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Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach
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We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the
crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation
is employed for local correlations on the rare-earth 4f shell and self-consistency in the charge density is
implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting
by properly averaging the 4f charge density before recalculating the one-electron Kohn-Sham potential. Our
approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet
SmCo5. Applying it to RFe12 and RFe12X hard magnets (R = Nd, Sm and X = N, Li), we obtain in particular a
large positive value of the crystal-field parameter A0

2〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy
observed experimentally. The sign of A0

2〈r2〉 is predicted to be reversed by substituting N with Li, leading to a
strong out-of-plane anisotropy in SmFe12Li. We discuss the origin of this strong impact of N and Li interstitials
on the crystal-field splitting on rare-earth sites.
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I. INTRODUCTION

Permanent magnets are a key component of modern
electronic devices, ranging from electric motors to medical
imaging. An important breakthrough in the quest for high-
performance permanent magnets was the discovery of rare-
earth intermetallic magnets, starting with SmCo5 in 1966
[1]. Since its discovery in 1982, the champion of hard
magnets has been Nd2Fe14B [2]. More recently, rare-earth
iron-based hard magnets RFe12X with the ThMn12 structure
such as NdFe12N have been under renewed scrutiny [3–7]. The
underlying reason is the high price and strategical importance
of rare earths and cobalt, and the ongoing research effort
to find good permanent magnets with reduced rare-earth
concentration [8]. The ThMn12 structure has a reduced ratio
of rare earth vs transition metal compared to Nd2Fe14B, but
nevertheless conserves strong hard magnetic properties (large
magnetization and Curie temperature, and strong anisotropy)
when doped with light elements such as nitrogen [4–6].

The main physical ingredients for a rare-earth hard magnet
are the high magnetic anisotropy energy provided by rare-
earth ions combined with the high magnetization and Curie
temperature from the transition metal sublattice, typically
composed of Fe or Co atoms [8–10]. The 3d transition metal
atoms carry little anisotropy; because of their rather small
spin-orbit coupling, their magnetization direction is essentially
fixed by that of the rare-earth ion through an exchange
coupling. The majority of rare-earth elements, especially
heavy rare-earth elements, are very expensive. Moreover, the
magnetic moment of heavy rare earth is normally antiparallel
to the transition-metal one reducing the net magnetization
[8]. Hence, one advantage of new compounds like RFe12X

is a reduced rare-earth concentration. In turn, a higher Fe
concentration is favorable for achieving a large magnetization,
which is another advantage of RFe12X compounds. However,
this reduced rare-earth concentration means each rare-earth
ion must contribute a strong magnetic anisotropy to keep

the overall magnetic hardness. The preferred magnetization
direction (in-plane or out-of-plane) of a given rare-earth ion
is determined by the interplay between the crystal-field (CF)
splitting and spin-orbit (SO) interaction. To the first order, the
crystalline magnetic anisotropy energy reads

EA ≈ K1sin2θ,

where θ is the angle between the magnetization and the easy
axis, and

K1 = −3J
(
J − 1

2

)
αJ A0

2〈r2〉nR, (1)

where J is the total angular momentum for the rare-earth 4f

shell, nR is the concentration of rare-earth atoms, αJ is the
corresponding Stevens factor, and A0

2〈r2〉 is the lowest-order
crystal-field parameter (CFP). Additional small doping of light
elements is also found to strongly modify the anisotropy
by affecting the rare-earth CF splitting [5,11,12]. They also
modify the structural stability: doping B makes the Nd2Fe14B
phase more stable, while interstitial nitrogen has only a minor
effect in structural stability.

It follows that the CF splitting on the rare-earth 4f shell is
a crucial quantity defining the magnetic hardness of rare-earth
intermetallics. The theoretical search for new rare-earth hard
magnets thus requires a reliable approach to calculating
CFP. The importance of crystal-field effects for the optical,
magnetic, and other properties of solids has been recognized
long ago, and semiempirical models of the CF Hamiltonian,
such as the point charge model [13] and the superposition
model [14], have been developed since the 1960s. While they
provide an inexpensive and physically transparent description
of CF parameters, their predictive power is limited as they
require experimental input to determine the actual values.
Experimental information is readily available for large band-
gap rare-earth insulators, where the CFP can be extracted
from measurements of dipole-forbidden optical transitions
between f states [15]. In the case of rare-earth intermetallics,

2469-9950/2017/96(15)/155132(16) 155132-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.155132


DELANGE, BIERMANN, MIYAKE, AND POUROVSKII PHYSICAL REVIEW B 96, 155132 (2017)

where the f -f transitions are hidden by the optical response
of conduction electrons, inelastic neutron spectroscopy can
be used to determine CFP [16–20], but its results are more
ambiguous as one needs to sort out the contributions of
phonons and the effect of intersite exchange interactions.

Ab initio calculations do not rely on experimental input and
can have truly predictive power. First-principles techniques
for computing the CF parameters [7,21–29] can be separated
into two main approaches. The first one [7,22–27] consists
of extracting the nonspherical Kohn-Sham potential Vlm and
the 4f charge density ρ4f around the rare-earth site and then
computing the corresponding crystal-field parameter. As the
density functional theory (DFT) is not able to fully capture
the physics of partially filled localized 4f shells, one imposes
their localization by treating the 4f orbitals as semicore states.
The nonspherical 4f charge density ρ4f (r) of the rare-earth
ion includes an unphysical contribution to the CFP stemming
from the local-density-approximation (LDA) self-interaction
error. This is usually corrected by spherically averaging the
4f charge density, but then approximations have to be made
for the long-range “tails” of ρ4f (r).

The importance of excluding the self-interaction of the
nonspherical part of the partial 4f charge density to obtain
proper crystal-field energies was first recognized by Brooks
et al. in a publication aimed at calculating the spin Hamiltonian
parameters of rare-earth compounds [30].

In the second, more recent, approach the 4f states are
represented by Wannier functions [28,29,31], while the charge
density and, correspondingly, the Kohn-Sham potential are
generated by self-consistent DFT calculations with 4f states
treated as semicore. An additional ad hoc parameter is used to
correct the charge transfer energy between 4f and conduction
bands.

One may also mention recent work on determining the CFP
of lanthanides and transition metals using quantum-chemical
methods, in particular, in order to understand the properties
of magnetic molecules. Such approaches employ, for instance,
the complete active space self-consistent field method [32] or
multireference second order perturbation theory [33]. Here,
however, we choose to focus on perfect crystals rather than on
molecules.

Overall, ab initio calculations of CFP for rare-earth ions are
a formidable theoretical problem, due to generally small values
of those CFP and their extreme sensitivity to computational
details. The main weak point of previously proposed DFT-
based approaches is that they are not able to correctly treat
the localized valence 4f states. Hence, the charge density
is derived under the drastic approximation of treating them
as fully localized core states, spherically averaged inside the
atomic sphere. The DFT+U method provides a more realistic
treatment for the 4f density in the limit of strong ordered
magnetism. However, it is usually not able to capture the
true quasiatomic (multiplet) nature of rare-earth shells in
the paramagnetic or partially polarized state. The DFT+U

calculations can nevertheless be used to estimate the CFP by
converging them to the on-site density matrix corresponding
to a given atomic wave function. The CF splitting can then be
evaluated from the difference in DFT+U total energy between
such calculations for relevant CF states. This method in fact
makes use of the (usually inconvenient) tendency of DFT+U

to remain in a local energy minimum instead of converging
to the ground-state density. Zhou et al. [34] employed this
approach together with an orbital-dependent self-interaction
correction [35], to obtain total energies for different orbital
occupancies in UO2 and deduce its CFP.

In this work we propose an approach to ab initio CFP
calculations based on self-consistent DFT+dynamical mean-
field theory (DFT+DMFT) [36,37] treating the local many-
body problem for the 4f shell in the quasiatomic (Hubbard-I)
approximation. While this approach of using DFT+DMFT
with the Hubbard-I approximation, which we may call
DFT+Hub-I, is rather simple and computationally efficient, it
was shown to capture not only the 4f multiplet structure in the
paramagnetic state [37–41] and in the ferromagnetic state [42],
but also the 4f –conduction band exchange interaction and the
resulting exchange splitting of the Fermi surface [40]. This
scheme also provides a rather natural way of averaging the 4f

partial density to reduce the self-interaction error from the CF
Hamiltonian. We validate it by applying it to the well-known
hard magnet SmCo5, for which the crystal-field splitting has
been measured in multiple experiments [16–20]. We then apply
our method to much less investigated new hard magnets of the
RFe12X family, computing their CFP for different rare-earth
elements (Sm or Nd) and considering N and Li interstitials.
Our calculations predict the hypothetical SmFe12Li compound
to possess a strong axial anisotropy and, possibly, interesting
hard magnetic properties.

