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Few-body systems capture many-body physics: Tensor network approach
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Due to the presence of strong correlations, theoretical or experimental investigations of quantum many-body
systems belong to the most challenging tasks in modern physics. Stimulated by tensor networks, we propose a
scheme of constructing the few-body models that can be easily accessed by theoretical or experimental means, to
accurately capture the ground-state properties of infinite many-body systems in higher dimensions. The general
idea is to embed a small bulk of the infinite model in an “entanglement bath” so that the many-body effects
can be faithfully mimicked. The approach we propose is efficient, simple, flexible, sign-problem free, and it
directly accesses the thermodynamic limit. The numerical results of the spin models on honeycomb and simple
cubic lattices show that the ground-state properties including quantum phase transitions and the critical behaviors
are accurately captured by only O(10) physical and bath sites. Moreover, since the few-body Hamiltonian only
contains local interactions among a handful of sites, our work provides different ways of studying the many-body
phenomena in the infinite strongly correlated systems by mimicking them in the few-body experiments using
cold atoms/ions, or developing quantum devices by utilizing the many-body features.
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I. INTRODUCTION

A. Quantum many-body systems in one,
two, and three dimensions

Investigating the ground states and low-lying states of
strongly correlated quantum many-body systems is one of the
most important challenges in modern physics. It lies in the
center of interest of condensed matter physics [1,2], atomic,
molecular, and optic physics [3], and high-energy physics
[4,5]. Fundamentally, these systems may exhibit exotic states
and phenomena, such as spin liquids [6] and topological
phases [7,8]. On the other hand, these systems have important
applications in contemporary electronics, superconductivity
[9], spintronics [10], and, more recently, quantum information
[11]. The future quantum technologies, i.e., quantum com-
puters, quantum simulators and annealers, quantum metrol-
ogy, and sensing rely essentially exclusively on the use of
strongly correlated quantum lattice systems. However, the high
complexity rising from strong correlations makes the exact
solutions/diagonalizations impossible or inefficient in most
cases. Numerical methods, benefiting from fast development
of the computer technology, become nowadays the most fre-
quently used tools capable of reliably studying such systems.
Developments of new more efficient methods, with lower cost
and higher accuracy, are therefore highly demanded.

Technically, one-dimensional (1D) models are the simplest,
although quantum fluctuations in 1D are particularly large
[12]. The 1D systems play important roles in electronics and
spintronics, as they provide specific possibilities in controlling
transport and reveal exotic excitations such as Majorana
fermions [13,14]. They can be naturally viewed as the edges of
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two-dimensional (2D) systems, and may correspond to edge
states of these 2D systems [2,7]. 2D systems are obviously
more demanding numerically and experimentally, whereas
from a physical point of view they can be taken as playgrounds
for novel concepts and exotic states such as anyonic excitations
[2,15], frustrated antiferromagnetism [16,17], spin liquids
[18], topological order and topological phase transitions, and
graphenelike systems [19], etc.

In principle, the three-dimensional (3D) models are even
more interesting, as they are much closer to reality of our daily
experience. Because of their extreme complexity, the adoption
of various approximations to treat them is totally unavoidable.
The three dimensions are closer to the upper critical dimension,
and one may expect that the mean-field theories would work
well for them. A paradigmatic example is the Bose-Hubbard
model, which can be nicely explored by bosonic dynamic
mean-field theory (DMFT) [20]. Such few, but well-controlled,
systems can serve as validation, calibration, and benchmark
for various numerical and analytical methods. Still, there
are also 3D models that are extremely demanding to be
understood, such as, among others, the spin ice [21] with
pyrochlore lattice [22], that is, a highly frustrated magnet; the
Fermi-Hubbard model, which is usually invoked to describe
high-temperature superconductivity of cuprates that consist of
strongly correlated 2D planes weakly coupled in the transverse
direction ([9], see also [23] for a quantum simulation with
ultracold atoms). The (3+1)D lattice gauge theories at high
densities and temperature are also beyond the possibilities
of the existing codes and machines. Generally, different
approximate analytical methods might generate converse
results, leading to unnecessary controversies in many cases. It
turns out that finding reliable and efficient numerical methods
to solve 3D quantum many-body problems becomes indeed
imperative.
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B. Tensor networks: State of the art

The density matrix renormalization group (DMRG) [24] is
widely recognized as a major breakthrough in the calculations
of the ground states in 1D systems. Originally proposed as
a mere numerical tool, the reformulation of the DMRG as a
variational algorithm in terms of matrix product states (MPS)
[25] leads to the proposal of more general formalism, based on
tensor networks (TN’s) [26–28]. TN’s provide a very general
ansatz for the wave functions: the quantities of interest may
be expressed as results of the contraction of a network of local
tensors. It has rapidly evolved into a promising powerful tool
to study large or even infinite size systems in two dimensions.
In fact, TN’s overcome most of the limitations of the standard
numerical algorithms: for instance, in contrast to quantum
Monte Carlo (QMC), TN’s do not suffer from the notorious
“negative-sign” problem [29] and allow for an accurate access
to frustrated spin systems and fermionic models away from
half-filling.

