence of the thermal conductivity κxx, κzz, and κxy on the chemical potential in a Weyl semimetal (red solid line), a
double-Weyl semimetal (blue dashed line), a triple-Weyl semimetal (green dotted line) at fixed T = 0.1 ε0. In panels (a) and (b), the quasiparticle
transport width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical
values of other model parameters are defined in Appendix A.
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(a) (b) (c)

FIG. 9. The dependence of the thermal conductivity κxx, κzz, and κxy on temperature in a Weyl semimetal (red solid line), a double-Weyl
semimetal (blue dashed line), a triple-Weyl semimetal (green dotted line) at fixed μ = 0.1 ε0. In panels (a) and (b), the quasiparticle transport
width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical values
of other model parameters are defined in Appendix A.

in Eq. (61) with the corresponding results in the linearized
chiral kinetic (Boltzmann) theory [39]. At low temperatures,
the latter leads to

κxx ∝ π2T

3


(
μ2 + κ0T

2), (62)

where κ0 is a numerical coefficient. This dependency qualita-
tively agrees with the results in Fig. 8 and at low temperature
in Fig. 9.

Another important characteristic of the thermal transport is
the thermopower, or the Seebeck tensor, which is defined as

Snm = 1

eT 2
(L11)−1

nl L12
lm. (63)

We show the dependence of Sxx = Syy, Szz, and Sxy = −Syx

on the chemical potential and temperature for multi-Weyl
semimetals in Figs. 10 and 11, respectively. It is interesting
to note that the transverse components of the Seebeck
tensor Sxx = Syy [see Figs. 10(a) and 11(a)] in multi-Weyl
semimetals with n > 1 have an opposite sign compared to
Weyl semimetals with n = 1 in the region of small values
of μ or T . They also change the sign at relatively large
values of μ or T . We also observe a change of sign for the
longitudinal components of the Seebeck tensor Szz, shown in
Figs. 10(b) and 11(b), but that change occurs only at relatively
large values of the chemical potential μ ∼ ε0 or temperature
T ∼ ε0.

The common topological feature of both Weyl and multi-
Weyl semimetals is a nonzero off-diagonal component of

the Seebeck tensor Sxy at nonzero chemical potentials and
temperatures. While all three types of Weyl semimetals share
the same bell-shape dependencies on μ and T , the maximal
values of the off-diagonal coefficients are considerably larger
in materials with the topological charge n > 1.

B. Wiedemann-Franz law and Mott relation

The Wiedemann-Franz law relates the thermal and elec-
trical conductivities. It is generically expected to be true
when the same well-defined quasiparticle is responsible for
both types of conduction. In this section, we will check the
validity of the corresponding law in our lattice model of
multi-Weyl semimetals and study the deviations from it at
nonzero temperature and quasiparticle width.

In terms of the transport coefficients, the Wiedemann-Franz
law reads

κnm = e2L0T L11
nm, (64)

where L0 = π2/(3e2) denotes the Lorenz number. In order
to study this relation in multi-Weyl semimetals, we plot the
dependence of each of the three independent components of
the relative Lorenz number Lnm/L0 ≡ κnm/(e2L0T L11

nm) on
the chemical potential and temperature in Figs. 12 and 13,
respectively.

As we see from Figs. 12(a) and 12(b), there are sub-
stantial deviations from the naive behavior predicted by the
Wiedemann-Franz law in the transverse and longitudinal
components, Lxx and Lzz, when μ is small. This is due

/ / /

(a) (b) (c)

FIG. 10. The dependence of the thermopower Sxx, Szz, and Sxy on the chemical potential in a Weyl semimetal (red solid line), a double-Weyl
semimetal (blue dashed line), a triple-Weyl semimetal (green dotted line) at fixed T = 0.1 ε0. In panels (a) and (b), the quasiparticle transport
width is modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical values
of other model parameters are defined in Appendix A.
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(a) (b) (c)

FIG. 11. The dependence of the thermopower Sxx, Szz, and Sxy on temperature in a Weyl semimetal (red solid line), a double-Weyl semimetal
(blue dashed line), a triple-Weyl semimetal (green dotted line) at fixed μ = 0.1 ε0. In panels (a) and (b), the quasiparticle transport width is
modeled by 
 = 
0(1 + ω2/ε2

0 ) with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical values of other
model parameters are defined in Appendix A.

to the fact that the quasiparticle description breaks down
when T � μ. As a careful analysis shows, the effect of
nonzero temperature is further amplified by a nonvanishing
quasiparticle width 
. Overall, the dependencies of all relative
Lorenz number components are qualitatively similar in a Weyl
semimetal and its multi-Weyl counterparts. However, this is
not the case for the off-diagonal components of the relative
Lorenz number. The latter are quite different for multi-Weyl
semimetals with different topological charges.