The paper is organized as follows: in Sec. II A we introduce
basic notions as well as relevant notations of the CF theory. Our
first-principles computational approach is presented in more
details in Sec. II B. Our results for the DFT+Hub-I electronic
structure and CFP for the RFe12(X) hard magnets are presented
in Secs. III A and III B, respectively. In Sec. IV we analyze the
shape 4f Wannier functions (WF) in real space and employ
a projective approach to evaluate the WF localization and the
contribution of hybridization effects to CFP.

II. METHOD

A. Crystal-field parameters: Notation and symmetry

We start by introducing crystal-field parameter notations.
The local Hamiltonian for a rare-earth ion with a partially
filled 4f shell subject to the exchange field created by the
transition-metal sublattice and to a crystal-field potential reads

Ĥ = Ĥ1el + ĤU = Ê0 + λ
∑

i

si li + 2μBBexŜa + Ĥcf + ĤU ,

(2)

where the one-electron part of the Hamiltonian corresponds to
the first four terms on the right-hand side, namely, a uniform
shift, spin-orbit, exchange-field, and crystal-field terms. Ŝa

is the in-plane or out-of-plane spin operator, corresponding
to the case where Bex is along x or z, respectively. ĤU

represents the electron-electron Coulomb repulsion term of the
many-body Hamiltonian. The crystal-field term Ĥcf is defined
as the nonspherically symmetric part of the one-electron
Hamiltonian. The corresponding nonspherical part Vns(r) of
the one-electron potential can be expanded into spherical
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harmonics as follows:

Vns(r) =
∞∑

k=1

k∑
q=−k

A
q

k (r)Ykq(r̂), (3)

where Ykq(r̂) is the spherical harmonic function with total
angular moment k and projected angular moment q. The
matrix elements of Vns(r) between 4f orbitals define Ĥcf.
Due to the properties of the spherical harmonics, only A

q

k for
k � 2l, i.e., k � 6 in the case of an f shell, can contribute
to Ĥcf. In the point-charge CF calculations A

q

k (r) is reduced
to A

q

k r
k . While we do not assume this form for A

q

k (r) in the
present formalism we still employ the now standard notation
〈Aq

k (r)〉 ≡ A
q

k 〈rk〉. For historic reasons, several conventions
exist for the parametrization of Ĥcf, leading to a rather con-
fusing variety of definitions for the crystal-field parameters.
Using the so-called Stevens operator equivalents [43], Ĥcf is
decomposed as follows:

Ĥcf =
∑
kq

A
q

k 〈rk〉�k(J )Ôq

k , (4)

where Ô
q

k is the Stevens operator equivalent, and A
q

k 〈rk〉, as
explained above, is the standard notation for the crystal-field
parameter for given k and q. �k(J ) is the Stevens factor for a
given ground-state multiplet defined by the quantum number
J . �k(J ) for k = 2, 4, and 6 are often designated by αJ ,
βJ , and γJ , respectively. The Stevens operator equivalents
are more convenient for analytical calculations and somewhat
outdated, but they are still extensively used in the literature.
For numerical calculations it is more convenient to express Ĥcf

in terms of Wybourne’s [44] spherical tensor operators Ĉ
q

k :

Ĥcf =
∑
kq

B
q

k Ĉ
q

k , (5)

where Ĉ
q

k are defined by

C
q

k (r̂) =
√

4π/(2k + 1)Ykq(r̂).

Moreover, the CFP can be made real by employing the
Hermitian combination of Wybourne’s operators T̂

q

k defined
by

T̂ 0
k = Ĉ0

k and T̂
±|q|
k = √±1

[
Ĉ

−|q|
k ± (−1)|q|Ĉ|q|

k

]
.

Ĥcf can then be expressed as

Ĥcf =
∑
kq

L
q

k T̂
q

k , (6)

with a set of real parameters L
q

k . L
q

k are linked to the Stevens
CFP A

q

k 〈rl〉 by a set of positive prefactors λkq = A
q

k 〈rk〉/Lq

k .
For a more extensive discussion of CFP conventions see, e.g.,
Refs. [14,45,46].

The number of a priori nonzero CF parameters A
q

k 〈rk〉 is
constrained by the point-group symmetry of a given rare-earth
site. In particular, in the presence of inversion symmetry,
Vns(r̂) = Vns(−r̂), only A

q

k 〈rk〉 for even k can be nonzero
[cf. Eq. (3)]. Other point-group symmetries further reduce
the number of relevant A

q

k 〈rk〉. As a consequence, the crystal
field on Sm 4f in SmCo5 can be fully described with only
four CF parameters: A0

2〈r2〉, A0
4〈r4〉, A0

6〈r6〉, and A6
6〈r6〉. In

the case of the RFe12X family, the relevant parameters are
A0

2〈r2〉, A0
4〈r4〉, A4

4〈r4〉, A0
6〈r6〉, and A4

6〈r6〉.
In our calculations, we extract the set of parameters L

q

k

(or A
q

k 〈rk〉), as well as Bex and λ by a least-square fit of ab
initio Ĥ1el (using the usual Frobenius norm) obtained within
DFT+Hub-I [see Eq. (7) in the next section]. Note that one
may assign a spin label to the CF parameters in Eqs. (5) and
(6), hence allowing for different CF potentials for spin up
and down electrons. We found that this improves the fit for
spin-polarized Ĥ1el.

B. Calculational approach

We employ the DFT+Hub-I approach [47] based on the
TRIQS library [48] and the full potential linearized augmented
plane-wave Wien-2k [49] band structure code in conjunction
with the projective Wannier-orbitals construction [50,51]. The
charge-density self-consistency [52,53] is implemented as
described in Ref. [54]. The Hubbard-I impurity solver is
provided by the TRIQS library.

The Wannier orbitals representing the rare-earth 4f states
are constructed from the Kohn-Sham bands within the window
[−ωwin,ωwin] = [−2,2] eV relative to the Fermi level. The
choice of the half-window size ωwin is the only significant
parameter in our calculations (indeed, the choice of Hubbard U

and Hund’s coupling J has limited impact on the results, as we
demonstrate in Appendix D). In order to construct a complete
orthonormal basis of Wannier orbitals one needs to choose ωwin

large enough to include at least all 4f -like Kohn-Sham bands.
Wannier orbitals constructed with a “small window” leak [47]
to neighboring sites due to hybridization between 4f states
and conduction band states. A larger window results in more
localized Wannier orbitals consisting almost exclusively of the
corresponding 4f partial waves inside the rare-earth atomic
sphere [47,51], as discussed in Sec. IV and Appendix E below.
DFT+Hub-I studies of rare-earth wide-gap insulators show
a rather strong sensitivity of calculated CFP to the window
size; less-localized small window Wannier 4f orbitals result
in a better agreement with experimental CFP [55]. In the
present case of rare-earth intermetallics we find a rather weak
dependence of CFP to variations of ωwin within the reasonable
range from 2 to 8 eV, see Appendix E. Hence, we employ
ωwin = 2 eV in our calculations throughout.

In the Hubbard-I approximation the hybridization function
is neglected and solving of the DMFT impurity problem is
reduced to the diagonalization of the atomic Hamiltonian (2).
The one-electron part Ĥ1el of Eq. (2) is then given by [53]

Ĥ1el = −μ + 〈Hff 〉 − �DC, (7)

where μ is the chemical potential, 〈Hff 〉 is the Kohn-Sham
Hamiltonian projected to the basis of 4f Wannier orbitals and
summed over the Brillouin zone, �DC is the double-counting
correction term for which we employ the fully localized-limit
(FLL) form [56] that is known to work best for localized
states such as 4f orbitals. In our calculations, we evaluate the
FLL double counting using the occupancy of the DMFT local
Green’s function, which comes out to be close to the nominal
4f occupancy of the corresponding 3+ rare-earth ion. If the
nominal occupancy is used in FLL DC instead one obtains al-
most the same CFP, with differences no larger than 10 to 20 K.
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We carry out DFT+Hub-I iterations until convergence in the
total energy with precision 10−5 Ry is reached and then extract
the CFP from Eq. (7) as described in the previous section.