To what extent the TN is feasible depends on the amount
of entanglement of the states to be simulated. The efficiency
(computational memory and time) of the TN approaches is
also determined by the capability of the current computers. In
the standard formulations, TN works for low-entangled states
such as the ground states of local and gapped Hamiltonians. For
these states, an area law for the entanglement entropy holds,
i.e., the entanglement entropy of a subsystem (consisting of
a large, but finite block) scales with the block’s boundary
[30]. This fact explains the efficiency of the MPS-based
algorithms in 1D. For the same reason, the MPS-based
algorithms (e.g., DMRG) work well for small 2D systems,
but are strongly limited when the size grows [28,31,32]. By
acknowledging this, many different competing approaches
have been developed. Among others, a purely 2D ground-state
TN ansatz, termed projected entangled pair state (PEPS), was
proposed as a natural extension of MPS. PEPS fulfils the 2D
area law of entanglement entropy [26–28,33–35], while the
multiscale entanglement renormalization ansatz (MERA) [36]
bears particular advantages for studying critical models.

Within the existing TN algorithms, a lot of works were
done on 2D quantum as well as 3D classical models, where the
simulations consist in the contractions of 3D TN’s [33,34,36–
51]. This well-known quantum-classical equivalence [52]
becomes very explicit in the TN terminology, and is utilized
frequently in the TN approaches for ground-state [33,34,37,38]
and thermodynamic [53–57] studies on discrete and even
continuous [58] systems. However, for 3D ground-state
simulations, we are essentially facing the contractions of
four-dimensional TN’s [59,60], which are hardly treatable even
with small bond dimensions. Therefore, developing efficient
3D quantum algorithms are strongly desired, in particular for
infinite quantum systems.

C. “Bath-stimulated” methods

For 3D quantum models, many interesting issues remain
to be explored or even unsolved to a large extent [6,21,61–
63]. They have been the subject of intensive studies in
recent years and many numerical methods were developed
to handle them. Several approaches were proposed beyond the
standard mean-field and renormalization group methods, such
as the linked cluster expansions [64–66], and the functional

renormalization group method [67,68]. On the other hand,
the numerical simulations are extremely challenging, and the
finite-size algorithms, including exact diagonalization (ED),
QMC, and DMRG, suffer severe finite-size effects, which
are quite consuming for large systems and can access infinite
systems only by utilizing finite-size scaling.

To treat the correlations in many-body systems, one usually
starts by evoking the ideas of “mean-field,” “bath,” or boundary
conditions. Analytical methods such as the Hartree-Fock
mean-field theory and the saddle-point approximation in path
integral are commonly used. In fact, for lattice models the
“mean-field” idea goes back to the single-site Weiss method,
applied first for classical magnetic models [69]. Contemporary
mean-field methods for lattice models include Guztwiller
ansatz for bosons and/or fermions, or pairing approaches
(Bogoliubov-type for bosons, or Bardeen-Cooper-Schrieffer–
type for fermions); for an overview of these and other
methods, see Ref. [3] and references therein. In the context
of this work it is important to mention the “cluster mean-field
theory” (CMFT), where the mean field in the manner of
Weiss is combined with exact diagonalization on clusters (for
recent developments, see [70,71] and references therein). It
is also worth mentioning “entanglement mean-field theory
(EMFT) [72,73], which for spin models is formulated on
few spin clusters, demanding self-consistency of entanglement
properties. Both CMFT and EMFT are close to the standard
MFT that can give quite accurate description of standard
(Landau-Ginsburg–type) ordered and disordered phases, but
typically only far from criticality.

For thermal and open systems, one popular way is to
introduce a “heat bath” to mimic the interactions between
the system and the environment [74]. Regarding numerical
approaches, the density functional theory (DFT), also known
as ab initio first-principle calculations [75], was built by
extending the Thomas-Fermi approximation of homogeneous
electron gas to the inhomogeneous electron system [76]. Its
huge success in condensed matter physics, quantum chemistry,
and materials science largely relies on the simplicity and
unification, “using a popular code, a standard basis, and a
standard functional approximation” [75].

In order to handle strong correlations, several schemes were
developed in the spirit of DFT. The examples include the
dynamic mean-field theory [77–79] that maps a lattice model
(such as the Hubbard model) onto a quantum impurity model
subject to self-consistent conditions, and the density matrix
embedding theory (DMET) [80] that was proposed aiming at
a better consideration of the entanglement, thanks to the ac-
companying explosive advances in both quantum information
science [81] and condensed matter physics [82]. However, it
is difficult to use these algorithms to study long-range ordered
states or phase transitions. To probe the disordered ground
states (e.g., the spin liquids in the infinite frustrated systems),
it was proposed to signal the disordered nature by simulating
a finite system with random boundary conditions [83].

