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Symmetry-protected topological phase transition in one-dimensional Kondo lattice
and its realization with ultracold atoms
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We propose that ultracold alkaline-earth-like atoms confined in one-dimensional optical lattice can realize
a Kondo lattice model which hosts a symmetry-protected topological (SPT) phase and an associated quantum
phase transition in a controllable manner. The symmetry protection of the phase transition is discussed from
two different viewpoints: topological properties related to spatial patterns of Kondo singlets and symmetry
eigenvalues of the spin states. We uncover the role of various symmetries in the phase diagram of this system
by combining a weak-coupling approach by Abelian bosonization and strong-coupling pictures of ground states.
Furthermore, we show that the bosonization approach correctly describes a crossover from a fermionic SPT phase
to a bosonic SPT phase and an associated change of protecting symmetries as the charge degrees of freedom are
frozen by the Hubbard repulsion.
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I. INTRODUCTION

In the past few decades, our understanding of the role
of symmetries in quantum phases has been deepened very
much. Even if the ground states have the same symmetries
and thus cannot be distinguished from the Landau-Ginzburg-
type phase transitions with spontaneous symmetry breaking,
quantum many-body systems can have numerous distinct
phases. For example, the Haldane phase [1–4] emerging in
spin-1 chains cannot be characterized by any local order
parameter associated with symmetry breaking, but it possesses
a nonlocal string order [5–7] and is still a distinct quantum
phase from featureless product states. Now the Haldane phase
is recognized as a typical example of symmetry-protected
topological (SPT) phases [8,9]. SPT phases are characterized
by nondegenerate gapped ground states without symmetry
breaking which cannot be adiabatically connected to site-
product states under some symmetry constraint. Since the
SPT phases can be connected to trivial product states if
symmetry-breaking perturbation is allowed, the presence of
symmetries is indispensable for SPT phases. In fact, the
Haldane phase is distinguished from product states if either
time-reversal, spatial inversion, or spin dihedral symmetry is
present in the system [10–12]. The existence of string order
is also understood from a modern perspective in connection
with the symmetry protection of the Haldane phase by the spin
dihedral symmetry.

The concept of SPT phases is applicable to ground states
of quantum many-body systems. Hence, topological phase
transitions between SPT phases (and a trivial phase) are
necessarily quantum phase transitions triggered by tuning
of parameters of the Hamiltonian. From this perspective,
ultracold atoms with great tunability of system parameters
[13] are a promising candidate for direct observation of
such quantum phase transitions. For example, by engineering
artificial gauge fields, transitions between topologically trivial
and nontrivial band structures of noninteracting systems have

*masaya.nakagawa@riken.jp

been observed using fermionic [14] and bosonic [15] atoms.
Since interactions can be easily introduced to atoms, an
intriguing prospect in this field is realization of SPT phases
with strong correlations. It potentially provides a versatile
platform to study exotic phase transitions arising from the
topological nature of quantum systems.

In this paper, we propose an experimentally feasible scheme
to realize SPT phase transitions induced by strong interactions
using ultracold fermionic atoms loaded in optical lattice.
Our model is based on one of the prototypical models of
strongly correlated fermions: the Kondo lattice model [16].
Using an Aberian bosonization approach, we show that a
one-dimensional (1D) version of the Kondo lattice model has
several distinct quantum phases including a SPT phase and
identify what symmetries protect them. We demonstrate that
ultracold alkaline-earth-like atoms (AEA) in optical lattices
can realize the SPT phase and access the associated quantum
phase transitions.

In our setup, the phase transitions are triggered by Kondo
effect which is induced by laser irradiation to the atoms using
a recently proposed scheme [17]. In this scheme, the laser field
couples with the spin degrees of freedom of atoms and thereby
realizes a tunable anisotropic spin exchange interaction. This
feature enables us to engineer the quantum phase transitions
with high controllability in sharp contrast to solid state
realizations, where the strength of exchange interactions is
intrinsic to the materials and is usually fixed. Furthermore,
we show that the anisotropic exchange interaction realizes
the Kondo effect with an “unusual” spin state different from
ordinary Kondo singlet. The unusual Kondo state is certainly
distinct from the ordinary Kondo state by comparing their
symmetry eigenvalues in terms of the spin π rotation around
x or y axis. Therefore, it should be noted that the topological
phase transition of this system is protected not only by its
topological nature but also by the symmetry eigenvalues of the
spin states.

Besides providing an experimental setup, the other main
aim of this paper is to provide a description of a crossover of
SPT phases from interacting fermions to spin chains, using the
bosonization approach. In the Kondo lattice systems, interplay
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of mobile charges and their exchange coupling to localized
spins leads to a variety of quantum phases with or without
magnetic order [18–37]. The SPT phase that we focus on
emerges in the 1D Kondo lattice with ferromagnetic exchange
coupling (the double exchange model) and has been shown
to approach the Haldane phase in the strong coupling limit
[28,30]. However, the main difference between the Kondo
lattice and the Haldane spin chains is the existence of the
charge degrees of freedom. In this case, the SPT phase is no
longer treated as a bosonic spin system but must be treated
as fermions. Correspondingly, when the charge fluctuations
cannot be neglected, the time-reversal and spin dihedral
symmetries no longer protect the Haldane phase, and only the
inversion symmetry remains as the protecting symmetry. This
phenomenon was previously studied using Hubbard ladders
[38,39], but here we provide an alternative derivation in the
present Kondo lattice setup by the bosonization method. This
method transparently captures how the SPT phase composed
of interacting fermions changes into the bosonic SPT phase
(the Haldane phase) as the charge degrees of freedom are
frozen in the strong coupling limit. As a result, the topological
phase of the 1D Kondo lattice fits into the Z4 classification of
interacting fermionic SPT phases protected by the inversion
symmetry in addition to the charge conservation [40–42]. The
fermionic aspects of the SPT phase in the present setup are
contrasted to previous studies on realization of correlated
SPT phases in cold alkaline-earth atoms [43–52], where only
the strong-coupling limit and thus spin-chain models were
considered.

The organization of this paper is as follows. In Sec. II,
we describe our setup used in this paper and derive a 1D
Kondo lattice model as an effective low-energy theory of this
system. Before analyzing the Kondo lattice model, we first
examine the corresponding impurity problems in Sec. III to
obtain some intuition for the problem. In Sec. IV, we proceed
to an analysis of the 1D Kondo lattice model using Abelian
bosonization and derive a set of renormalization group (RG)
equations. Based on the RG equations, we determine the phase
diagram of the system in Sec. V. In Sec. VI, we elucidate
what symmetries protect the quantum phases and describe
the crossover of the SPT phase by the bosonization method.
Finally, we conclude this paper in Sec. VII with discussions
for experimental detections.