From the temperature dependence in Fig. 13, we see that,
as expected, the Wiedemann-Franz law holds in the limit of
small T . As for the deviations at nonzero T , they first quickly
increase with temperature and then gradually decrease. In the
case of the relative Lorenz numbers Lxx/L0 and Lzz/L0, the
deviations in the intermediate region of temperatures are larger
in the n = 1 Weyl semimetal than in the double- and triple-
Weyl semimetals. As is clear from Fig. 13(c), however, the
situation is opposite for Lxy/L0.

Here, it is important to emphasize that the Wiedemann-
Franz law holds exactly in the limit T → 0 and 
 → 0. For
the details of the corresponding analysis, see Appendix C. This
result clearly demonstrates that a nontrivial topology in the
multi-Weyl semimetals by itself does not cause any violation
of the Wiedemann-Franz law. This also agrees with the analysis
in the linearized kinetic theory [39].

Let us finally discuss the Mott relation, i.e.,

L12
nm = π2T 3

3

dL11
nm

dμ
, (65)

which is expected to hold at low temperature. Similarly to
the case of the Wiedemann-Franz law, we find that small
deviations from the Mott relation show up only with an
increase of temperature, when the quasiparticle description
of electronic states starts to gradually break down.

VI. SUMMARY AND DISCUSSIONS

In this paper, by using a generic lattice model, we studied the
thermoelectric properties of multi-Weyl semimetals with a bro-
ken time-reversal symmetry. The calculations are performed in
the Kubo’s linear response theory that take into account the ad-
ditional contributions connected with the electromagnetic or-
bital and heat magnetizations. These contributions appear due
to the modification of the charge and heat current operators in
the Luttinger method, where a gravitational field is introduced
as the mechanical counterpart of the temperature gradient.
While these magnetizations do not affect the nonanomalous
diagonal thermoelectric transport coefficients, their presence
is absolutely crucial in the anomalous ones and guarantees the
validity of the Wiedemann-Franz law and the Mott relation.

As in the case of the electric response studied previously
by us using the same lattice model in Ref. [36], the nontrivial
topology of the electron structure of multi-Weyl semimetals
also plays a profound role in the thermoelectric transport.
Indeed, the topological charge of the Weyl nodes causes the
anomalous Nernst effect, which implies the existence of an
electric current in response to a thermal gradient in the absence
of an external magnetic field. Similarly, the off-diagonal com-

// / /

(a) (b) (c)

FIG. 12. The dependence of the relative Lorenz number Lxx/L0 = κxx/(e2L0T L11
xx), Lzz/L0 = κzz/(e2L0T L11

zz ), and Lxy/L0 =
κxy/(e2L0T L11

xy) on the chemical potential in a Weyl semimetal (red solid line), a double-Weyl semimetal (blue dashed line), a triple-Weyl
semimetal (green dotted line) at fixed T = 0.1 ε0. In panels (a) and (b), the quasiparticle transport width is modeled by 
 = 
0(1 + ω2/ε2

0 )
with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical values of other model parameters are defined in
Appendix A.
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(a) (b) (c)

FIG. 13. The dependence of the relative Lorenz number Lxx/L0 = κxx/(e2L0T L11
xx), Lzz/L0 = κzz/(e2L0T L11

zz ), and Lxy/L0 =
κxy/(e2L0T L11

xy) on the chemical potential in a Weyl semimetal (red solid line), a double-Weyl semimetal (blue dashed line), a triple-Weyl
semimetal (green dotted line) at fixed μ = 0.1 ε0. In panels (a) and (b), the quasiparticle transport width is modeled by 
 = 
0(1 + ω2/ε2

0 )
with 
0 = 0.1 ε0. In panel (c), the results are plotted in the clean limit, 
 = 0. The numerical values of other model parameters are defined in
Appendix A.

ponents of the heat current are induced by a thermal gradient
and an electric field. They describe the anomalous thermal Hall
and Nernst effects, respectively. In this connection, it should
be noted that these anomalous effects could not be correctly
reproduced in the linearized chiral kinetic theory, unless the
latter is supplemented by the Bardeen-Zumino currents [24] or
the appropriate Berry curvature from a lattice model [41]. This
is in contrast to the nonanomalous response coefficients which
are qualitatively the same in all frameworks including the
chiral kinetic (Boltzmann) theory with a linear dispersion law.