D. Our proposal: Mimicking many-body systems
by few-body ones

In general, as illustrated in Fig. 1, the central idea of our
work is to optimally find the few-body Hamiltonian to mimic
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FIG. 1. The system on an infinite lattice is transformed into one
defined on finite clusters embedded in the entanglement bath. We
take the (8 + 8)-site and (18 + 12)-site clusters for the simulations
on honeycomb lattice, where the first contains 8 physical (blue balls)
and 8 bath sites (red balls), and the second contains 18 physical and
12 bath sites. The entanglement bath is calculated by choosing two
sites as the supercell (small circle). The legs stand for the interactions
between the connecting sites.

the infinite model, without any prior knowledge of the ground
state. The few-body model contains the physical sites in a
finite cluster and the “bath” sites around it. The few-body
Hamiltonian consists of two parts: the interactions among
the physical sites (blue balls) within the cluster, and those
[Eq. (14)] between the boundary physical sites and the bath
sites (red balls). The physical-bath interactions are represented
by some local Hamiltonians, which reproduce the quantum
entanglement between the cluster and the bath, in such a
way that the many-body effects from the infinite environment
are well captured in the few-body simulations. Then, the
ground-state information of the infinite system is encoded in
the reduced density matrix of the few-body ground state after
tracing the bath degrees of freedom.

The theoretical scheme we propose is a higher-dimensional
generalization of the ab initio optimization principle (AOP)
formulated with TN [84], and originally developed for infinite
1D systems with translational invariance. The idea is to find
the simplest eigenvalue equations that encodes the infinite
TN contraction problem. Aside from its simplicity in the
implementation, the 1D AOP has proved to have several
computational advantages over other established algorithms,
such as iTEBD and iDMRG [24]. For the purpose of this
work, the main advantage of the AOP is its flexibility and
implications in high dimensions: without any substantial
conceptual changes, the AOP can be readily extended to 2D
and even 3D systems with high efficiency. Furthermore, the
dynamic correlation length and the first excitation gap can be
straightforwardly extracted.

Our scheme consists of two stages: (1) compute physical-
bath Hamiltonian and (2) solve the few-body Hamiltonian.
In the first stage, by choosing the dimension D of the bath site

and a supercell that obeys the translational invariance, we start
from the original Hamiltonian of the system and construct a
set of self-consistent eigenvalue equations. Their solution gives
the Hamiltonian Ĥ ∂ [Eq. (14)] that describes the interactions
between a physical and a bath site. Such equations in fact
encode an optimal zero-loop TN approximation of the state.
This approximation directly enters the thermodynamic limit
with a Bethe TN state ansatz [85,86], and already gives us the
first glance of the ground state with good accuracy, especially
for the gapped states [38,55,56,60,85,86].

The aim of the second stage is to construct the few-body
Hamiltonian ĤFB , and solve its ground state |�̃〉 by, e.g.,
DMRG (with certain dimension cutoffs denoted by χ ). ĤFB

is formed by all the physical interactions inside a chosen cluster
and several physical-bath interactions given by Ĥ ∂ . The choice
of the cluster is very flexible. The ground-state properties of
the infinite system are then encoded in the ground state |�̃〉 of
ĤFB . In other words, quantities such as energy, magnetization,
and entanglement of the infinite ground state are obtained from
the density matrix of |�̃〉 by tracing all the bath degrees of
freedom [Eq. (16)].

Our numerical results show, for instance, that the Heisen-
berg model on infinite honeycomb lattice is accurately sim-
ulated by a ĤFB that only contains Np = 18 physical sites
surrounded by Nb = 12 bath sites. For the 3D Heisenberg
models on infinite simple cubic lattice, the ground-state
properties including the critical behaviors near the quantum
phase transition point are faithfully captured with only Np = 8
physical and Nb = 24 bath sites. The discrepancy (such as
energy) compared with the state-of-the-art TN algorithm is
around O(10−3).

The algorithm built from our scheme possesses several
advantages (see Appendix G). The algorithm can directly
reach the thermodynamic limit by means of the physical-bath
interactions on the boundary, thus has no conventional finite-
size effects compared with the finite algorithms such as ED and
DMRG. The strongly correlated effects of the infinite models
are accurately considered, and the many-body features, e.g.,
entanglement and criticality, can be efficiently captured, thus
our scheme goes beyond the mean-field-based methods such as
DFT [75] and DMFT [77–79]. Comparing with DMFT where
the original model is approximated by an impurity model in a
bath, we approximate the infinite-size system into a few-body
model that contains its original interactions and the emergent
physical-bath interactions. The accuracy is enhanced by fully
considering all interactions in the cluster, thus outperforming
the Bethe TN-based algorithms [38,55,56,60,85,86]. In higher
dimensions, the computational cost of our scheme is much
lower than, e.g., the TN renormalization group algorithms
[33,33,36,39,44–47]. It has no sign problem [29], thus, can
be used to simulate frustrated and fermionic systems.