Self-consistent DFT+Hub-I calculations produce a non-
spherical one-electron Kohn-Sham potential (3), that includes
several nonspherical contributions acting on 4f states: the
long-range electrostatic (Madelung) interaction, as well as
the local-density-approximation (LDA) exchange-correlation
potential due to the conduction electrons and 4f states them-
selves. This last “intra-4f shell” contribution to the exchange-
correlation potential should be removed within DFT+Hub-I,
since the on-site interaction HU between 4f states is already
treated explicitly within DMFT. Hence, the intra-4f shell
contribution in the one-electron part Ĥ1el of Eq. (2) due to LDA
is counted twice and should be removed by a double-counting
correction. Moreover, this contribution includes the LDA
self-interaction error for localized states directly impacting
CFP: for low-lying CF levels, the self-interaction error will be
larger than for less occupied excited CF states.

In order to reduce the self-interaction error in the CFP we
enforce uniform occupancy of all states within the 4f ground-
state multiplet in our self-consistent DFT+Hub-I calculations.
To that end, we define the imaginary-frequency atomic
(Hubbard-I) Green’s function at the fermionic Matsubara
frequency ωn = (2n + 1)πT , where T is the temperature, as
follows:

Gat
ab(iωn)= 1

M

∑
γ∈GSM
δ /∈GSM

( 〈γ |fa|δ〉〈δ|f †
b |γ 〉

iωn − Eγ + Eδ

+ 〈δ|fa|γ 〉〈γ |f †
b |δ〉

iωn + Eγ − Eδ

)
,

(8)

where the eigenstates |γ 〉 and |δ〉 with eigenenergies Eγ and
Eδ are obtained by diagonalization of Eq. (2) and belong
to the ground-state multiplet (GSM) and excited multiplets,
respectively, a and b label 4f orbitals, M is the degeneracy
of the GSM. In other words, to obtain Eq. (8) we substitute
the standard Boltzmann weight Xγ = e−Eγ /T /Z, where Z is
the partition function, with the uniform weight X̃γ = 1/M for
the GSM and X̃δ = 0 for excited multiplets in the spectral
representation of the Green’s function [57,58]. In practice, the
degeneracy of the ground-state multiplet M is chosen to be the
same as for the corresponding free ion, hence it is given by
Hund’s rules. Therefore, M = 10 for Nd and M = 6 for Sm.
The self-energy thus obtained is then plugged back into the
self-consistency cycle. This leads to a spherically averaged
contribution from the 4f orbitals, both inside and outside
the rare-earth atomic sphere, while nonspherical contributions
from other states are taken into account. We verified the
validity of this method by calculating the density matrix
from the local Green’s function and transforming it to the
relativistic basis of one-electron J = 5

2 and J = 7
2 orbitals.

With the averaging, the resulting density matrix is made of two
identity blocks with deviations of the order of few percent, to
be compared with over 50% without the averaging.

Conceptually speaking, our approach amounts to replacing
Eq. (7) by

Ĥ1el = −μ + 〈Hff 〉 − �DC − vKS[ρspd + ρ4f ]

+ vKS[ρspd + ρ̄4f ], (9)

where vKS[ρ] is the Kohn-Sham potential (vKS = vHartree +
vxc) evaluated from the total electronic density ρ and then
projected to the basis of 4f Wannier orbitals. ρ4f designates
the projected electronic density belonging to the rare-earth’s
4f orbitals, ρ̄4f is the same density, spherically averaged,
and ρspd designates all the remaining density, belonging to all
atoms’ s, p, and d orbitals.

The same approach is used in the spin-polarized
DFT+Hub-I calculations: in this case the exchange splitting
is also removed within the GSM. We found, however, that this
averaging is not sufficient, since the value of the exchange field
within our DFT+Hub-I iterations may become larger than the
intermultiplet splitting. Hence we also directly remove the
4f spin polarization from the resulting DFT+Hub-I density
matrix. For a given k-point the “averaged” density matrix Ñk

in the Bloch basis reads

Ñk = Nk + 1
2P †(k)[T nff (k)T † − nff (k)]P (k), (10)

where Nk is the density matrix in the Bloch basis calculated
as described in Refs. [47,54], P (k) is the projector [47,51]
between the Wannier and Bloch spaces, nff (k) is the density
matrix in the Wannier basis, and T is the time-reversal operator.
The averaged density matrix Ñk is then used to recalculate
the electron density at the next DFT iteration as described in
Ref. [54]. The contribution of 4f states to the spin density
and local-spin-density-approximation (LSDA) exchange field
is thus suppressed. The resulting exchange field is due to
the polarization of the transition-metal sublattice, as expected
for hard magnetic rare-earth intermetallics. In contrast, direct
spin-polarized DFT+Hub-I calculations without the averaging
would lead to a large unphysical exchange field on rare-
earth sites due to the magnetization density of 4f electrons
themselves.

In Appendix A we benchmark the present method on
the prototypical rare-earth hard magnet SmCo5, for which
several measurements of CFP exist, and show good agreement
between calculated and measured CFPs. Moreover, the actual
eigenstates of the Sm 4f shell in SmCo5 obtained within
DFT+HubI are also in very good agreement with previous
neutron scattering and magnetic form-factor measurements,
see Appendix B.

C. Calculational details

The RFe12X family has the space group I4/mmm, with
a tetragonal primitive unit cell. The conventional unit cell,
with twice the volume and the atoms, is orthorhombic. It has
equivalent R sites in the corner and the center at Wyckoff
position 2a, X interstitial sites between two nearest R sites
at Wyckoff position 2b, and contains 24 Fe atoms on three
inequivalent sites, denoted below Fe1, Fe2, and Fe3 at Wyckoff
positions 8j , 8i, and 8f , respectively, as displayed in Fig. 1.
Calculations are done at the theoretical lattice constants for
RFe12X, summarized in Table I in the conventional unit cell
(from Table II of Ref. [59] and from this work). The calculated
lattice constants agree within 2% with the measured ones in
the more stable NdFe11Ti(N) and SmFe11Ti(N) compounds
[59].

The DFT calculations are performed with spin-orbit cou-
pling included within the second variational approach. We
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FIG. 1. Conventional unit cell of RFe12X. The rare-earth R sites
are yellow, the three types of Fe sites are gray, light blue, and dark
blue, and dopant X sites purple.

employ throughout the rotationally invariant Coulomb vertex
specified by Slater integrals F 0 = U = 6.0 eV as well as
F 2 = 10.13, F 4 = 6.77, and F 6 = 5.01 eV corresponding to
Hund’s rule coupling JH = 0.85 eV. These values of U and JH

are in agreement with those in the literature [41,53,60]. One
may notice, that while the values of U and JH are important
to determine the one-electron spectrum of a material, they
are expected to have a rather small effect on the crystal-field
parameters that we consider in this work [61]. We discuss
this dependence in Appendix D. DFT+Hub-I calculations are
carried out for the temperature of 290 K.

III. RESULTS

A. DFT and DFT+Hubbard-I electronic structure of RFe12 X

We first compare the electronic structure of RFe12X

obtained within DFT (LSDA) and DFT+Hub-I. A typical
DFT density of states (DOS) and a DFT+Hub-I spectral
function for ferromagnetic RFe12X, namely, for NdFe12N, are
shown in Fig. 2. The DFT DOS of Fig. 2(a) features a strong
polarization of the Fe 3d band. N 2p states are dispersive,
with the bottom of the bands contributing to a peak in the
DOS around −6 eV. The Nd 4f band is fully spin polarized
and antiferromagnetically aligned to Fe 3d, with the total spin
moment within the Nd atomic sphere equal to −2.77 μB , i.e.,
close to the Hund’s rule value of 3 μB for the Nd3+ ion.
The Nd majority-spin 4f band is pinned at the Fermi level,
its double-peak structure is due to spin-orbit splitting. This
picture of 4f bands pinned at the Fermi level is qualitatively
incorrect and illustrates the difficulties of DFT with local or

TABLE I. Conventional unit cell lattice constants used in our
calculations. b = a, and the angles are α = β = γ = 90◦.