Our calculations show that all anomalous thermoelectric
coefficients in multi-Weyl semimetals contain an additional
multiplication factor, which in the limit of zero temperature
and chemical potential is the integer topological charge of the
Weyl nodes. This conclusion also agrees with the previously
obtained results in Ref. [44], where the double-Weyl model
was studied, as well as with the analysis in Ref. [35], where
the high-energy-inspired Fujikawa method was employed. We
would like to mention also that the topological contribution to
the thermal current takes a form that is somewhat similar to the
electromagnetic Bardeen-Zumino current [26,27,36]. How-
ever, it is a current induced by thermally excited quasiparticles
and, thus, not a true analog of the Bardeen-Zumino current.

In this paper, we studied in detail the dependence of the
thermoelectric coefficients in multi-Weyl semimetals (with
the topological charges of Weyl nodes n = 1,2,3) on the
chemical potential and temperature. In general, we found that
the corresponding dependence is much milder in the n = 1
Weyl semimetals, compared to the double- and triple-Weyl
materials. Also, as one might expect in the case of the larger
topological charges, the anomalous response is much more
susceptible to the chemical potential and temperature when
n > 1. This is the case for the anomalous Hall, Ettingshausen-
Nernst, Nernst, and thermal Hall effects.

Interestingly, we found that the diagonal components of
the Seebeck tensor in the double- and triple-Weyl semimetals
can change the sign as functions of μ and T . However, this
property is not shared by the n = 1 Weyl semimetals. It may
be also important to mention that the nontopological diagonal
thermoelectric coefficients are typically several times larger
for multi-Weyl semimetals than for the Weyl semimetals
with n = 1. One might speculate, therefore, that the multi-
Weyl semimetals may be more promising for application in
thermoelectric devices.

Within the Kubo’s formalism, we checked that the results
for the thermoelectric coefficients in multi-Weyl semimetals
agree with the Wiedemann-Franz law and the Mott relation in
the limit of zero temperature. We also found that deviations
appear and grow with increasing values of temperature, and
are further amplified by a quasiparticle width. As is clear,
such deviations indicate that the quasiparticle description of
the electronic states starts to gradually fail, which is indeed
expected when T � μ and 
 � μ. (This finding is also in
agreement with the results in Ref. [61].)

Last but not least, let us briefly discuss the relevance
of the obtained results for Weyl semimetals with a broken
inversion, but intact TR symmetry. In such materials the total
number of Weyl points should be a multiple of four (see,
e.g., Ref. [3]). This is the consequence of the time-reversal
symmetry that maps each pair of opposite-chirality Weyl nodes
separated by 2b in momentum space to another pair of Weyl
nodes separated by −2b. Clearly, for such Weyl semimetals,
the sum of all chiral shifts must vanish, i.e.,

∑
n b(n) = 0.

Then, since all anomalous thermoelectric responses, i.e., the
anomalous Hall, Nernst, Ettingshausen-Nernst, and thermal
Hall conductivities, are linear in the chiral shift vector, we
can expect that such effects are absent in the inversion
symmetry broken Weyl semimetals (which is in agreement
with Ref. [39]). This would not apply, however, to Weyl
semimetals, in which both the inversion and time-reversal
symmetries are broken. The anomalous response in such a
general case may be similar to that in the Weyl semimetals
with a broken TR symmetry, but with the chiral shift replaced
by beff ≡ ∑

n b(n) �= 0. However, the study of Weyl semimetals
with a broken inversion symmetry clearly deserves a further
in-depth investigation, which is beyond the scope of this study.
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APPENDIX A: MODEL PARAMETERS

In this appendix, we present a representative set of model parameters which we employ in our numerical calculations throughout
the paper. In order to have a realistic model, will use the parameters for Na3Bi presented in Ref. [62]. The parametrization in the
given paper is related to the notations in Eq. (1) as follows:

t0 = M0 − t1 − 2t2, t1,2 = −2M1,2

a2
, (A1)

g0 = C0 − g1 − 2g2, g1,2 = −2C1,2

a2
, (A2)

� = A

a
, (A3)

where

C0 = −0.06382 eV, C1 = 8.7536 eV Å
2
, C2 = −8.4008 eV Å

2
,

M0 = 0.08686 eV, M1 = −10.6424 eV Å
2
, M2 = −10.3610 eV Å

2
,

A = 2.4598 eV Å.