II. MODEL

We start by introducing our setup and model used in this
paper. Our setup utilizes a recently proposed scheme to realize
the Kondo lattice using specific properties of AEA such as
171Yb, 173Yb, and 87Sr in optical lattices [17]. AEA have an
electronic ground state and a long-lived excited state denoted
by 1S0 and 3P0, respectively. We consider ultracold AEA in
1D optical lattice and assign fermionic annihilation operators
of the 1S0 state at lattice site j to cjσ and those of the
3P0 state to fjσ . Here the spin indices σ = −I, . . . ,I come
from the nuclear spin degrees of freedom of atoms. Since
the polarizability to light is different for each state, we can
load these atoms in an optical lattice with state-dependent
lattice depth. This leads to state-dependent Wannier orbitals
and gives transfer integrals tc,tf to each state. Thus the model

Hamiltonian can be written in the most general form as
[17,53]

H =
∑
j,σ

(−tcc
†
jσ cj+1,σ − tf f

†
jσ fj+1,σ + H.c.) +

∑
j,σ

ε
(0)
f nfjσ

+ U
∑

j,σ<σ ′
ncjσ ncjσ ′ + Uff

∑
j,σ<σ ′

nfjσ nfjσ ′

+ Ucf

∑
j,σ,σ ′

ncjσ nfjσ ′ + Vex

∑
j,σ,σ ′

c
†
jσ f

†
jσ ′cjσ ′fjσ

+
∑
j,σ,σ ′

(V · σ σσ ′ei K ·Rj −iωtf
†
jσ cjσ ′ + H.c.), (1)

where ncjσ = c
†
jσ cjσ and nfjσ = f

†
jσ fjσ count the number

of particles at site j . ε
(0)
f denotes the excitation energy

of the 3P0 state from the 1S0 state. The specific values
of interaction parameters U,Uff ,Ucf ,Vex depend on s-wave
scattering lengths in corresponding collision channels and the
details of optical lattice setups, namely, the Wannier-function
overlaps and the trap potential for confining the atoms in
one direction [53,54]. Since the s-wave scattering lengths are
independent of the nuclear spin states, the interactions possess
SU(N = 2I + 1) symmetry [53,55] as confirmed by exper-
iments [56–60]. Hereafter we assume that U >0,Uff >0.
In principle, there exist additional terms originating from a
magnetic field [54], but for simplicity we take the zero-field
limit and avoid the complication.

The last term in Eq. (1) is an important ingredient for our
model. This term represents optical transitions between the
1S0 state and the 3P0 state allowed by dipole coupling with
the help of hyperfine interactions [61]. From the Wigner-
Eckart theorem, we find that the matrix elements are the
inner product of a three-component vector V (which is
proportional to the electric field component of the optical
field) and Pauli matrices of the nuclear spin [17,62]. K and
ω are the wave number and the frequency of the optical
field, respectively. We here consider a π -polarized laser field
with V = (0,0,V ), which does not break the time-reversal
symmetry.

The explicit time dependence in the hybridization term
of Eq. (1) is eliminated by a gauge transformation fjσ →
e−iωtfjσ . After this transformation, the energy level of the
3P0 state is effectively shifted, and we replace ε

(0)
f with

εf ≡ ε
(0)
f − ω. Besides the trivial time dependence due to

the gauge transformation, the system is assumed to be an
equilibrium state with temperature T and chemical potential
μ. In this paper, we mainly consider the case of T = 0
and focus on quantum phase transitions that the system
exhibits.

We assume that the lattice potential is sufficiently deep
for the 3P0 state to suppress inelastic collisions which cause
loss of atoms, and thus tf � Uff . On the other hand, the
lattice potential for the 1S0 state is shallow to allow the
hopping between sites. To simplify the original model (1),
we consider a limiting case in which the Kondo limit is
achieved: εf � μ � εf + Uff and |V | is sufficiently small.
In this case, since the occupation number of the 3P0 state in
low-energy states is one at each site, we can restrict ourselves
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to the Hilbert subspace with
∑

σ nfjσ = 1 and derive an
effective low-energy Hamiltonian using the Schrieffer-Wolff
transformation [63]. The resulting low-energy theory leads to
the Kondo lattice (or Kondo-Heisenberg) model

Heff = − tc
∑
j,σ

(c†jσ cj+1,σ + H.c.) + U
∑

j,σ<σ ′
ncjσ ncjσ ′

+
∑
j,σ,σ ′

(Vex − σσ ′J )c†jσ f
†
jσ ′cjσ ′fjσ

+ JH

∑
j,σ,σ ′

f
†
jσ fjσ ′f

†
j+1,σ ′fj+1,σ , (2)

where J = 2V 2( 1
|εf −μ| + 1

εf −μ+Uff
) > 0 and JH =

4t2
f /Uff > 0. We note that when

∑
σ nfjσ = 1, the

interaction Ucf can be incorporated into the chemical
potential and therefore we omit this term from Heff .

The effective Hamiltonian (2) contains an effective Kondo
interaction Vex,J between the two orbitals and the Heisenberg
interaction JH between 3P0 states. While the spin-exchanging
collision Vex is fully symmetric, the optically induced Kondo
coupling J breaks the spin SU(N ) symmetry due to the
polarization-spin coupling in the last term in Eq. (1). For
general N , this Kondo coupling is somewhat complicated,
but the case of N = 2 is simple. For N = 2, we can rewrite
the Kondo coupling as∑

j,σ,σ ′
(Vex − σσ ′J )c†jσ f

†
jσ ′cjσ ′fjσ

= −J⊥
∑

j

(
Sx

cjS
x
fj + S

y

cjS
y

fj

) − Jz

∑
j

Sz
cjS

z
fj

+ potential term, (3)

where

J⊥ ≡ Vex + J/4, (4a)

Jz ≡ Vex − J/4. (4b)

The “potential term” can be absorbed into the chemi-
cal potential. The spin operators are defined by Scj =
1
2

∑
σ,σ ′ c

†
jσσ σσ ′cjσ ′ and Sfj = 1

2

∑
σ,σ ′ f

†
jσ σ σσ ′fjσ ′ , where σ

is the three-component Pauli matrices. This interaction is just
an anisotropic XXZ-type exchange coupling between the 1S0

and the 3P0 states.
Hereafter, we analyze the low-energy effective model (2)

for N = 2. Experimentally, this case can be realized using two
specific spin states σ and −σ selected from 2I + 1 nuclear
spins of AEA.

III. KONDO IMPURITY

Before studying the full Kondo lattice Hamiltonian (2), it
is helpful to gain some insights from what happens when a
single atom in the 3P0 state is immersed into the Fermi sea
of 1S0 atoms as an impurity. Here we summarize known basic
results [16,64–66] and extend them to obtain a phase diagram
in Fig. 1(b) which is important for a later analysis. Let us
consider the following Kondo impurity problems:

FIG. 1. (a) RG flow for the Kondo impurity in 3D. (b) Phase
diagram of the Kondo impurity in 1D. We set J⊥F = J⊥B = J⊥,JzF =
JzB = Jz, vF = 1, and g2 = 0.5. The broken line indicates the
isotropic line on which J⊥ = Jz is satisfied.

H3D = −tc
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.)