Lattice constant (Å)

Compound a c

NdFe12 8.533 4.681
NdFe12N 8.521 4.883
NdFe12Li 8.668 4.873
SmFe12 8.497 4.687
SmFe12N 8.517 4.844
SmFe12Li 8.640 4.863

semilocal exchange-correlation functionals to correctly treat
strongly interacting localized valence states.

The spin-polarized DFT+Hub-I spectral function shown in
Fig. 2 was calculated using the averaging approach described
in Sec. II B. It features an almost fully polarized Fe 3d

band as well as occupied and empty 4f states separated,
to first approximation, by U , thus forming lower and upper
Hubbard bands, respectively. The Hubbard bands are split
due to the Hund’s rule and spin-orbit couplings into several
manifolds with characteristically sharp peaks corresponding
to transitions from the ground state to different quasiatomic
multiplets upon electron addition or removal. The 4f multiplet
structure in lanthanides is known to be only weakly sensitive
to the crystalline environment. Indeed, the positions of the
Hubbard bands in Fig. 2(b) as well as the overall shape of
the upper Hubbard band split into two manifolds of multiplet
peaks centered at about 2 and 4 eV are in agreement with
photoemission and inverse-photoemission spectra of the Nd
metal [62]. One also sees that the Nd 4f states in DFT+Hub-I
are not fully spin polarized, in contrast to the DFT case. Indeed
the Nd spin moment of −1.61 μB obtained within DFT+Hub-I
is only about half of the Hund’s rule value and is also aligned
antiferromagnetically with respect to the spin moment on iron.
The calculated Nd orbital moment is 3.40 μB . It is precisely
the crystal-field splitting of the Nd 4f shell that prevents the
full saturation of the Nd magnetization.

B. Crystal-field parameters and exchange fields in RFe12 X

The calculated CF and exchange fields for Nd and Sm
RFe12(N,Li) compounds are listed in Tables II and III, together
with the magnetic moments on R and in the full cell.
Comparing the different materials, one sees that RFe12 has
the smallest values of A0

2〈r2〉 (in absolute value), while N
insertion enhances A0

2〈r2〉 up to positive values of about 400
to 600 K. Li insertion has the opposite effect, leading to large
negative A0

2〈r2〉, in particular for R = Nd. We notice some
dependence of the CF parameters A

q

k 〈rk〉 on the spin direction
in the ferromagnetic phase. It is mostly weak, of the order of a
few tenths of Kelvin for the most important CFP A0

2〈r2〉, except
in NdFe12N. It can be significant, though, for higher-order
CFP. The magnetic state (paramagnetic of ferromagnetic) has
a significant impact on A0

2〈r2〉 in some compounds: one may
notice larger values of A0

2〈r2〉 for paramagnetic SmFe12(N,Li)
than for either spin direction in the ferromagnetic phase.

Finally, the total magnetization appears to be slightly
reduced in Sm compounds, compared to Nd compounds: in
the former, the spin magnetic moment on the rare earth com-
pensates the orbital magnetic moment, leading to negligible
total moment, while Nd presents a total moment dominated
by the orbital component, and in the same direction as the Fe
sublattice magnetization.

The sign and overall magnitude of our calculated A0
2〈r2〉

are in agreement with previous calculations for RFe12(N) in
Ref. [5] using the 4f -in-core approach, though there are some
differences in the precise values. We obtain a similar value for
NdFe12, a somewhat larger one for NdFe12N, a more negative
value for SmFe12, and a smaller (positive) value for SmFe12N.
One may notice that the results in Ref. [5] are quite sensitive
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(a) NdFe12N DFT density of states (b) NdFe12N DFT + Hubbard I spectral function

FIG. 2. (a) Atom- and orbital-resolved density of states of NdFe12N calculated with the spin-polarized DFT method. (b) Atom- and
orbital-resolved spectral function of the same compound obtained within self-consistent spin-polarized DFT+Hubbard-I. For better readability
we take the average over the three types of Fe atoms: the actual total Fe density of states per unit cell is three times larger.

to different treatments of the “tails” of 4f core orbitals: there
is no such uncertainty in our approach.

The lowest-order CF parameters A0
2〈r2〉 and the corre-

sponding single-ion anisotropy energies K1 evaluated using
Eq. (1) are displayed in Fig. 3. One may see that, while
NdFe12N and NdFe12Li exhibit larger |A0

2〈r2〉| (upper panel)
than their Sm counterparts, this difference is offset by a larger
Stevens prefactor of Sm in Eq. (1), so that the Sm- and
Nd-based compounds have a magnetic anisotropy coefficient
K1 of similar magnitude. An important difference between
Nd and Sm is the different signs of their Stevens factors αJ

(αJ = −7/1089 for Nd, αJ = 13/315 for Sm). Consequently,
N insertion leads to a large out-of-plane anisotropy for Nd, but
in-plane anisotropy for Sm. Li has the opposite effect: doping
Li into SmFe12 leads to a rather large out-of-plane anisotropy
of SmFe12Li, of comparable magnitude to that of NdFe12N.

Performing the averaging over the ground-state multiplet
as described in Eq. (8) is crucial to obtain reasonable CFP:
the lowest-order CFP A0

2〈r2〉 is most sensitive to this. The

corresponding data without averaging for NdFe12N are given
and discussed in Appendix C.

For the sake of comparison with future experiments we
list low-energy eigenvalues and eigenstates of all RFe12X

compounds in Appendix B. It is interesting to notice that
eigenstates of the ground-state J = 5/2 multiplet of Sm
(Table VI) are often found to exhibit a significant admixture
from exited J = 7/2 states; the Nd J = 9/2 states (Table V)
contain a significantly lower admixture from the first exited
multiplet.

A last interesting point is that the exchange fields Bex on the
rare earth are enhanced by Li and reduced by N. This is useful
because the exchange field, or exchange coupling between Fe
and R, is essential for finite temperature magnetocrystalline
anisotropy. The rare-earth-originated anisotropy becomes in-
effective at high temperature, and this threshold temperature is
determined by the exchange coupling Bex. In Fig. 4 we show
the difference between the 4f shell atomic energies E⊥ and
E‖, computed as E = Tr[Ĥ e−βĤ ]/Tr[e−βĤ ] with Ĥ defined in

TABLE II. Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) NdFe12(N,Li) in Kelvin. For the FM case we list the
CF parameters for each spin direction. The exchange field in the FM phase (in Tesla), the spin and orbital magnetic moments of the rare earth
as well as the total magnetic moment per crystal unit cell (in Bohr magneton μB ) are also listed.

NdFe12 NdFe12N NdFe12Li

PM FM PM FM PM FM

↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 −57 −71 −116 486 477 653 −656 −687 −742
A0

4〈r4〉 −29 −5 −1 107 75 112 −182 −158 −186
A4

4〈r4〉 −129 −76 −270 7 −105 −141 −118 −60 −228
A0

6〈r6〉 52 62 54 51 32 63 −24 −17 −31
A4

6〈r6〉 70 −224 −107 −160 −65 −91 37 −6 96

Bex (T ) – 265 – 217 – 410
Nd Mspin – −1.48 μB – −1.61 μB – −1.69 μB

Nd Morb – 2.96 μB – 3.40 μB – 3.28 μB

Mcell – 26.39 μB – 29.15 μB – 27.59 μB
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TABLE III. The same quantities as in Table II for SmFe12(N,Li).

SmFe12 SmFe12N SmFe12Li

PM FM PM FM PM FM

↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 −32 −184 −211 249 195 225 −458 −297 −272
A0

4〈r4〉 −11 −21 −18 99 78 70 −116 −68 −71
A4

4〈r4〉 −215 −41 −136 −122 22 −91 −124 61 −198
A0

6〈r6〉 47 45 40 71 47 25 −13 −2 −12
A4

6〈r6〉 −85 −95 −58 −184 −97 −82 44 30 38

Bex (T ) – 232 – 205 – 331
Sm Mspin – −3.31 μB – −2.41 μB – −3.96 μB

Sm Morb – 3.29 μB – 2.35 μB – 3.60 μB

Mcell – 24.54 μB – 26.83 μB – 25.77 μB

Eq. (2) and the exchange field Bex is along the z axis (along the
c lattice parameter) and x axis (along the a lattice parameter),
respectively. We scale the exchange field Bex by a coefficient
MFe(T )/MFe(0) at nonzero temperatures, using the measured
magnetization ratio of NdFe12N from Hirayama et al. [6]. The
energy difference plotted in Fig. 4 is more general than the
expression of Eq. (1), because it also contains higher order CFP
and nonzero temperature; to compute E⊥ and E‖ we diago-
nalize the full Hamiltonian Ĥ , without restricting ourselves to
the ground-state multiplet. This gives quite a different picture
than Fig. 3: the strongly enhanced exchange coupling due to
Li doping causes the magnetocrystalline anisotropy to persist
at much higher temperatures than with N doping.