(A4)

For the sake of simplicity, we assume that the Weyl semimetal model has a cubic lattice, i.e., ax = ay = az = a = 7.5 Å.
Although usually this is not the case in real materials, such an assumption has no effect on the validity of the main qualitative
results in our study.

APPENDIX B: MATSUBARA SUMS

In this appendix, we present the results for several types of Matsubara sums needed in the calculation of the current-current
correlators in the main text. By omitting the standard derivation steps, here we quote only the final results for the following three
types of sums:

T

∞∑
l=−∞

1

(iωl + μ − ω)(iωl − i�r + μ − ω′)
= nF (ω) − nF (ω′)

ω − ω′ − � − i0
, (B1)

T

∞∑
l=−∞

iωl

(iωl + μ − ω)(iωl − i�r + μ − ω′)
= (ω − μ)nF (ω) − (ω′ − μ + �)nF (ω′)

ω − ω′ − � − i0
, (B2)

T

∞∑
l=−∞

iωl(iωl − i�r )

(iωl + μ − ω)(iωl − i�r + μ − ω′)
= (ω − μ)(ω − μ − �)nF (ω) − (ω′ − μ + �)(ω′ − μ)nF (ω′)

ω − ω′ − � − i0
, (B3)

where nF (ω) = 1/[e(ω−μ)/T + 1] is the Fermi-Dirac distribution function. Note that �r = 2πrT with r ∈ Z is the bosonic
Matsubara frequency that corresponds to the external line in the current-current correlator. When making the analytic continuation
to the real axis in the complex frequency plane, we replaced i�r → � + i0. It should be also noted that, because of the divergent
sum in Eq. (B3), the corresponding final result is defined up to an infinite constant. However, as was shown in Ref. [63] (see, also,
Appendix B in Ref. [51]), this divergence stems from an improper treatment of time derivatives inside the time-ordered product
of the heat currents. The divergence disappears when the problem is treated more carefully. Thus, the correct prescription is to
ignore the divergent constant term.

APPENDIX C: THE WIEDEMANN-FRANZ LAW AT SMALL TEMPERATURES AND VANISHING CHEMICAL POTENTIAL

As we saw from the numerical analysis of the thermoelectric transport in Sec. V B, there are clear deviations from the
Wiedemann-Franz at nonzero temperature T . Such deviations indicate that the quasiparticle description starts to fail gradually
with increasing T that is further amplified by a quasiparticle width 
. Here we demonstrate analytically that the Wiedemann-Franz
law is valid for multi-Weyl semimetals in the clean limit when T → 0.

By setting μ = 0 and considering the limit of small temperatures, we derive the following expressions for the off-diagonal
nondissipative components (which should be the most sensitive to the nontrivial topology) of the transport coefficients K11

nm,K21
nm,

and K22
nm (with n �= m):

K11
nm = −

∫
d3k

(2π )3
tanh

( |d|
2T

)
�nm(k) � −

∫
d3k

(2π )3
�nm(k), (C1)

K21
nm = K12

nm = εnmlMl = 0, (C2)

K22
nm = T

∫
d3k

(2π )3
tanh

( |d|
2T

)
|d|2�nm(k) � T

∫
d3k

(2π )3
|d|2�nm(k), (C3)
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which follow from the more general representations in Eqs. (46), (52), and (58), respectively. (Note that all dissipative contributions
vanish after the integration over the whole Brillouin zone.)

In the same small temperature limit, the heat magnetization (42) is given by

M
Q
l � εnml

2

∫
d3k

(2π )3

�nm(k)

2

(
|d|2 + π2T 2

3

)
. (C4)

By combining all these results, we derive the following expression for the off-diagonal components of the heat conductivity:

κnm = L22
mn

T 2
= K22

mn − 2T εnmlM
Q
l

T 2
� −π2T

3

∫
d3k

(2π )3
�nm(k). (C5)

Now, by taking into account that L11
nm = K11

nm and using the result in Eq. (C1), we find that the Wiedemann-Franz law in Eq. (64)
is not violated or modified by the nontrivial topology in the multi-Weyl semimetals.
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