The construction of ĤFB makes it possible to investigate
the many-body effects in experiments by designing the few-
body models: quantum simulators described by the predicted
Hamiltonians. The many-body behaviors are expected to be
observed in the bulk of the few-body model. The feasibility of
realizing ĤFB in cold atom experiments is supported by sev-
eral facts observed in our numerical simulations: the few-body
Hamiltonian has the same interaction length as the original
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Hamiltonian; with a proper tolerance of error, say O(10−2),
the size of the few-body model can be very small. Especially
for spin- 1

2 models on simple cubic lattice, we show that it is suf-
ficient to use only the spin- 1

2 ’s as the bath sites. The few-body
Hamiltonian then is just a small spin- 1

2 system that includes

some special interactions (given by Ĥ ∂ ) on the boundary.

II. NUMERICAL RESULTS

A. Heisenberg model on honeycomb lattice

We simulate the ground-state properties of the Heisenberg
model on honeycomb lattice, which is on a gapless point and
considered to be challenging to simulate. The Hamiltonian is
the summation of the two-body interactions as

Ĥ =
∑

〈i,j〉
Ĥ (i,j ). (1)

For the Heisenberg model, we have Ĥ (i,j ) = JxŜ
x(i)Ŝx(j ) +

JyŜ
y(i)Ŝy(j ) + JzŜ

z(i)Ŝz(j ), with Ŝα(i) (α = x,y,z) the α

component of the spin- 1
2 operators on the ith site and Jα the

coupling constants.
In stage one, the bath is calculated by choosing two

neighboring sites as the supercell. It means ĤFB that appears
in this stage contains Np = 2 physical and Nb = 4 bath sites.
For stage two, we choose two different clusters to construct
ĤFB , which contains Np = 8 physical sites surrounded by
Nb = 8 bath sites and Np = 18 physical sites with Nb = 12
bath sites, respectively (Fig. 1). We utilize finite DMRG [24]
to solve the ground state of ĤFB .

The ground-state energy E with different dimensions of
the bath site D = 4 and 8 is shown in Fig. 2. One can see
that E converges rapidly by increasing the dimension cutoff
of DMRG χ to E = −0.543 and −0.544 for the two clusters,
respectively. With larger D, the bath will be able to carry more

FIG. 2. The ground-state energy E (per site) of the Heisenberg
model on honeycomb lattice. The cluster we choose is (Np + Nb)
site where Np and Nb denote the number of physical and bath sites,
respectively (see Fig. 1). The ED on the 18-site cluster with periodic
boundary condition suffers severe finite-size effects, and the tree
approximation (simply from the bath calculations) underestimates
long-range correlations. Our results are consistent with second
renormalization group (SRG) of TN, showing that both finite-size
effects and the error from the tree approximation are largely reduced.

FIG. 3. “Finite-size effects” of AOP from the ground-state mag-
netization (absolute value) and the bond energies e = 〈Ŝi Ŝj 〉 of the
Heisenberg model on honeycomb lattice. Here, we show the cluster
with Np = 18 physical and Nb = 12 bath sites. Each peak shows the
absolute values of the local magnetization of the physical sites, which
ranges from M = 0.329 (center) to 0.347 (boundary). We take D = 8
and χ = 60. For comparison, the results from the tree approximation
in the first stage are e = −0.360 and M = 0.347, and those from
SRG are e = −0.363 and M = 0.310.

entanglement and lead to a better accuracy. The accuracy will
also be improved by increasing χ since the result will approach
to the exact ground state of ĤFB with no DMRG error. When
χ is sufficiently large, the errors inside the cluster due to the
tree approximation, Trotter discretization, and truncations will
vanish.

For a comparison, the ground-state energy by ED on such
a cluster of 18 spins (Fig. 1) with periodic boundary condition
is E = −0.561, which suffers severe finite-size effects. The
result solely by bath calculation (tree approximation) is E =
−0.540, and by second renormalization group (SRG) [41]
of TN is E = −0.545. SRG belongs to the state-of-the-art
TN approaches for simulating 2D ground states with a high
accuracy. The difference compared with our results are only
O(10−3).