IV. DISCUSSION: THE EFFECT OF HYBRIDIZATION
WITH THE INTERSTITIALS

Let us now analyze the mechanisms determining the CFP
on the rare-earth site and, in particular, the impact of the N and

FIG. 3. Crystal-field parameters A0
2〈r2〉 (average for up and down

spins in the FM phase) and anisotropy energy K1 for RFe12X, with
R = Nd,Sm and X is either empty, N, or Li [K1 is obtained from
Eq. (1)].

Li interstitials on them. We consider the NdFe12X (X = Ni,
Li) compounds as an example. The N atom nominally carries
three 2p electrons, but in the RFe12N compounds the N 2p

bands are more than half-filled (Fig. 2). To verify this we have
also performed a Bader-charge analysis [63] for NdFe12X and
found 8.3 electrons on N resulting in an ion charge of −1.3. In
contrast, the Li atom is nominally 2s1, but it looses its single
2s electron inside the NdFe12 matrix, the corresponding Bader
ion charge is +0.7.

In Fig. 5 we display the complex Wannier orbitals con-
structed for Nd 4f states with window size ωwin = 2 eV with
magnetic quantum numbers m = 0 and m = −3, in the pres-
ence of interstitial N or Li. The orbitals with m = ±3 do not
point towards the N or Li atom, and leak only to neighboring Fe
atoms. On the other hand, the orbital with m = 0 (correspond-
ing to fz3 cubic orbital) points towards the interstitial site, and
shows strong leakage to the interstitial atom, particularly in
the Li case. The same applies, to a lesser extent, to the orbitals
m = ±1 that are also pointing towards the interstitials.

FIG. 4. Evolution with temperature of the difference in the 4f

shell energy E⊥ − E‖ between the moments on R and Fe aligned
perpendicularly and parallel to the z axis, respectively, for NdFe12N
(blue, full line) and SmFe12Li (red, dashed line). Inset: Magnetization
fraction of the Fe sublattice in NdFe12N, as a function of temperature
from Hirayama et al. [6].
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FIG. 5. 4f Wannier orbitals of NdFe12N and NdFe12Li, for
magnetic quantum number m = −3 and m = 0 and window size
[−2,2] eV. The orbital with m = 0 points towards and leak to the
N or Li sites, while orbitals with m = ±3 do not. All of them leak
somewhat to the nearest-neighbor Fe atoms.

The N (Li) insertion has thus two effects on the CFP. The
first one is due to the electrostatic interaction between the 4f

electrons and the interstitial ions. This interaction with the
negative N (positive Li) ion pushes the on-site energies of the
m = −1,0,1 orbitals, which point towards the interstitial, to
higher (lower) energies.

The second contribution is due to hybridization between
the 4f states and the N 2p (Li 2s and 2p) bands, which is
expected to mainly affect the m = −1,0,1 orbitals pointing
towards the interstitial. Mixing with the empty Li 2s and 2p

bands pushes them to lower energies, while the opposite shift
is induced due to hybridization with mostly filled N 2p located
well below rare-earth 4f states, see Fig. 2. Hence, one sees
that both the electrostatic and hybridization effects act in the
same direction, raising the on-site energies of the m = −1,0,1
orbitals in the case of N and lowering them in the case of Li.

This analysis explains the effect of interstitials on the CFP
A0

2〈r2〉. Indeed, the contribution due to A0
2〈r2〉 into the CF

Hamiltonian (6) is A0
2〈r2〉T̂ 0

2 /λ0
2, where the matrix of the one-

electron operator T̂ 0
2 /λ0

2 (6) reads

T̂ 0
2 /λ0

2 = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
3

0 (0)
1
5

4
15

1
5

(0) 0
− 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

in the basis of complex 4f orbitals. Hence, the energy level
of 4f orbitals m = ±3 is negatively correlated with A0

2〈r2〉,
while the energy levels of the orbitals with m = −1,0,1 are

FIG. 6. (a) Projected spectral functions ρ0σ
αl (ω) for the 4f orbital

with m = 0 in NdFe12Li, where the atom α and shell l are given in
the legend. The magnitude ρmσ

αl (ω) indicates the amount of admixture
of the character αl into a given 4f orbital, for its precise formulation
see the text. (b) The same for the 4f orbital m = 3.

positively correlated with A0
2〈r2〉 (orbitals with m = ±2 are

unaffected by T̂ 0
2 /λ0

2). Thus, the effect of N (Li) insertion is to
enhance (reduce) the value of A0

2〈r2〉.
One may argue that the Hubbard-I approximation neglects

the hybridization function in solving the quantum impurity
problem, hence, hybridization to the bath is not included
explicitly when solving for the self-energy � in the DMFT
(Hubbard-I) step of our DFT+Hub-I calculations. However,
our Wannier orbitals constructed within the “small” energy
window do contain the effect of hybridization implicitly,
which is evidenced by their “leakage” to neighboring sites
due to mixing of rare-earth 4f states with Fe 3d, N 2p,
and Li 2s bands. The real-space Wannier functions of Fig. 5
thus represent a convenient visualization of hybridization
between rare earth and other orbitals. In order to quantify
the amount of this admixture of the conduction band states we
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FIG. 7. (a) Projected spectral functions ρ0σ
αl (ω) for the 4f orbital

with m = 0 in NdFe12N. For the notation see the caption of Fig. 6.
(b) The same for the 4f orbital m = 3, ρ3σ

αl (ω).

also expand those extended small-window Wannier orbitals
|wσ

m(k)〉 in the basis of localized Wannier functions |w̃ασ ′
lm′ (k)〉

(labeled by spin σ ′, orbital l, and magnetic m′ quantum
numbers, as well as atomic site α) constructed within a large
energy window for all relevant bands. In Appendix F we
derive the corresponding projection operators relating |wσ

m(k)〉
and |w̃ασ ′

lm′ (k)〉. We employ it to extract the corresponding
contribution ρ̃mσ

αl (ω) of the shell l on the site α into the spectral
function of the “small-window” 4f orbital σm.

The comparison of ρmσ
αl for the orbital m = 0 and m =

3 are shown in Figs. 6 and 7 for NdFe12N and NdFe12Li,
respectively. One may notice in Fig. 6(a) that Nd fz3 (m = 0)
in NdFe12Li exhibits a strong hybridization with Li 2s and 2p;
their contribution is significantly larger than the admixture
of Fe 3d states. We further observe that spin up states are
hybridizing more strongly than spin down states. In contrast,
in the same compound for m = 3 [Fig. 6(b)], there is a peak
of hybridization with Fe states but barely any with the Li 2s

and 2p ones. The same difference, but much less pronounced,
is noticeable in the case of NdFe12N, see Fig. 7. Hence, one
may conclude, that the effect of the hybridization with the
interstitial on the CF is much larger for Li than for N. In the
latter case the electrostatic shift due to the negative charge on
N seems to play the leading role.

V. CONCLUSION

In conclusion, we propose a novel first-principles approach
for calculating crystal and exchange fields in rare-earth
systems. This approach is formulated within the DFT+DMFT
framework with local correlations on the rare-earth 4f shell
treated within the quasiatomic Hubbard-I approximation. The
4f states are represented by Wannier functions constructed
from a narrow energy range of Kohn-Sham states of mainly
4f character. We employ a charge-density averaging that
suppresses the contribution due to the self-interaction of
the 4f orbitals to the one-electron Kohn-Sham potential.
We thus reduce the effect of this unphysical self-interaction
from the crystal-field splitting, while keeping nonspherical
contributions to CFP from other bands. Similarly, by removing
the contribution due to the 4f magnetic density from the
exchange-correlation potential we suppress its unphysical
contribution to the exchange field at the rare-earth site.