− J⊥
(
Sx

c0S
x
imp + S

y

c0S
y
imp

) − JzS
z
c0S

z
imp, (5)

H1D = −tc
∑
j,σ

(c†j,σ cj+1,σ + H.c.) + U
∑

j

ncj↑ncj↓

− J⊥
(
Sx

c0S
x
imp + S

y

c0S
y
imp

) − JzS
z
c0S

z
imp. (6)

In both cases, a single impurity spin is located at j = 0. The
impurity interacts with itinerant fermions living in 3D (or 1D)
lattices via anisotropic Kondo couplings. In the 1D case, we
have introduced the interaction between itinerant fermions and
consider a metallic Tomonaga-Luttinger-liquid region away
from half filling. If we set a high-energy cutoff (the bandwidth)
as D, the RG equations for the 3D case are [64]

dJ⊥
d�

= −ρ0J⊥Jz, (7a)

dJz

d�
= −ρ0J

2
⊥, (7b)

where d� = −d ln D. Here ρ0 is the density of states at the
Fermi energy. The flow diagram is depicted in Fig. 1(a). The
system has two fixed points characterized by growth of Kondo
coupling with different signs of J⊥. The fixed point with
J⊥ → −∞,Jz → −∞ corresponds to the ordinary Kondo
effect with isotropic antiferromagnetic interactions. However,
an important aspect arises from the other fixed point in Fig. 1(a)
for the present setup in cold atoms. As found from Eqs. (4a) and
(4b), when the laser-induced Kondo coupling is sufficiently
strong, we reach the fixed point with J⊥ → ∞,Jz → −∞. The
nature of this fixed point can be extracted from a transformation(

Sx
imp,S

y
imp,S

z
imp

) → (−Sx
imp,−Sy

imp,S
z
imp

)
, (8)

which is equivalent to flipping the sign of J⊥. Note that
this transformation keeps the commutation relation intact.
Since the singlet state |↓〉c |↑〉f − |↑〉c |↓〉f is transformed
into |↓〉c |↑〉f + |↑〉c |↓〉f by this procedure, we find that the
fixed point describes the Kondo effect with Kondo “singlet”
|↓〉c |↑〉f + |↑〉c |↓〉f .

The 1D case was studied by Refs. [65,66], and the situation
is somewhat different from 3D. In 1D, the forward scattering
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off the impurity and the backward one are distinguished.
Hence we must double the coupling constants for the Kondo
coupling: J⊥F ,J⊥B,JzF ,JzB where the subscript F (B) denotes
the forward (backward) process. Then the RG equations are
given by

dJ⊥F

d�
= − 1

2πvF

(J⊥F JzF + J⊥BJzB ), (9a)

dJ⊥B

d�
= − 1

2πvF

(
J 2

⊥F + J 2
⊥B

)
, (9b)

dJzF

d�
= 1

2πvF

(g2J⊥B − J⊥F JzB − J⊥BJzF ), (9c)

dJzB

d�
= 1

2πvF

(g2JzB − 2J⊥F J⊥B), (9d)

where g2 denotes the matrix element of the forward scattering
process between itinerant fermions due to the Hubbard
repulsion in Eq. (6). vF is the Fermi velocity. By integrating
Eqs. (9a)–(9d) numerically, we obtain a phase diagram in
Fig. 1(b), although the flow diagram was shown only for
the isotropic (J⊥ = Jz) case in Ref. [66]. The phase (K)
shows the ordinary Kondo effect and the phase (K’) shows
the “unusual” Kondo effect as in the 3D case. A peculiar
point in 1D is the existence of a new phase (F) where the
exchange coupling grows to strong coupling starting from bare
ferromagnetic interactions. This fixed point appears only when
g2 > 0 is included [66], and therefore we need to consider
the Hubbard repulsion in Eq. (6). At the fixed point, the
coupling constants grow as J⊥F → −∞,J⊥B → ∞,JzF →
−∞,JzB → ∞. Note that the signs are negative for the
forward processes and positive for the backward ones. From
this observation, it turns out that the fixed point describes
growth of nearest-neighbor antiferromagnetic Kondo coupling
which leads to a Kondo singlet state with the adjacent sites
of the impurity, while the onsite Kondo coupling is kept
finite [66]. The phase (F’) is not important for the later
discussions, but the nature of this phase is also understood
by the transformation (8). In the subsequent sections, we show
that the phase diagram of the 1D Kondo lattice has similarity
to the 1D impurity case.

IV. RENORMALIZATION GROUP ANALYSIS OF 1D
ANISOTROPIC KONDO LATTICE

Let us now proceed to the analysis of the 1D Kondo
lattice model. Hereafter we consider the Hamiltonian (2) for
N = 2 with the half-filling condition for 1S0 states. To analyze
the low-energy behavior of the system, we apply Abelian
bosonization [67] to the Hamiltonian using the following
identity:

cjσ = 1√
2π

(ηRσ eikF xei(θ1σ (x)−φ1σ (x))

+ ηLσ e−ikF xei(θ1σ (x)+φ1σ (x))), (10)

where x = ja is the continuum space variable and the boson
fields φ,θ satisfy a commutation relation [φ1σ (x),∇θ1σ ′ (y)] =
iπδσσ ′δ(x − y). In the above expression, the boson field φ

is compactified as φ ∼ φ + 2π . The Fermi momentum kF is
fixed at kF = π/2a due to the half-filling condition. ηR/Lσ

is a Klein factor expressed in terms of Majorana fermions
satisfying {ηα,ηβ} = 2δαβ , which ensures the anticommutation
relation between the right mover and the left mover. Similarly,
we introduce the boson fields φ2σ ,θ2σ for the fjσ fermions.
Following standard calculations detailed in Appendix A, we
obtain

Heff =H0 + Hint, (11)

H0 = 1

2π

∫
dx

(
u1cK1c(∇θ1c)2 + u1c

K1c

(∇φ1c)2
)

+
∑
ν=±

1

2π

∫
dx

(
uνKν(∇θν)2 + uν

Kν

(∇φν)2
)

, (12)

Hint = gU

∫
dx cos(2

√
2φ1c) − gK⊥F+

∫
dx cos 2φ+ cos 2θ−

− gK⊥F−
∫

dx cos 2φ− cos 2θ−

− gK⊥B

∫
dx sin

√
2φ1c cos 2θ−

− gKzB+
∫

dx sin
√

2φ1c cos 2φ+

− gKzB−
∫

dx sin
√

2φ1c cos 2φ−, (13)

where

u1c = 2tca

√
1 + U

2πtc
, (14a)

u± = 2tca

√(
1 − U

2πtc

)(
1 ∓ αJz

2πu

)
, (14b)

K1c = 1

/√
1 + U

2πtc
, (14c)

K± = 1√
1 ∓ αJz

2πu

, (14d)

and the coupling constants are

gU = U

2π2α
, (15a)

gK⊥F+ = gK⊥F− = 1

2m
gK⊥B = J⊥

2π2α
, (15b)

gKzB+ = gKzB− = mJz

2π2α
. (15c)

Here α denotes the short-range cutoff and m = 〈sin
√

2φ2c〉
is the expectation value of the gapped charge mode of localized
f fermions. The new boson fields for the charge mode (of
1S0 state) φ1c,θ1c and the total/relative spin modes φ±,θ± are
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defined as

φ1c ≡ 1√
2

(φ1↑ + φ1↓), (16a)

θ1c ≡ 1√
2

(θ1↑ + θ1↓), (16b)

φ± ≡ 1

2
(φ1↑ − φ1↓ ± (φ2↑ − φ2↓)), (16c)

θ± ≡ 1

2
(θ1↑ − θ1↓ ± (θ2↑ − θ2↓)). (16d)

For later convenience, we name each term in Eq. (13)
as HU,HK⊥F+,HK⊥F−,HK⊥B,HKzB+, and HKzB−, where the
subscripts correspond to those of the coupling constants (see
Appendix A).