To further investigate the effects of the finiteness of the
clusters, we calculate the nearest-neighbor bond energies e =
〈Ŝi Ŝj 〉 and magnetizations with the cluster of Np = 18 and
Nb = 12 (Fig. 3). The changes of both quantities in different
positions of the cluster are mostly O(10−2). By comparing
with the tree results in the bath calculation and SRG, we find
that the bond energies and magnetization on the boundary of
the cluster are very close to the tree results, and in the middle
where the “boundary effects” as well as the difference between
our results and the SRG are minimal.

Our simulations show that without increasing the compu-
tational cost much, the finite-size effects are suppressed by
introducing the entanglement bath, and at the same time the
error from the tree approximation is reduced by choosing larger
clusters.

B. Spin models on simple cubic lattice

We investigate the ground-state properties and quantum
phase transitions in the spin models on simple cubic lattice. For
bath calculations, the supercell is chosen to be two neighboring
sites, giving a ĤFB with Np = 2 physical and Nb = 10 bath
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FIG. 4. The ground-state energy E of the Heisenberg model on
simple cubic lattice versus χ is shown in the left figure. The simulation
by QMC on a (10 × 10 × 10) lattice with periodic boundary condition
gives E = −0.902. The inset shows the cluster with Np = 8 physical
(blue balls) and Nb = 24 bath sites (red balls) used in the second
stage in our AOP approach for the simulations on cubic lattice. The
legs stand for the interactions between the connecting sites. In the
right one, we show the staggered magnetization Ms and correlation
length ξ of the ground state. We take D = 2 and 3.

sites. In stage two, we choose a cubic with Np = 8 physical
and Nb = 24 bath sites to construct ĤFB (inset of Fig. 4).

The ground-state energy E, staggered magnetization Ms ,
and dynamic correlation length ξ of the antiferromagnetic
Heisenberg model on simple cubic lattice are shown in Fig. 4.
The energy converges to E = −0.904, while that from QMC
[87–89] on a (10 × 10 × 10) lattice with periodic boundary
condition is E = −0.902. Note the result from the tree ap-
proximation in the first stage is E = −0.892, which is already
quite accurate. For Ms and ξ , the finite-size effects are much
stronger for our QMC calculations. The AOP simulations
show that Mu = 0 (uniform magnetization), Ms = 0.445, and
ξ = 0.405. Our results are consistent with the widely accepted
consensus, that its ground state is an antiferromagnetic ordered
(Néel) state with a short correlation length.

We investigate the quantum phase transition of the anti-
ferromagnetic Ising model in a transverse field on simple
cubic lattice (Fig. 5), where the Hamiltonian reads as Ĥ =∑

〈i,j〉 Ŝ
x(i)Ŝx(j ) + h

∑
i Ŝ

z(i). For a comparison, we try
different dimension cutoffs with D = 2, χ = 10 and D =
3, χ = 20. The critical field is found to be around hc = 2.66,
consistent with the results from other algorithms (Table I).

Our results show that from the few-body Hamiltonian, the
scaling behavior in the critical region can be faithfully captured
and the critical exponents are consistent with the results
obtained by other methods. Meanwhile, obvious improvement
in stage two is observed compared with stage one (Bethe
approximation with a small cluster). By fitting the data in
stage two of D = 3 and χ = 20 near the critical point, we find

Ms ∝ (hc − hx)β
∗
, (2)

TABLE I. The values of the critical field hc with the perturbation
expansions (PE) [90], cluster quantum Monte Carlo (cQMC) [91],
linked-cluster expansions (LCE) [66], mean-field theory (MFT) [92],
and our AOP simulations in stages one and two.

PE cQMC LCE MFT Stage one Stage two

hc 2.60 2.58 2.65 3 2.8 2.66

with β∗ = 0.48, which is close to but slightly larger than
the perturbation expansions result β∗ = 0.46. Note that the
exponent from the fitting on the data of stage one is not reliable,
which gives β∗ = 1.

We also calculate the dynamic correlation length ξ , which
shows a peak at the critical point and scales as

ξ ∝ (hc − hx)−σ , (3)

with σ = 0.25 near the critical point in stage two. In stage one,
we have σ = 0.23. The exponent of the (spatial) correlation
length by the perturbation expansions is σ = 0.5 [90]. The
discrepancy might be caused by the errors from both sides.
Regarding the TN algorithms, the correlation length in the
critical region will diverge with the scaling of the bath
dimension D as well as the DMRG dimension cutoff χ (unlike
Ms which converges to zero). Thus, it is difficult to directly
extract the exponent of ξ with fixed dimensions. The good
thing is that the algebraic behavior of ξ is clearly observed.
What is open is how to get an accurate value of σ by the
scaling factors versus not only hx but also χ and D. See more
discussions about the error of correlation functions with TN
approaches in Appendix F.