The present approach is effectively free from adjustable
parameters and can be applied to evaluate CFP in any localized
lanthanide compound. While in the present work we chose the
value for the on-site interaction parameters U and J , they
can in principle be evaluated using constrained local-density
or random-phase approximation [64]. Moreover, we show that
the crystal-field splitting exhibits a rather weak dependence on
the value of U chosen within a reasonable range for lanthanide
4f shells (4 to 8 eV). Our choice for the local basis representing
4f orbitals, namely, that we construct it from a narrow range
of Kohn-Sham bands with heavy 4f character, is physically
motivated as it allows for the impact of the hybridization on
the CFP being included within DFT+Hub-I.

We apply this approach to evaluate the crystal and
exchange-field potentials as well as the resulting single-ion
magnetic anisotropies in several rare-earth hard magnetic
intermetallics. First, we verify that our ab initio scheme
reproduces the measured crystal-field parameters (CFP) in the
well-known hard magnet SmCo5. We subsequently apply it
to prospective rare-earth hard magnetic intermetallics of the
RFe12X family (where R = Nd, Sm and X can be N, Li, or
vacancy). Our calculations reproduce the strong out-of-plane
anisotropy of NdFe12N due to a large positive value of the
key CFP A0

2〈r2〉 induced by insertion of N. Interestingly, we
find that interstitial Li has a strong opposite effect, leading
to a large negative value of A0

2〈r2〉. We thus predict a
strong out-of-plane anisotropy in the hypothetical compound
SmFe12Li. We also find the anisotropy in SmFe12Li to persist
to higher temperatures as compared to NdFe12N. Hence,
Sm-based compounds may represent interesting candidates
for hard magnetic applications. Of course, the thermodynamic
stability of SmFe12Li and technological feasibility of Li doping
still need to be demonstrated by future studies.

We analyze the effect of N and Li interstitials on A0
2〈r2〉 by

evaluating the Bader charges as well as by studying the leakage
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of 4f Wannier orbitals to interstitial sites and quantifying the
4f hybridization with N 2p and Li 2s states.

Extensions of the present approach beyond the Hubbard-I
approximation are promising for applications to other rare-
earth intermetallics. In particular, a similar DFT+DMFT
technique suppressing subtle self-interaction and double-
counting contributions to the Kohn-Sham potential might be
necessary to study, for example, the impact of a spin-polarized
transition-metal sublattice on heavy-fermion behavior in Yb-
based intermetallics [65,66].
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APPENDIX A: CRYSTAL-FIELD PARAMETERS IN SmCo5

SmCo5 has been studied more extensively than other hard
magnetic rare-earth intermetallics, so ample experimental
data are available in this case. In particular, several groups
estimated the CF parameters using inelastic neutron scattering
or magnetization measurements. Therefore, this compound is
a good benchmark to test our approach. SmCo5 has already
been studied within DFT+Hub-I to evaluate its ground-state
magnetization and photoemission spectra [42], but the CF
parameters were not calculated in this work.

The calculated spectral function of SmCo5 is shown in
Fig. 8. We find a total magnetic moment on the 4f shell of Sm
of 0.42 μB , antiparallel with the Co moments. This compares
well with the measured value of 0.38 μB at 4.2 K [18].

The calculated CFP and exchange fields for SmCo5 are
listed in Table IV, together with experimental data. The
calculations on SmCo5 are done at the experimental lattice
constants.

FIG. 8. Atom-resolved spectral function of SmCo5 obtained
within self-consistent spin-polarized DFT+Hubbard-I (full lines).
The two inequivalent Co types are summed to give the total Co
3d spectral function. The occupied part of the experimental spectrum
of SmCo5 (light blue from Ref. [67] and purple from Ref. [68]) and
the full experimental spectrum of metal Sm (red, from Ref. [62]) are
shown for comparison in dotted lines.

One may notice that the CF parameter A0
2〈r2〉 exhibits

a strong dependence on the spin polarization; it is about
twice larger in the FM phase. For other CF parameters this
dependence is small.

Our results for A0
2〈r2〉 are in good agreement with the exper-

imental (rather wide) range from about −180 to −420 K. The
calculated Bex also agrees rather well with the experimental
range from 260 to 360 T. One may notice that the experimental
measurements were performed at room temperature, hence,
in ferromagnetic SmCo5. Also, the most recent experimental
values [20] of A0

2〈r2〉 are in very good agreement with our
results for the FM phase.

The main discrepancy between our theoretical and experi-
mental CFP lies in the large value that we find for A6

6〈r6〉. The
high-order CF parameters are usually assumed to be rather
small in SmCo5. However, as noted in Ref. [70], experimental
inelastic neutron and susceptibility data are not particularly
sensitive to those high-order parameters. Hence, they are often
assumed to be small from the onset and neglected in the fitting
procedure.

In order to facilitate the reproducibility of our calculations,
we provide below the one-electron Hamiltonian of Eq. (7)
for a converged, ferromagnetic calculation of SmCo5, used to
obtain the CFP of Table IV.

Ĥ
↑↑
1el =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−26.5763 0 0 0 0 0 0.0235
0 −26.5003 0 0 0 0 0
0 0 −26.4465 0 0 0 0
0 0 0 −26.3511 0 0 0
0 0 0 0 −26.2796 0 0
0 0 0 0 0 −26.1675 0

0.0235 0 0 0 0 0 −26.0800

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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TABLE IV. Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) SmCo5 in Kelvin. For the FM case we list the CF
parameters for each spin direction. The exchange field in the FM phase (in Tesla) is also listed. For comparison, measured and calculated values
from several groups are also given. References corresponding to an experimental work are denoted by the symbol †.

PM FM Tils et al. Zhao et al. Givord et al. Sankar et al. Bushow et al. Richter et al. Hummler et al. Novak et al.

↑ ↓ Ref. [20]† Ref. [19]† Ref. [18]† Ref. [17]† Ref. [16]† Ref. [69] Ref. [70] Ref. [71]

A0
2〈r2〉 −140 −313 −262 −326 −330 −200 −420 −180 −755 −509 −160

A0
4〈r4〉 −40 −40 −55 – −45 0 25 0 −37 −20 −33

A0
6〈r6〉 33 35 25 – 0 50 0 0 11 2 40

A6
6〈r6〉 −684 −731 −593 – 0 0 6 0 290 −55 168

Bex (T ) – 227 260 327.5 260.5 357 298 – 279 –

Ĥ
↓↓
1el =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−26.1093 0 0 0 0 0 0.0191
0 −26.1926 0 0 0 0 0
0 0 −26.3023 0 0 0 0
0 0 0 −26.3802 0 0 0
0 0 0 0 −26.4688 0 0
0 0 0 0 0 −26.5252 0

0.0191 0 0 0 0 0 −26.6069

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Ĥ
↑↓
1el = (Ĥ ↓↑

1el )† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2032 0 0 0 0 0
0 0 0.2632 0 0 0 0
0 0 0 0.2893 0 0 0
0 0 0 0 0.2886 0 0
0 0 0 0 0 0.2633 0

−0.0002 0 0 0 0 0 0.2036
0 −0.0003 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Ĥ1el =
(

Ĥ
↑↑
1el Ĥ

↑↓
1el

Ĥ
↓↑
1el Ĥ

↓↓
1el

)
.

APPENDIX B: EIGENENERGIES AND EIGENSTATES
OF THE 4 f SHELLS IN SmCo5 AND RFe12 X

In this Appendix we present the actual converged eigen-
functions and eigenstates of the 4f shell obtained within
our DFT+Hub-I approach. In Tables V and VI we list those
eigenenergies and the corresponding wave functions for the
ground-state multiplet, as well as for the lowest-energy state
of the first exited multiplet, in all the materials considered.
The eigenenergies are given with respect to the ground
state. The eigenvalues are expanded in the basis of total
angular momentum J as

∑
J,mJ

a(J,mJ )|J ; mJ 〉; we include
all contributions with |a(J,mJ )| > 0.03.

One sees that the eigenstates of Sm belonging to the
ground-state multiplet feature a rather significant admixture
of the exited J = 7/2 multiplet. The intermultiplet mixing is
markedly lower in the case of Nd.

To our awareness, only 4f eigenstates in SmCo5 have
been measured to date. Our calculated intra- and intermultiplet
splittings are in good agreement with the results of of Tils et al.
[20] and Givord et al. [18], see the lowest panel of Table VI.
Moreover, the actual eigenstates and their order are also in very
good agreement with the magnetic form-factor measurements
[18,72], especially for the lowest-energy states [73].