The low-energy behavior of the model (11) is deduced
from perturbative RG analysis in terms of Hint. Since the
unperturbed theory H0 is free bosons and thus is a conformal
field theory (CFT), the RG equations can be derived from the
CFT data of the free boson theory, i.e., scaling dimensions
and operator-product-expansion coefficients [68]. After some
calculations, we arrive at a set of RG equations when the cutoff
is changed from α to ed�α, as

dK1c

d�
= −K2

1c

(
2g̃U + 2g̃2

K⊥B + g̃2
KzB+ + g̃2

KzB−
)
, (17a)

dK+
d�

= −K2
+
(
2g̃2

K⊥F+ + 2g̃2
KzB+

)
, (17b)

dK−
d�

= −K2
−
(
2g̃2

K⊥F− + 2g̃2
KzB−

)
+ 2g̃2

K⊥F+ + 2g̃2
K⊥F− + 4g̃2

K⊥B, (17c)

and

dg̃U

d�
= (2 − 2K1c)g̃U + g̃2

K⊥B + g̃2
KzB+ + g̃2

KzB−,

(17d)

dg̃K⊥F+
d�

=
(

2 − K+ − 1

K−

)
g̃K⊥F+ − g̃K⊥Bg̃KzB+, (17e)

dg̃K⊥F−
d�

=
(

2 − K− − 1

K−

)
g̃K⊥F− − g̃K⊥Bg̃KzB−, (17f)

dg̃K⊥B

d�
=

(
2 − 1

2
K1c − 1

K−

)
g̃K⊥B − g̃K⊥F+g̃KzB+

− g̃K⊥F−g̃KzB− + 1

2
g̃U g̃K⊥B, (17g)

dg̃KzB+
d�

=
(

2 − 1

2
K1c − K+

)
g̃KzB+

− g̃K⊥F+g̃K⊥B + 1

2
g̃U g̃KzB+, (17h)

dg̃KzB−
d�

=
(

2 − 1

2
K1c − K−

)
g̃KzB−

− g̃K⊥F−g̃K⊥B + 1

2
g̃U g̃KzB−, (17i)

FIG. 2. Phase diagram of the 1D anisotropic Kondo lattice model.
The broken line indicates the isotropic line on which J⊥ = Jz is
satisfied.

up to the second order perturbation theory. Here the dimen-
sionless coupling constants are defined by g̃α ≡ 1

π
gαa2−�α ,

where �α is the scaling dimension of the perturbation.

V. PHASE DIAGRAM

The zero-temperature phase diagram of the system is
determined by fixed points derived from the RG equations
(17a)–(17i). Numerical solutions of the RG equations indicate
the phase diagram summarized in Fig. 2. In calculating Fig. 2,
we have set g̃U = 0.1 and the initial values of the coupling
constants as g̃K⊥F± = 1

2 g̃K⊥B = g̃K⊥ and g̃KzB± = g̃Kz. The
phase diagram is fully symmetric with respect to the sign
of g̃K⊥. As seen from scaling dimensions, the low-energy
behavior is mainly governed by relevant terms HK⊥B,HKzB+,
and HKzB−. Each phase is characterized by the most divergent
interactions as follows:

(K) g̃K⊥B → −∞, g̃KzB+ → −∞
(K′) g̃K⊥B → +∞, g̃KzB+ → −∞
(Top) g̃K⊥B → +∞, g̃KzB+ → +∞
(Top′) g̃K⊥B → −∞, g̃KzB+ → +∞
(N1) g̃KzB+ → −∞, g̃KzB− → −∞
(N2) g̃KzB+ → +∞, g̃KzB− → +∞

The phase boundary between (K’) and (Top) [or (K) and
(Top’)] is signaled by the change of the sign of g̃KzB+. On
the other hand, the transitions to the phase (N1) or (N2) are
determined by competition between HK⊥B and HKzB−, which
cannot be minimized simultaneously. Since the renormaliza-
tion is stopped around g̃(�) ∼ 1, we determine those phase
boundaries by examining which of g̃K⊥B and g̃KzB− first grows
to unity. We note that the role of less relevant HU,HK⊥F±
terms is the shift of phase boundaries. If we truncate the RG
equations up to the tree level, the phase boundary between
the phase (K’) and the phase (Top) is located at g̃Kz = 0.
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Thus the generation of effective couplings due to less relevant
interactions significantly shifts the phase boundaries. We note
that the precise positions of phase boundaries depend on the
Luttinger parameter.

Qualitatively, our weak-coupling calculation by the per-
turbative RG approach reproduces the phase diagram of 1D
anisotropic Kondo lattice obtained by strong coupling expan-
sion and exact diagonalization of a small cluster [30]. Although
Ref. [30] explained each phase based on a spin-chain picture
in the strong coupling limit, we here point out that the phase
diagram has some resemblance to the impurity phase diagram
in Fig. 1(b) except for the appearance of the phases (N1) and
(N2) having Néel orders. This resemblance can be understood
to some extent by comparing the RG equations (9a)–(9d)
and (17e)–(17i). Hence, our weak-coupling approach provides
a complementary understanding of the phase diagram in
Ref. [30]. In the following subsections, we explain the details
of each phase, keeping in mind the connection to the impurity
physics.

A. Kondo insulator

The phases (K), (K’), (Top), and (Top’) are described by
pinning of φ1c,φ+ and θ− to their potential minimum, leading
to disordered ground states with an energy gap. The phase
(K) corresponds to the growth of on-site antiferrromagnetic
Kondo coupling, which means the formation of the Kondo
insulator [18]. The strong coupling picture of this phase is
illustrated in Fig. 3, where the Kondo singlet at each site opens
the energy gaps in charge and spin sectors. We note that the
Kondo coupling effectively generates the Hubbard repulsion
between conductive fermions due to Eq. (17d). Hence, even
if the bare Hubbard interaction is switched off, the Kondo
insulator cannot be distinguished from the Mott insulating
state at least in the low-energy region. At the strong coupling
limit, the Kondo insulating state approaches to the rung-singlet
state if we regard the system as a spin-1/2 ladder.

B. Laser-induced Kondo insulator

With sufficiently strong laser coupling, the phase (K’) is
realized owing to Eqs. (4a) and (4b). This phase is also a
Kondo insulator but is composed of the “unusual” Kondo effect
described in Sec. III by a strong coupling fixed point with
anisotropic Kondo coupling. As in Sec. III, a physical picture
of this Kondo insulator is obtained by a unitary transformation

fjσ → sgn(σ )fjσ , (18)

which flips the sign of Sx
fj ,S

y

fj and maps the Kondo singlet
|↓〉c |↑〉f − |↑〉c |↓〉f to |↓〉c |↑〉f + |↑〉c |↓〉f . Thus, in the
strong coupling limit, the phase (K’) is described by an
insulating state where the 1S0 state and the 3P0 state form the
“Kondo singlet” |↓〉c |↑〉f + |↑〉c |↓〉f at each site (Fig. 3). The
unusual Kondo singlet has total spin 1 with Sz

c + Sz
f = 0, and

therefore the expectation value of total spin is nonzero in the
x,y plane: 〈(Sx

cj + Sx
fj )2 + (Sy

cj + S
y

fj )2〉 �= 0. In the language
of spin systems, this phase is very similar to the so-called
large-D phase [30], where a strong single-ion anisotropy favors
the Sz = 0 state in spin-1 systems [69].

FIG. 3. Schematic pictures of the phases of the 1D Kondo lattice.
The red (blue) balls illustrate atoms in the 1S0 (3P0) state loaded in
a shallow (deep) optical lattice potential. In the figure of the phase
(Top), the singlet formation is represented by the central site for
clarity of illustration.