III. METHOD: HIGHER-DIMENSIONAL AB INITIO
OPTIMIZATION PRINCIPLE APPROACH

The idea of AOP scheme [84] is, without any previous
knowledge of the ground state, to transfer the infinite system to
a finite one embedded in an entanglement bath. In the language
of TN, the idea is to encode the contraction of an infinite
TN in a simplest-possible local function that can be exactly
computed, with smallest-possible number of inputs. The 1D
version is briefly presented in Appendix A, where we also
explain the relations and differences compared with the AOP
approach in higher dimensions. To present the approach in

FIG. 5. Staggered magnetization per site Ms and dynamic cor-
relation length ξ of the ground state of the transverse Ising model
on simple cubic lattice. The results obtained in stage one (Bethe
approximation) and stage two are shown for comparison. We take
D = 2, χ = 10 and D = 3, χ = 20. The quantum phase transition is
found to occur at hc = 2.66. The critical behaviors are obtained by
fitting the data from the results of stage two near hc, where we have
Ms ∝ (hc − hx)0.48 and ξ ∝ (hc − hx)−0.25.
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FIG. 6. The left figure shows Eq. (4). The right one shows the
construction of the cell tensor given by Eq. (5).

high dimensions, we take the 2D spin model with nearest-
neighbor couplings on honeycomb lattice as an example. The
implementation can be easily generalized to other models on
2D and 3D lattices.

A. Stage One: Calculate the entanglement bath

The first stage is to calculate the entanglement bath
represented by a set of tensors dubbed as boundary tensors.
They are obtained by solving a set of self-consistent eigenvalue
equations [see Eqs. (6)–(10) below]. These equations are
parametrized by the Hamiltonian as well as by the boundary
tensors themselves, thus, they can be solved in an alternative
way: starting from an arbitrary guess, we update one boundary
tensor by fixing all others as the parameters of the equations,
and iterate such a procedure for every tensor until the fixed
point is reached.

Although our method is based on the TN representation
of the imaginary-time evolution with Trotter-Suzuki decom-
position [93] like several existing methods [33,34,37,44–
46], the idea here is to encode the TN in the eigenvalue
equations [84,94] instead of contracting the TN. On the other
hand, the implementation in this stage is borrowed from the
generalization of DMRG on an infinite tree [85,86], which can

be easily extended to 3D models with high efficiency. In the
DMRG language, the (convergent) boundary tensors can be
understood as the infinite environment of the tree brunches.

To begin with, one chooses a supercell that obeys the
translational invariance, e.g., two sites connected by a parallel
bond (see the smallest shaded circle in Fig. 1), and construct
the cell tensor that parametrizes the eigenvalue equations. The
bulk interaction is simply the coupling between these two
spins, i.e., Ĥ B(i,j ) = Ĥ (i,j ). For the interactions between
two neighboring supercells, we define the two-body operator
F̂ ∂ (i,j ) = I − τĤ (i,j ) and do the singular value decomposi-
tion (Fig. 6) as

F̂ ∂ (i,j ) =
∑

a

F̂ L(i)a ⊗ F̂ R(j )a. (4)

We dub a as the boundary index.
To obtain the TN of the imaginary-time evolution, we

define the cell tensor that is the product of the (shifted) bulk
Hamiltonian with F̂ L

a and F̂ R
a (Fig. 6) as

F̂(i,j )a1a2a3a4 = F̂ L(i)a1 F̂
L(i)a2 F̂

R(j )a3 F̂
R(j )a4H̃

B(i,j ),

(5)

with H̃ B(i,j ) = I − τĤB(i,j ). Note that both F̂ ∂ (i,j ) and
H̃ B(i,j ) can be different from the current choice. F̂ ∂ (i,j ) can
be different when the model has long-range interactions, and
H̃ B(i,j ) can be different when choosing different subsystems
to define the supercell. F̂ (i,j ) [95] can be understood as a set of
quantum operators defined in the Hilbert space of the supercell
(spins i and j ) labeled by the boundary indexes a1, a2, a3, and
a4. Similar to 1D AOP [84], τ is in fact the Trotter step, and
F̂(i,j ) gives the TN representation of I − τĤ with an error
O(τ 2).

Then, with the boundary tensors |V [x]) (guessed or previ-
ously obtained in the last iteration) and the cell tensor F̂ (i,j ),
we define five eigenvalue equations as

Ĥ(i,j )μ′
1μ

′
2μ

′
3μ

′
4,μ1μ2μ3μ4 =

∑

a1a2a3a4

{
V [1]

∣∣
a1μ1μ

′
1

[
V [2]

∣∣
a2μ2μ

′
2
F̂ (i,j )a1a2a3a4

∣∣V [3]
]
a3μ3μ

′
3

∣∣V [4]
}

a4μ4μ
′
4
, (6)

M
[1]
a1μ1μ

′
1,a3μ3μ

′
3
=

∑

a2a4μ2μ
′
2μ4μ

′
4

[
V [2]