APPENDIX C: IMPORTANCE OF THE CHARGE
AVERAGING

In this Appendix we explicitly demonstrate the effect of
averaging of 4f charge density [Eq. (8)] by comparing the CFP
calculated with and without this averaging [but in both cases
the 4f magnetic density is suppressed following Eq. (10)] in
two materials, NdFe12N and SmCo5, that are known to have
an out-of-plane magnetic anisotropy.

The corresponding values are displayed in Table VII. One
sees that the difference is largest for the lowest-order CFP
A0

2〈r2〉, where calculations without averaging lead to the
wrong sign with respect to experiment (suggesting in-plane
anisotropy in both cases). Hence, the proper averaging of
4f charge density is crucial for a correct description of the
single-ion anisotropy. For the higher order terms the difference
between two approaches is smaller. This suggests that the
self-interaction contribution in the CFP has predominantly
l = 2 symmetry.

APPENDIX D: DEPENDENCE OF RESULTS
ON COULOMB U AND HUND’s JH

To perform DFT+DMFT calculations, we have to choose a
value for the on-site screened Coulomb interaction parameter
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TABLE V. Energies (in meV) and wave functions (expanded in the total angular momentum J basis) of the atomic eigenstates in the
ground-state multiplet (GSM) and of the lowest eigenstate of the first excited multiplet (FEM) for NdFe12X.

NdFe12

GSM 0 0.996|9/2; +9/2〉 + 0.081|11/2; +9/2〉
8 0.995|9/2; +5/2〉 + 0.094|11/2; +5/2〉
18 0.989|9/2; +3/2〉 + 0.145|11/2; +3/2〉 − 0.037|9/2; −5/2〉
18 0.999|9/2; +7/2〉 + 0.042|11/2; +7/2〉
39 0.989|9/2; +1/2〉 + 0.145|11/2; +1/2〉 − 0.032|9/2; −7/2〉
51 0.996|9/2; −3/2〉 + 0.085|11/2; −3/2〉
51 0.994|9/2; −1/2〉 + 0.105|11/2; −1/2〉
56 0.992|9/2; −5/2〉 + 0.121|11/2; −5/2〉 + 0.038|9/2; +3/2〉
82 0.985|9/2; −7/2〉 + 0.166|11/2; −7/2〉 + 0.033|9/2; +1/2〉
88 0.998|9/2; −9/2〉 + 0.057|11/2; −9/2〉

FEM 309 0.987|11/2; +5/2〉 + 0.126|13/2; +5/2〉 − 0.093|9/2; +5/2〉 − 0.046|11/2; −3/2〉
NdFe12N

GSM 0 0.994|9/2; +9/2〉 + 0.092|11/2; +9/2〉 − 0.054|9/2; +1/2〉
32 0.998|9/2; +5/2〉 + 0.065|11/2; +5/2〉
38 0.994|9/2; +3/2〉 + 0.106|11/2; +3/2〉
41 0.997|9/2; +7/2〉 − 0.065|9/2; −1/2〉
56 0.993|9/2; +1/2〉 + 0.101|11/2; +1/2〉 + 0.055|9/2; +9/2〉
66 0.998|9/2; −3/2〉 + 0.052|11/2; −3/2〉
66 0.966|9/2; −1/2〉 − 0.242|9/2; −9/2〉 + 0.064|9/2; +7/2〉 + 0.061|11/2; −1/2〉
67 0.996|9/2; −5/2〉 + 0.077|11/2; −5/2〉
73 0.970|9/2; −9/2〉 + 0.241|9/2; −1/2〉
80 0.996|9/2; −7/2〉 + 0.093|11/2; −7/2〉

FEM 301 0.994|11/2; +11/2〉 + 0.091|13/2; +11/2〉 − 0.051|11/2; +3/2〉
NdFe12Li

GSM 0 0.993|9/2; +7/2〉 + 0.116|11/2; +7/2〉
16 0.990|9/2; +5/2〉 + 0.137|11/2; +5/2〉
24 0.994|9/2; +9/2〉 + 0.105|9/2; +1/2〉
31 0.989|9/2; +3/2〉 + 0.137|11/2; +3/2〉 − 0.041|9/2; −5/2〉
40 0.983|9/2; +1/2〉 + 0.146|11/2; +1/2〉 − 0.107|9/2; +9/2〉
51 0.986|9/2; −1/2〉 + 0.163|11/2; −1/2〉
65 0.985|9/2; −3/2〉 + 0.166|11/2; −3/2〉
80 0.988|9/2; −5/2〉 + 0.148|11/2; −5/2〉 + 0.042|9/2; +3/2〉
93 0.990|9/2; −7/2〉 + 0.135|11/2; −7/2〉
126 0.984|9/2; −9/2〉 + 0.179|11/2; −9/2〉

FEM 319 0.983|11/2; +7/2〉 + 0.134|13/2; +7/2〉 − 0.116|9/2; +7/2〉 + 0.042|11/2; −1/2〉

U and for the Hund’s coupling parameter JH . Several methods
have been developed in order to compute those parameters
from first principles, most notably the constrained local density
approximation [74] and, more recently, the constrained random
phase approximation [64].

In the present work, however, we do not attempt a first
principles determination. We use U = 6 eV and JH = 0.85 eV
because these values have given satisfactory results in other
calculations on rare-earth materials [41,53]. They are also
in line with reported values calculated from first principles
[60]. Nevertheless, it is preferable that results obtained by our
calculation scheme do not depend too strongly on the value of
U and JH . In Fig. 9 we show that the dependence of the CFP
A0

2〈r2〉 in NdFe12N is very moderate, as long as the values of U

and J are chosen within a reasonable ranges for rare-earth ions.
Furthermore, we observe that smaller values of U lead to

slightly larger values of A0
2〈r2〉: this is not surprising if we keep

in mind that a large U is favorable to a strong localization of the
4f electrons, hence to a weaker coupling to the crystal field.

APPENDIX E: DEPENDENCE OF RESULTS
ON WINDOW SIZE

Another important parameter of our calculations is the size
of the window around the Fermi level that we use to construct
the 4f Wannier functions. In Fig. 10 we compare the Wannier
orbitals constructed for the same orbital m = 0 in NdFe12Li for
two different window sizes: a small window with ωwin = 2 eV,
and a large one with ωwin = 20 eV. For the large window, the
Wannier orbital (WO) takes essentially pure Nd 4f orbital
character, while the small-window WO leaks significantly to
neighboring sites, in particular, to Li.

The effect of the window size on the CF parameters is
shown more quantitatively in Fig. 11, which displays those
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TABLE VI. Same as Table V, for SmFe12X and SmCo5. For SmCo5, between brackets next to the calculated energies: energies of the
atomic eigenstates measured by Tils et al. (left, Ref. [20]) and Givord et al. (right, Ref. [18]). Note that only Tils et al. directly measure the
eigenenergies, while Givord et al. obtain them from an atomic Hamiltonian fitted to reproduce the measured magnetic form factor.

SmFe12

GSM 0 0.986|5/2; +5/2〉 + 0.164|7/2; +5/2〉
27 0.983|5/2; +3/2〉 + 0.183|7/2; +3/2〉
47 0.968|5/2; +1/2〉 + 0.245|7/2; +1/2〉 + 0.043|9/2; +1/2〉
69 0.977|5/2; −1/2〉 + 0.209|7/2; −1/2〉 + 0.041|9/2; −1/2〉
85 0.976|5/2; −3/2〉 + 0.218|7/2; −3/2〉
99 0.987|5/2; −5/2〉 + 0.159|7/2; −5/2〉 + 0.032|9/2; −5/2〉

FEM 191 0.987|7/2; +7/2〉 + 0.154|9/2; +7/2〉 + 0.034|7/2; −1/2〉
SmFe12N

GSM 0 0.997|5/2; +5/2〉 + 0.079|7/2; +5/2〉
2 0.990|5/2; +3/2〉 + 0.143|7/2; +3/2〉
13 0.976|5/2; +1/2〉 + 0.216|7/2; +1/2〉
31 0.982|5/2; −1/2〉 + 0.186|7/2; −1/2〉 + 0.035|9/2; −1/2〉
48 0.978|5/2; −3/2〉 + 0.209|7/2; −3/2〉
75 0.971|5/2; −5/2〉 + 0.238|7/2; −5/2〉