C. Topological phase

The phase (Top) in Fig. 2 is a nontrivial topological phase
protected by the spatial inversion symmetry, whose topological
aspects are described in the next section. This phase includes
the case of isotropic ferromagnetic Kondo coupling indicated
by the broken line in Fig. 2. This phase is smoothly connected
to the Haldane phase in spin ladders [70–73] in the strong
coupling limit U → ∞ (or J⊥,Jz → ∞) [28]. An intuitive
picture of this fixed point can be obtained by considering a
nearest-neighbor Kondo coupling

H̃K ≡ −J̃
∑

j

(Sc,j−1 + Sc,j+1) · Sf,j (19)

in addition to the original on-site Kondo coupling. The
bosonized Hamiltonian is changed as

HK⊥F → J⊥ + J̃

J⊥
HK⊥F , (20a)

HK⊥B → J⊥ − J̃

J⊥
HK⊥B, (20b)

HKzF → Jz + J̃

Jz

HKzF , (20c)

HKzB → Jz − J̃

Jz

HKzB. (20d)
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Thus, the fixed point is equivalent to growth of the nearest-
neighbor antiferromagnetic Kondo coupling, similarly to the
phase (F) appearing in the 1D Kondo impurity problem in
Sec. III, while the on-site Kondo coupling is ferromagnetic
and kept finite. An intuitive picture is illustrated in Fig. 3. The
formation of the nonlocal Kondo singlets is reminiscent of 1D
topological Kondo insulators [74–77] realized by a p-wave
Kondo coupling. In fact, the low-energy effective theory is the
same as that of the 1D topological Kondo insulators [75].

We note that the nature of the phase (Top’) is related to the
topological phase (Top) via the transformation (18), although
this phase cannot be realized because the coupling constants
cannot be manipulated into the corresponding parameter
region, since J is always positive in Eqs. (4a) and (4b).

D. Néel order

The phases (N1) and (N2) which appear near the “Ising
line” J⊥ = 0 have an antiferromagnetic Néel order with
spontaneously broken spin flip symmetry. The ordered spin
patterns are illustrated in Fig. 3. To understand the appearance
of the Néel order, it is useful to consider the case of J⊥ = 0.
In this case, the remaining perturbation terms are HU,HKzB+,

and HKzB−, which are all relevant for U > 0 and thus lock
the fields φ1c,φ+,φ− at their potential minimum. The locking
of φ± leads to the nonzero expectation value of Nz

c,f (x)
[Eq. (A9c)], implying the emergence of the Néel ordering.
Since the pinning of φ1c,φ+,φ− opens the energy gap and the
gap cannot be collapsed by infinitesimal perturbation, the Néel
order should persist to some threshold value of J⊥. However,
the threshold value should not exceed |Jz|, since at the isotropic
line |J⊥| = |Jz| we obtain the Kondo insulating phases or the
topological phases by non-Abelian bosonization [20,21].

The existence of the Néel order can also be naturally
understood from the corresponding impurity problem. When
the Kondo coupling is completely Ising-like with vanishing
J⊥, we do not have the Kondo effect, and the impurity ground
state is doubly degenerate where the spins of conduction
electrons and the impurity align ferromagnetically in Jz >0
and antiferromagnetically in Jz < 0. Thus the residual impu-
rity entropy ln 2 should be washed out by spin ordering in the
case of Kondo lattice systems.

VI. SYMMETRY PROTECTION

All the quantum phases of the 1D anisotropic Kondo lattice
described in Sec. V have energy gaps both in charge and
spin excitations. While the Néel orders can be characterized
by spontaneous breaking of the spin flip symmetry, rest four
phases have the same symmetries and cannot be characterized
by spontaneous symmetry breaking. In this section, we
describe the roles of various symmetries in the system and
provide conditions to distinguish these four phases as different
quantum phases.

A. Protection by spatial inversion symmetry: A crossover from
a fermionic SPT phase to a bosonic SPT phase

First, we describe what symmetry protects the topological
phase (Top). The topological phase approaches the Haldane
phase in spin chains in the strong coupling limit U → ∞.

Hence the topological phase of the 1D Kondo lattice is
expected to be stable under either time-reversal, spatial
inversion, or spin dihedral symmetry, if U is sufficiently large
and the charge degrees of freedom are frozen in the low-energy
part of the Hilbert space. However, if J⊥,Jz and U are small
compared to the kinetic energy tc, we can no more regard the
system as bosonic (spin) systems and must treat it as interacting
fermions. It was previously shown [38,39] that the Haldane
phase with mobile charge degrees freedom is unstable and can
be adiabatically connected to a trivial band insulator by only
breaking inversion symmetry, even if the time-reversal and
spin rotation symmetries are preserved. This fact stems from
that the charge fluctuations in the low-energy Hilbert space
mix the integer-spin representation of the original spin chain
and that of half-odd-integer spin, invalidating the proof of the
symmetry protection of the Haldane phase. Hence the only
protecting symmetry of the topological phase is the inversion
symmetry. Under the inversion symmetry, the degeneracy of
the entanglement spectrum, which is a fingerprint of the SPT
phase, still persists [39]. A similar degenerate structure of
the entanglement spectrum is also observed in 1D topological
Kondo insulator [77] and 1D periodic Anderson model with
Hund coupling [78], indicating the existence of the SPT phase.
A related study on a three-leg Hubbard ladder has been also
performed [79].

Here we show that the above difference between the
fermionic and the bosonic SPT phases is captured by the
bosonization method in the present Kondo lattice system. To
apply the symmetry protection argument to the present Kondo
lattice system, we summarize the symmetry transformation of
bosonized fields for each symmetry of the system in Table I.
Let us first consider the strong coupling limit U → ∞. In
this case, the charge mode φ1c is completely frozen to the
potential minimum of the Umklapp term HU . The remaining
degrees of freedom are the total and relative spin modes
φ±,θ±, and they are equivalent to the effective theory of
the corresponding spin ladder system [72,73]. Hence the
proof of symmetry protection can be performed in parallel
with the case of the spin ladder [80] (see Appendix B for
the description of SPT phases by bosonization). The gapped
phases are characterized by the expectation values of the boson
fields φ+ and θ−. To connect the topological phase with the
trivial phases, a shift of the expectation value of φ+ must
take place, which breaks the time-reversal, spatial inversion,
and spin dihedral symmetries. Hence the topological phase is
protected by those three symmetries. However, the situation
is changed if we consider a weakly interacting regime. If the
Hubbard interaction U is sufficiently small, the Umklapp term
is less relevant than the Kondo couplings HK⊥B,HKzB+, and
HKzB−. Thus the low-energy behavior is mainly governed by
the Kondo couplings. In this case, we can adiabatically connect
the topological phase (Top) and the ordinary Kondo insulator
(K) without closing the energy gap, by shifting the expectation
value of the charge mode. This is done by adding the following
perturbation:

g′
K⊥B

∫
dx cos

√
2φ1c cos 2θ−

+ g′
KzB+

∫
dx cos

√
2φ1c cos 2φ+ (21)
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TABLE I. Symmetry transformation in bosonization. The transformation on boson fields φ2s ,θ2s is the same as that on φ1s ,θ1s in the table.