∣∣
a2μ2μ

′
2
〈Ã[1](i,j )|μ′

1μ
′
2μ

′
3μ

′
4
F̂(i,j )a1a2a3a4 |Ã[1](i,j )〉μ1μ2μ3μ4

∣∣V [4]
]
a4μ4μ

′
4
, (7)

M
[2]
a2μ2μ

′
2,a4μ4μ

′
4
=

∑

a1a3μ1μ
′
1μ3μ

′
3

[
V [1]

∣∣
a1μ1μ

′
1
〈Ã[2](i,j )|μ′

1μ
′
2μ

′
3μ

′
4
F̂(i,j )a1a2a3a4 |Ã[2](i,j )〉μ1μ2μ3μ4

∣∣V [3]
]
a3μ3μ

′
3
, (8)

M
[3]
a1μ1μ

′
1,a3μ3μ

′
3
=

∑

a2a4μ2μ
′
2μ4μ

′
4

[
V [2]

∣∣
a2μ2μ

′
2
〈Ã[3](i,j )|μ′

1μ
′
2μ

′
3μ

′
4
F̂(i,j )a1a2a3a4 |Ã[3](i,j )〉μ1μ2μ3μ4

∣∣V [4]
]
a4μ4μ

′
4
, (9)

M
[4]
a2μ2μ

′
2,a4μ4μ

′
4
=

∑

a1a3μ1μ
′
1μ3μ

′
3

[
V [1]

∣∣
a1μ1μ

′
1
〈Ã[4](i,j )|μ′

1μ
′
2μ

′
3μ

′
4
F̂(i,j )a1a2a3a4 |Ã[4](i,j )〉μ1μ2μ3μ4

∣∣V [3]
]
a3μ3μ

′
3
. (10)

By solving the leading eigenvector of Ĥ(i,j ) given by Eq. (6),
we obtain a tensor |A(i,j )〉μ1μ2μ3μ4 dubbed as central tensor
with μ1, μ2, μ3, and μ4 called virtual indexes according to
the TN terminology. The central tensor can be considered as
a state in the Hilbert space of the supercell labeled by four
virtual indices.

Meanwhile, |V [x]) is obtained as the (left) leading eigen-
vector of M [x] [Eqs. (7)–(10)]. One can see that M [x] is

defined by the isometries |Ã[x](i,j )〉 that is obtained by the
QR decomposition of |A(i,j )〉 (referring to the xth virtual
bond μx) of the central tensor. For example, for x = 3, we
have (Fig. 7)

|A(i,j )〉μ1μ2μ3μ4 =
∑

ν

|Ã[3](i,j )〉μ1μ2νμ4R
[3]
νμ3

. (11)
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FIG. 7. The graphic representations of Ĥ (i,j ) in Eq. (6) and M [3]

in Eq. (9) are given in the left and middle figures, respectively. The
QR decomposition [Eq. (11)] of the central tensor |A(i,j )〉 is shown
in the right figure, where the arrows indicate the orthogonality of
|Ã[3](i,j )〉 [Eq. (12)].

|Ã[3](i,j )〉 is orthogonal, satisfying

∑

μ1μ2μ4

〈Ã[3](i,j )|μ1μ2μ3μ4 |Ã[3](i,j )〉μ1μ2μ
′
3μ4 = Iμ3μ

′
3
. (12)

These isometries play the role of the renormalization
group flow in the tree DMRG [85,86]. Similarly, |V [x])axμxμ′

x

can be understood as a “state” defined in the space of the
boundary index ax labeled by μx and μ′

x [96]. The graphic
representations of Ĥ(i,j ) and M [3] are given in Fig. 7 as
examples.

One can see that these equations are parametrized by the
solutions of others, and can be solved in an alternative way in
practice. One can start with four random |V [x])’s and calculate
|A(i,j )〉 by solving the leading eigenvector of Eq. (6). Then,
one obtains |Ã[x](i,j )〉’s using Eq. (11) and update the |V [x])’s
according to Eqs. (7)–(10). Repeat this process until the central
tensor and all boundary tensors converge.

In fact, the ground-state properties can already be well
extracted by the central tensor |A(i,j )〉. For example, the
reduced density matrix of the supercell ρ̂(i,j ) = Tr/(i,j )|�〉〈�|
(with |�〉 denoting the ground state of the infinite model) is
well approximated by the central tensor as

ρ̂(i,j ) �
∑

μ1μ2μ3μ4

|A(i,j )〉μ1μ2μ3μ4〈A(i,j )|μ1μ2μ3μ4 . (13)

Since each boundary tensor can be understood as the
environment of an infinite tree branch, the original model
is actually approximated at this stage by one defined on an
infinite tree. Note that when only looking at the tree locally
(from one site and its nearest neighbors), it looks the same
to the original lattice. Thus, the loss of information is mainly
long range, i.e., from the destruction of loops. Although it has
been shown numerically by many previous works that the tree
approximation is very accurate especially for gapped systems
[38,55,56,60], we are still facing the difficulty of controlling
the effects (errors) brought by such an approximation. More
discussions about such a tree approximation are given in
Appendix B, starting from the state ansatz behind our
approach. One can also find more details in the fourth section
of a recent paper [97]. To further improve the precision in
a systematic way, the next stage is to embed a much larger
subsystem in the entanglement bath.