FEM 176 0.988|7/2; +5/2〉 + 0.129|9/2; +5/2〉 − 0.078|5/2; +5/2〉
SmFe12Li

GSM 0 0.977|5/2; +5/2〉 + 0.212|7/2; +5/2〉 + 0.037|9/2; +5/2〉
39 0.965|5/2; +3/2〉 + 0.256|7/2; +3/2〉 + 0.047|9/2; +3/2〉
67 0.960|5/2; +1/2〉 + 0.278|7/2; +1/2〉 + 0.042|9/2; +1/2〉
90 0.946|5/2; −1/2〉 + 0.318|7/2; −1/2〉 + 0.051|9/2; −1/2〉
116 0.941|5/2; −3/2〉 + 0.330|7/2; −3/2〉 + 0.068|9/2; −3/2〉
137 0.974|5/2; −5/2〉 + 0.221|7/2; −5/2〉 + 0.053|9/2; −5/2〉

FEM 202 0.977|7/2; +7/2〉 + 0.211|9/2; +7/2〉 + 0.035|11/2; +7/2〉
SmCo5

GSM 0 (0 / 0) 0.984|5/2; +5/2〉 + 0.171|7/2; +5/2〉
33 (31 / 28) 0.983|5/2; +3/2〉 + 0.181|7/2; +3/2〉
52(– / 47) 0.973|5/2; +1/2〉 + 0.225|7/2; +1/2〉 + 0.033|9/2; +1/2〉
71(– / 73) 0.977|5/2; −1/2〉 + 0.209|7/2; −1/2〉 + 0.035|9/2; −1/2〉
86(– / 91) 0.977|5/2; −3/2〉 + 0.211|7/2; −3/2〉 − 0.032|9/2; +9/2〉

95(– / 109) 0.989|5/2; −5/2〉 + 0.122|7/2; −5/2〉 + 0.073|7/2; +7/2〉 + 0.033|9/2; −5/2〉
FEM 188 (166 / –) 0.963|7/2; +7/2〉 + 0.187|7/2; −5/2〉 + 0.164|9/2; +7/2〉 − 0.093|5/2; −5/2〉

parameters computed for several window choices
[−ωwin,ωwin] for different materials. The smallest window
size of ωwin = 2 eV is required to enclose all the 4f -like

TABLE VII. Crystal-field parameters and exchange field in
NdFe12N and SmCo5 in the ferromagnetic phase, calculated with
and without averaging over the ground-state multiplet.

NdFe12N SmCo5

with without with without

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 477 653 −190 26 −313 −262 278 331
A0

4〈r4〉 75 112 30 82 −40 −55 −30 −37
A4

4〈r4〉 −105 −141 −65 −124 0 0 0 0
A0

6〈r6〉 32 63 27 64 35 25 38 25
A4

6〈r6〉 −65 −91 −61 −112 0 0 0 0
A6

6〈r6〉 0 0 0 0 −731 −593 −945 −806

Bex (T ) 217 206 227 235

bands, increasing it to 4 eV includes most of the Fe states and
part of the N or Li states inside the window. The largest size
of 20 eV gives Wannier functions with essentially pure orbital
character. One may notice a relatively mild dependence of the
CFP on the choice of the window up to ωwin = 8 eV.

APPENDIX F: PROJECTION OF EXTENDED WANNIER
ORBITALS TO LOCALIZED WANNIER BASIS

In this Appendix we derive the projection operator between
localized and extended Wannier spaces. A set of Wannier-like
functions |w̃ασ

lm (k)〉 is constructed for an atom α of the unit cell
and quantum numbers (lmσ ) as a combinations of Kohn-Sham
Bloch waves for a range of bands within the chosen energy
window W̃: ∣∣w̃ασ

lm (k)
〉 =

∑
ν∈W̃

P̃ ασ
lmν(k)

∣∣φk
ν

〉
, (F1)

where φk
ν are the Bloch functions and P̃ ασ

lmν(k) is the cor-
responding matrix element of the projector constructed as
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FIG. 9. CFP A0
2〈r2〉 in NdFe12N as a function of U for JH =

0.85 eV (left-hand panel), and as a function of JH for U = 6 eV (right-
hand panel). Our reference values are (U = 6 eV, JH = 0.85 eV).

described in Refs. [50,51]. The corresponding real-space Wan-
nier functions are then obtained by a Fourier transformation

w̃ασ
lm (r) =

∑
k

e−ik.r
∣∣w̃ασ

lm (k)
〉
. (F2)

We assume that the window W̃ in Eq. (F1) is large, i.e., that
it includes both rare-earth 4f states and all relevant valence
bands that are expected to hybridize with them. As a result,
with such a large-window construction one obtains a set of
mutually orthogonal and rather well localized Wannier orbtials
(WO). In particular, the large-window 4f WOs w̃ασ

lm (r) almost
do not leak onto neighboring sites, as discussed in the previous
section, see Fig. 10(a). If one constructs as many WOs as the
number of Kohn-Sham bands within W̃ then the projection
operator P̃ (k) is just a unitary transformation, hence, Eq. (F1)
can be inverted∣∣φk

ν

〉 ≈
∑
ασ lm

[
P̃ ασ

lmν(k)
]∗∣∣w̃ασ

lm (k)
〉
, (F3)

where the equality is approximate because high-energy empty
bands usually cross and, hence, one cannot generally chose
such a window as to have the same number of bands for all
k points. However, those high-energy states are far from the
relevant region close to the Fermi level, and if one applies
Eq. (F3) to the bands within a small window W around the the

FIG. 10. NdFe12Li 4f Wannier orbital m = 0 constructed with
a large window [−20,20] eV (left) and a small window [−2,2] eV
(right). The use of a large window essentially removes all hybridiza-
tion between the rare-earth and neighboring atoms.

FIG. 11. Absolute value of the CFP A0
2〈r2〉 as a function of

window size ωwin for NdFe12, NdFe12N, NdFe12Li, and SmCo5.

Fermi energy the resulting small nonunitarity of P (k) can be
neglected.

Alternatively, one may construct 4f Wannier orbitals from
the bands within that small window W enclosing mainly 4f -
like Kohn-Sham bands:∣∣wσ

m(k)
〉 =

∑
ν∈W

P σ
mν(k)

∣∣φk
ν

〉
, (F4)

where 4f WOs are constructed for the single rare-earth site in
the unit cell for the compounds under consideration. Hence,
the site and l labels are suppressed in |wσ

m(k)〉. The resulting
small-window WOs are rather extended in real space, as one
sees in Figs. 5 and 10(b).

Inserting the expansion Eq. (F3) of the KS states |φk
ν 〉 into

Eq. (F4) one obtains∣∣wσ
m(k)

〉 =
∑
ν∈W

∑
lm′σ ′

P σ
mν(k)

[
P̃ ασ ′

lm′ν(k)
]∗∣∣w̃ασ ′

lm′ (k)
〉

=
∑

ασ ′lm′
U

σ,ασ ′
m,lm′ (k)

∣∣w̃ασ ′
lm′ (k)

〉
, (F5)

where

U
σ,ασ ′
m,l′m′(k) =

∑
ν∈W

P σ
mν(k)

[
P̃ ασ ′

lm′ν(k)
]∗

. (F6)

We use these projectors U
σ,ασ ′
m,l′m′(k) to project the 4f

spectral function computed in the small-window WO basis
on large-window localized WOs representing other states
(Fe 3d, N 2p, Li 2s, and so on). Namely, having obtained
the real-axis lattice Green’s function in the small-window
Wannier basis for the orbital (σm) of the 4f shell Gmσ (k,ω +
iδ), as well as the corresponding partial spectral function
ρmσ (ω) = − 1

π
ImGmσ (k,ω + iδ), we compute the different

orbital contributions into it as follows:

ρ̃mσ
αl (ω) = − 1

π
Im

∑
k

∑
m′σ ′

[
U

σ,ασ ′
m,lm′ (k)

]∗

×Gmσ (k,ω + iδ)Uσ,ασ ′
m,lm′ (k), (F7)

where ρ̃mσ
αl (ω) is the fraction of the 4f spectral function of

orbital index (σm) with the character (αl). Using Eq. (F3) and
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the orthonormality of small-window WOs:〈
wσ

m(k)
∣∣wσ ′

m′(k)
〉 = δmm′δσσ ′ =

∑
ν

[
P σ

mν(k)
]∗

P σ ′
m′ν(k),

one may easily show the completeness of the expansion (F7)∑
αl

ρ̃mσ
αl (ω) = ρmσ (ω).
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