Symmetry operation Transformation law Transformation on boson fields

Translation cσ (x) → cσ (x + a), Sf (x) → Sf (x + a) φ1c(x) → φ1c(x + a) − √
2kF a, θ1c(x) → θ1c(x + a)

φ1s(x) → φ1s(x + a), θ1s(x) → θ1s(x + a)
Charge U(1) cσ → eiϕcσ φ1c → φ1c, θ1c → θ1c + ϕ

φ1s → φ1s , θ1s → θ1s

Time reversal cσ → ∑
σ ′ (iσy)σσ ′cσ ′ , Sf → −Sf φ1c → φ1c, θ1c → −θ1c + π√

2
φ1s → −φ1s , θ1s → θ1s − π√

2

Spatial inversion cσ (x) → cσ (a − x), Sf (x) → Sf (a − x) φ1c(x) → −φ1c(a − x) + √
2kF a, θ1c(x) → θ1c(a − x)

φ1s(x) → −φ1s(a − x), θ1s(x) → θ1s(a − x)
π rotation around x axis Sx

c,f → Sx
c,f ,S

y,z

c,f → −S
y,z

c,f φ1c → φ1c, θ1c → θ1c

φ1s → −φ1s , θ1s → −θ1s

π rotation around y axis S
y

c,f → S
y

c,f ,S
x,z
c,f → −S

x,z
c,f φ1c → φ1c, θ1c → θ1c

φ1s → −φ1s , θ1s → −θ1s + π√
2

Spin U(1) Sx
c,f → Sx

c,f cos ϕ + S
y

c,f sin ϕ, φ1c → φ1c, θ1c → θ1c

S
y

c,f → −Sx
c,f sin ϕ + S

y

c,f cos ϕ φ1s → φ1s , θ1s → θ1s + ϕ

which is generated by an artificial Kondo coupling

H ′
K = J ′ ∑

j,σ,σ ′
c
†
jσ σ σσ ′cj+1σ ′ · Sfj + H.c. (22)

The shift of the expectation value of φ1c by π is equivalent
to the sign reversal of the Kondo couplings HK⊥B,HKzB+,
and HKzB−, and thus this procedure connects the topological
phase with the trivial Kondo insulator. As seen from Eq. (22) or
Table I , this perturbation only breaks the inversion symmetry
and preserves the other symmetries. In the present system,
the charge U(1) symmetry prohibits vertex operators which
involve the field θ1c. Thus, the only possible way to connect
the topological phase and the trivial phase using the charge
degrees of freedom is the shift of the expectation value of
φ1c accompanied by the breaking of inversion symmetry.
From these observations, we conclude that the topological
phase is protected only by the inversion symmetry (under the
assumption of the charge conservation).

From the above argument, we can interpret the crossover
from the fermionic SPT phase (protected by the inversion
symmetry only) to the bosonic SPT phase (the Haldane phase,
protected by the time-reversal, inversion, and spin dihedral
symmetries) via the bosonization language. In the weakly
interacting regime, the low-energy behavior of the charge
mode is mainly determined by the Kondo coupling rather than
the Umklapp scattering due to the Hubbard repulsion. In this
case, we can connect the topological phase and the trivial
phase by shifting the pinning position of the charge mode with
breaking the inversion symmetry, while the time-reversal and
the spin rotation symmetries are kept intact. However, this shift
cannot be reconciled with minimization of the Umklapp term
HU . Hence if we gradually increase the Hubbard repulsion
U , the above procedure fails to work at some point. After
that, the topological phase and the trivial phase are separated
by a quantum phase transition if the time-reversal or the spin
dihedral symmetry is present. We note that the perturbation
(21) vanishes if the charge mode is frozen at the potential
minimum of the Umklapp term, 2

√
2φ1c = π .

Finally, let us clarify where the topological phase of the
Kondo lattice stands in the classification of SPT phases of

interacting fermions. In noninteracting systems, topological
insulators protected by the inversion symmetry in 1D are
classified [81–83] by integer Z, which means that there
are infinitely many different topological phases. However,
when we allow interactions as perturbation to systems, a
part of nontrivial topological phases can be connected to the
trivial phase and free-fermion classification of topological
phases is reduced to its subgroup [84–88]. In the case of
inversion-symmetric topological insulators, the classification
is performed by several methods [40–42] and is argued to
reduce from Z to Z4 in the interacting case. Since the Haldane
phase is classified by Z2, two copies of them can be deformed
into the trivial phase. Using the fact that the topological phase
of the 1D Kondo lattice approaches the Haldane phase in the
strong coupling limit, we can also deform the two copies of
the model (11) into a trivial phase. Thus we conclude that the
topological phase in 1D Kondo lattice is specified by an integer
2 ∈ Z4 = {0,1,2,3}.

B. Protection by spin π rotation symmetries around
the x or y axis

Besides the topological protection described in the previous
subsection, the gapped phases in this system are also protected
by spin π rotation symmetries around the x or y axis. This
gives a distinction between the laser-induced Kondo insulator
(K’) with the “unusual” spin state and the two phases (Top) and
(K) composed of the ordinary Kondo singlet state. Although
this fact is not related to the discussion of SPT phases,
we describe the mechanism of this symmetry protection for
completeness. This fact arises from the symmetry eigenvalues
of the spin π rotation symmetries. In the description of SPT
phases using matrix product states, the symmetry eigenvalues
correspond to phase factors which are not related to topological
phases and provide distinction between “trivial” phases (see
Appendix B). To calculate the phase factors, we use a strong
coupling limit |J⊥|,|Jz| → ∞, since the phase factors cannot
change unless the energy gap collapses. The strong coupling
limit of the topological phase is continuously connected to the
Haldane phase of the spin-1 Heisenberg model, and therefore
we obtain ϑx = ϑy = 0 (see the notation in Appendix B). In
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the strong coupling limit of the (ordinary) Kondo insulator
and the laser-induced Kondo insulator, the ground states are
site-product states of on-site Kondo singlets. The Kondo
singlet is |↓〉c |↑〉f − |↑〉c |↓〉f for the former phase, and
|↓〉c |↑〉f + |↑〉c |↓〉f for the latter phase, respectively. Since
the spin π rotational operation Rx around the x axis satisfies

Rx(|↓〉c |↑〉f − |↑〉c |↓〉f ) = +(|↓〉c |↑〉f − |↑〉c |↓〉f ), (23)

Rx(|↓〉c |↑〉f + |↑〉c |↓〉f ) = −(|↓〉c |↑〉f + |↑〉c |↓〉f ), (24)

and the same holds for Ry , we obtain ϑx = ϑy = 0 for the
ordinary Kondo insulator and ϑx = ϑy = π for the laser-
induced Kondo insulator. By comparing ϑx,ϑy of each phase,
we conclude that the laser-induced Kondo insulating phase
(K’) is distinct from the ordinary Kondo insulator (K) and
the topological phase (Top), protected by the spin π rotation
symmetry around the x or y axis. To connect the distinct
phases, we must close the energy gap or break the symmetry.
In fact, at the phase boundary between the topological phase
and the laser-induced Kondo insulator, the spin gap of φ+
is collapsed. At the boundary between the ordinary and the
laser-induced Kondo insulators, the Néel order intervenes,
signaling the symmetry breaking. Thus, the phase diagram
obtained in Sec. V is consistent with the symmetry protection.

If the spin π rotation symmetries are broken, we can
adiabatically connect the laser-induced Kondo insulator and
the ordinary Kondo insulator. To check this, let us consider a
unitary transformation [89] U (γ )†HU (γ ) with

U (γ ) = exp
[
iγ

∑
j

Sz
fj

]
, (25)

which changes the Kondo coupling into

U (γ )†HKU (γ )

= −J⊥ cos γ
∑

j

(
Sx

cjS
x
fj + S

y

cjS
y

fj

) − Jz

∑
j

Sz
cjS

z
fj

− J⊥ sin γ
∑

j

(
Sx

cjS
y

fj − S
y

cjS
x
fj

)
. (26)

The rest of the Hamiltonian is unchanged. As seen easily, the
spin π rotation symmetry around the x or y axis is broken
in the transformed Hamiltonian except for γ = 0,π . Since
U (γ ) is unitary, the energy spectra of H and U (γ )†HU (γ ) are
identical. Thus we can connect the ordinary Kondo insulator at
γ = 0 and the laser-induced Kondo insulator at γ = π without
closing the energy gap by changing γ continuously.

We can also show the symmetry protection using the
bosonization language. Let us focus on a parameter region
near the phase boundary between the topological phase and
the laser-induced Kondo insulator. In that region, the relevant
perturbation for the gap generation in terms of the scaling
dimensions is HK⊥B and HKzB+, and the low-energy behavior
is governed by these terms, making the fields φ1c,φ+, and
θ− locked at their potential minimum. Here we note that the
HK⊥B term does not change its sign between the two phases,
but the HKzB+ term does. Hence the difference between the
two phases is the pinning position of the total spin mode φ+.
To adiabatically connect the two phases preserving the energy
gap, we must shift the expectation value of φ+ by allowing a

perturbation term like

g′
KzB+

∫
dx sin

√
2φ1c sin 2φ+. (27)

We note that in the present system an additional spin U(1)
symmetry forbids perturbations containing the dual field θ+.
However, the shift of the expectation value of φ+ necessarily
breaks the spin π rotation symmetry as inferred from Table I.
Hence the quantum phase transition between the topological
phase and the laser-induced Kondo insulator is protected by the
spin π rotation symmetry, being consistent with the analysis
of symmetry eigenvalues.

To connect the ordinary Kondo insulator and the laser-
induced Kondo insulator, we must shift the expectation value of
θ−. This procedure also breaks the spin π rotation symmetries.
The required perturbation can be obtained by bosonization of
the last term in Eq. (26).

VII. DISCUSSIONS AND CONCLUSION

We have shown that cold-atom realization of the Kondo
lattice model offers a platform to investigate a 1D SPT
phase and an associated quantum phase transition with high
controllability. By utilizing the spin-exchanging collisions
with the help of the laser-induced mixing of internal states,
ultracold AEA in optical lattice can realize the Kondo lattice
with tunable anisotropic Kondo couplings, which is hard
to be realized in solid state experiments. Since the sign of
the bare exchange coupling Vex can be controlled using the
confinement-induced resonance specific to 1D optical lattices
[54], a large portion of the phase diagram in Fig. 2 can
be accessed in this system. If we start from ferromagnetic
Vex > 0, the SPT phase transition from the topological phase
to the laser-induced Kondo insulating state is possible. This
phase transition is protected by the inversion symmetry and
the spin π rotation symmetries around the x or y axis,
and the only former symmetry stands for the topological
properties. On the other hand, if we switch on the laser coupling
starting from antiferromagnetic Vex < 0, the ordinary Kondo
insulator is first changed into the Néel order and finally turns
into the laser-induced Kondo insulator. This reentrant Kondo
transitions associated with the Néel order are stable (at least
T = 0) if the spin π rotation symmetries are preserved.

We have also demonstrated the topological phase of the
1D Kondo lattice is protected only by the inversion symmetry
when the charge fluctuations cannot be ignored, while the
Haldane phase in the strong coupling limit is also protected by
the time-reversal and spin dihedral symmetries. The change of
the nature of the topological phase from fermionic to bosonic
SPT phases leads to an intriguing consequence in the fate of
edge states of the topological phase. In the strong coupling
regime, the Haldane phase has spin-1/2 zero-energy states
at the edge of the system. The edge states are magnetically
active and have been detected by applying magnetic fields
[90,91]. On the other hand, in the weak-coupling regime, the
SPT phase is protected only by the inversion symmetry. This
means that the zero-energy edge state is absent in general,
since the edges generically break the inversion symmetry.
Thus it is implied that the edge states gradually decrease their
excitation energies with increasing the Hubbard interaction
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U , and finally they turn into the zero-energy state at some
threshold value of U . Such “interaction-induced” edge states
are one possible hallmark of the crossover from fermionic SPT
phases to bosonic ones.

Observation of such a crossover using the present cold-atom
setup is intriguing but may be a challenging issue. To detect
a clear signature of the edge states, it is appropriate to
create an interface between the topologically nontrivial phase
and the trivial phase [92,93], since the true edge of the
atomic cloud is usually a metallic state due to a harmonic
confinement potential. In our setup, the interface can be
easily created, since the topological-trivial phase transition
is caused by the laser irradiation, which can be performed
in a spatially varying manner. The interface-localized edge
modes are, in principle, detected by combining a magnetic
field and spin-resolved quantum gas microscopy, by which
antiferromagnetic correlations were recently observed in the
Fermi-Hubbard model [94–97].
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APPENDIX A: BOSONIZATION OF 1D KONDO LATTICE

In this Appendix, we derive the bosonized Hamiltonian
(11)–(13) from the model (2). We divide the Hamiltonian into
three parts:

Heff = Hc + Hf + HK, (A1)

Hc = −tc
∑
j,σ

(c†jσ cj+1σ + H.c.) + U
∑

j

ncj↑ncj↓, (A2)

Hf = JH

∑
j

Sfj · Sfj+1, (A3)

HK = −J⊥
∑

j

(
Sx

cjS
x
fj + S

y

cjS
y

fj

) − Jz

∑
j

Sz
cjS

z
fj . (A4)

To apply the bosonization recipe, we focus on the low-energy
behavior of the system and linearize the dispersion relation of
the Hubbard part (A2). Then Eq. (A2) is bosonized as

Hc =
∑
ν=c,s

1

2π

∫
dx

(
u1νK1ν(∇θ1ν)2 + u1ν

K1ν

(∇φ1ν)2
)

+ U

2π2α

∫
dx cos(2

√
2φ1c), (A5)

where a marginally irrelevant term in the spin part is neglected.
α denotes a short-range cutoff. Here the charge mode and
the spin mode are defined as φ1c,1s = 1√

2
(φ1↑ ± φ1↓),θ1c,1s =

1√
2
(θ1↑ ± θ1↓), respectively (the minus sign stands for the

spin part). The cosine term comes from the Umklapp scat-
tering due to the Hubbard interaction. The velocities are

u1c = 2tca
√

1 + U
2πtc

,u1s = 2tca
√

1 − U
2πtc

and the Luttinger

parameters are K1c = 1/
√

1 + U
2πtc

,K1s = 1. The Luttinger

parameter for the spin part has been set unity because of the
spin SU(2) symmetry of the Hubbard part.

The Heisenberg part (A3) is also bosonized. While one can
use the standard Jordan-Wigner transformation to convert the
spin chain into fermions, we here adopt an expression of the
Heisenberg chain as the Mott insulating phase of the Hubbard
model, where the charge mode is gapped out by the cosine term
in Eq. (A5), since a parallel description is available between the
1S0 and the 3P0 states. Then the Heisenberg chain is described
by the spin part of the bosonized Hubbard Hamiltonian as

Hf = 1

2π

∫
dx(u2(∇θ2s)

2 + u2(∇φ2s)
2), (A6)

where we again set the Luttinger parameter as unity due to the
SU(2) symmetry. For simplicity, we assume u1s = u2 ≡ u.

Finally, we bosonize the Kondo coupling (A4). The spin
operators of the 1S0 state are expressed as

Sc(x) ≡ Scj /α = Mc(x) + (−1)x/a Nc(x). (A7)

The uniform component Mc(x) reads

Mx
c (x) = 1

πα
sin

√
2θ1s cos

√
2φ1s , (A8a)

My
c (x) = 1

πα
cos

√
2θ1s cos

√
2φ1s , (A8b)

Mz
c (x) = − 1√

2π
∇φ1s (A8c)

and the staggered component Nc(x) is

Nx
c (x) = 1

πα
cos

√
2θ1s sin

√
2φ1c, (A9a)

Ny
c (x) = − 1

πα
sin

√
2θ1s sin

√
2φ1c, (A9b)

Nz
c (x) = 1

πα
cos

√
2φ1s sin

√
2φ1c. (A9c)

Those of the 3P0 state, Mf (x) and Nf (x), are of the same form
as Eqs. (A8a)–(A8c) and (A9a)–(A9c) with the charge mode
replaced by its expectation value m = 〈sin

√
2φ2c〉. The Kondo

coupling HK is thereby divided into the following parts:

HK⊥F = −J⊥
∫

dx
(
Mx

c (x)Mx
f (x) + My

c (x)My

f (x)
)

= HK⊥F+ + HK⊥F−, (A10)

HK⊥B = − J⊥
∫

dx
(
Nx

c (x)Nx
f (x) + Ny

c (x)Ny

f (x)
)

= − gK⊥B

∫
dx sin

√
2φ1c cos 2θ−, (A11)

HKzF = − Jz

∫
dxMz

c (x)Mz
f (x)

= − αJz

2π2

∫
dx∇φ1s∇φ2, (A12)
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HKzB = −Jz

∫
dxNz

c (x)Nz
f (x)

= HKzB+ + HKzB− (A13)

with

HK⊥F+ = − gK⊥F+
∫

dx cos 2φ+ cos 2θ−, (A14)

HK⊥F− = − gK⊥F−
∫

dx cos 2φ− cos 2θ−, (A15)

HKzB+ = − gKzB+
∫

dx sin
√

2φ1c cos 2φ+, (A16)

HKzB− = − gKzB−
∫

dx sin
√

2φ1c cos 2φ−, (A17)

where the coupling constants are

gK⊥F+ = gK⊥F− = 1

2m
gK⊥B = J⊥

2π2α
, (A18)

gKzB+ = gKzB− = mJz

2π2α
. (A19)

Here we have named each perturbation with subscript F

and B in terms of momentum transfers of itinerant fermions
in analogy with the impurity problem. In the calculation,
we have dropped the oscillation terms which vanish after
the integration. Also we have defined new boson fields
φ±,θ± as

φ± ≡ 1√
2

(φ1s ± φ2s), (A20)

θ± ≡ 1√
2

(θ1s ± θ2s), (A21)

which describe the total (+) and relative (−) spin modes,
respectively. After combining the quadratic (A12) term into
the noninteracting parts, we obtain the bosonized Hamiltonian
(11)–(13).

APPENDIX B: SPT PHASE IN ONE DIMENSION

In this appendix, we briefly review the basic properties
of 1D SPT phases [10–12,98,99] used in the main text. SPT
phases in one spatial dimension are well understood thanks to
a universal description of gapped ground states using matrix
product states (MPS) [98,99]. A generic 1D ground state can
be described by MPS in a canonical form as

|ψ〉 =
∑
{in}

Tr [�i1��i2� · · · �iL] |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iL〉 ,

(B1)
where we denote the number of sites as L. For simplicity, here
we assume the periodic boundary condition and translational
invariance. {|i〉}i is the basis of the Hilbert space at each site.
�i is a square matrix and the elements of the diagonal matrix
� are related to the entanglement spectrum. The symmetry
protection of the Haldane phase in spin chains can be proved
by using MPS. Let us consider the following three symmetry
operations: the time-reversal (T ), spatial inversion (I ), and
the spin dihedral symmetry composed of π rotation around
each axis (Rx,Ry,Rz). When the on-site basis transforms as

|i〉 → ∑
j (τg)ji |j 〉 by a symmetry operation g, �i transforms

as ∑
j

(τT )ij (�j )∗ = eiϑT U
†
T �iUT , (B2)

UT U ∗
T = eiϕT , (B3)

for time reversal. Similarly, for spatial inversion,

(�i)
T = eiϑI U

†
I �iUI , (B4)

UIU
∗
I = eiϕI . (B5)

For the spin π rotation around the α = x,y,z axis,∑
j

(τα)ij�j = eiϑαU †
α�iUα, (B6)

UxUz = eiϕxzUzUx. (B7)

UT ,UI ,Uα are unitary matrices, and the phase factors ϑI ,ϑα

and ϕT ,ϕI ,ϕxz are quantized [100] to 0 or π . Since the discrete
phase factors cannot be changed unless the symmetries are
broken or the energy gap collapses, ground states which
have different phase factors are necessarily separated by
quantum phase transitions. Among the phase factors, the
quantization of ϕT ,ϕI ,ϕxz leads to the nontrivial SPT phase
(the Haldane phase), which is reflected in the degeneracy
of the entanglement spectrum [11]. In contrast, the phase
factors ϑI ,ϑα mean the eigenvalues of the ground state
under symmetry operations, since the symmetry operation
maps the ground state |ψ〉 into eiLϑα |ψ〉 (α = I,x,y,z). In
this case, the quantization simply comes from the property
I 2 = R2

x = R2
y = R2

z = 1. Thus, although the quantization can
distinguish quantum phases which have different symmetry
eigenvalues, this property does not lead to SPT phases.
In this sense, the quantization of ϑI ,ϑx,y,z diagnoses the
distinction between trivial phases. Under certain point-group
symmetry, quantization of a combination of ϑα and ϕα can also
lead to distinct trivial phases [101]. For the Haldane phase,
we can calculate the phase factors using the exact ground
state (Affleck-Kennedy-Lieb-Tasaki state [3,4]) as [11,12]
ϑI = π,ϑx = ϑy = ϑz = 0,ϕT = ϕI = ϕxz = π . Hence, the
Haldane phase is stable if either of the three symmetries is
present.

The structure of symmetry protection of SPT phases should
be encoded in their low-energy effective theory. Description of
symmetry protection in bosonization language was discussed
in Refs. [80,102]. To exemplify the symmetry protection
using bosonization approach, let us consider the following
sine-Gordon theory:

H = 1

2π

∫
dx

(
uK(∇θ )2 + u

K
(∇φ)2 + g cos

φ

R

)
. (B8)

We here assume that the boson field φ is compactified with
radius R (namely φ ∼ φ + 2πR), and hence the cosine term
appearing in the Hamiltonian is the most relevant perturbation
allowed in the system. For simplicity, we do not consider
a vertex operator which contains the dual field θ or simply
assume that such a term is forbidden by a symmetry. The
ground state of this theory is gapped if K < 8R2, and the boson
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field φ is pinned at φ = 0 for g < 0 and φ = πR for g > 0. The
two phases are separated by a critical point at g = 0. If the sine
term sin φ

R
is forbidden by a symmetry constraint, we can say

that the two phases cannot be adiabatically connected, since
the cosine term is the most relevant perturbation in the system

and the critical point cannot be gapped without breaking the
symmetry. Conversely, we can connect the two phases if the
sine term is allowed, since g cos φ

R
+ g′ sin φ

R
= G cos( φ

R
+ γ )

and the parameter γ can be changed from 0 to π by tuning the
ratio between g and g′.
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