FIG. 8. The left figure shows the bath Hamiltonian Ĥ ∂ [Eq. (14)]
that gives the interaction between the corresponding physical and
bath sites. The few-body Hamiltonian in Eq. (15) is formed by the
shifted bulk Hamiltonian and Ĥ ∂ between every physical site on the
boundary and a neighboring bath site. For simplicity, the middle figure
only illustrates four of the Ĥ ∂ ’s. The right one shows the ground-
state ansatz of AOP approach, which is the bulk state of the few-
body Hamiltonian entangled with several branches of infinite tree
PEPS. In fact, the number of tree branches should equal to the number
of the physical sites on the boundary (i.e., the number of Ĥ ∂ ). For
conciseness, we only illustrate four of the tree branches.

B. Stage two: Construct the few-body Hamiltonian and solve it

The second stage is to choose a finite cluster and use the ob-
tained boundary tensors to construct a few-body Hamiltonian.
All interactions inside the cluster will be fully considered to re-
duce the error from the tree approximation. The entanglement
bath mimics the environment of the infinite tree branches, thus,
the algorithm directly accesses the thermodynamic limit and
there is no conventional finite-size error that appears in, e.g.,
ED, DMRG, or QMC.

The embedding is based on the generalizations of Ĥ(i,j )
[Eq. (6)] in stage one. From the formulation given above, one
can see that Ĥ (i,j ) is actually the product of two parts. The first
is the shifted Hamiltonian that contains all interactions inside
the supercell (two neighboring sites in our example), and the
second is in fact the physical-bath interactions (Fig. 8), whose
Hamiltonian is written as

Ĥ ∂ (n,x)μxμ′
x
=

∑

ax

F̂ L(R)(n)ax
|V [x])axμxμ′

x
. (14)

Now, we extend the supercell to a chosen larger clus-
ter, where the few-body Hamiltonian denoted by ĤFB is
written as

ĤFB =
∏

〈x∈cluster,n∈bath〉
Ĥ ∂ (n,x)

∑

〈i,j〉∈cluster

[I − τĤ (i,j )]. (15)

Same as Ĥ (i,j ), ĤFB is also formed by two terms (Fig. 8).
The first term is the product of several bath Hamiltonians
that mimic the interactions between the cluster and the
environment, and in the second term, the summation in Eq. (15)
contains all couplings inside the cluster.

The entanglement bath only “interacts” with the physical
sites nearby according to the coupling distance of the original
Hamiltonian. In our example with nearest-neighbor couplings,
every physical site on the boundary interacts with a bath site
and, thus, the number of Ĥ ∂ (n,x) in the product above scales
with the length of the boundary of the cluster. For this reason,
ĤFB is the product/summation of sparse or local matrices, and
its ground state can be efficiently solved by using the finite-size
approaches, such as ED or DMRG.
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Note that if one takes the cluster as the supercell with two
sites, Eq. (15) becomes exactly Eq. (6). The bath calculation
itself can be considered as using ED to solve the ĤFB that
contains only the supercell and the bath. The cluster can be ar-
bitrarily chosen according to the computational capacity, and it
does not have to obey the translational invariance of the model.

With the ground state |�̃(i,j, . . . )〉{μ} of ĤFB , the physical
properties such as energy, magnetization, etc., can be obtained
from the density operator ρ̃ by tracing all degrees of freedom
of the bath sites as

ρ̃(i,j, . . . ) =
∑

{μ}
|�̃(i,j, . . . )〉{μ}〈�̃(i,j, . . . )|{μ}. (16)

Again, this is a generalization of Eq. (13).

IV. DISCUSSIONS ABOUT EXPERIMENTAL
REALIZATIONS

Our work provides a way of using few-body experiments
to mimic many-body features of infinite systems. Since the
few-body Hamiltonian only contains a handful of sites with
local interactions, one could design cold atom experiments
to realize it in a laboratory. Specifically speaking in our
examples, Ĥ ∂ is the interaction between a physical spin and
an artificial spin with D (bath) degrees of freedom. Here, we
assume that Ĥ ∂ is Hermitian, which should be true due to
the structure of the eigenvalue equations [Eqs. (7)–(10)] of
the boundary tensors, where we have |V [x])aμμ′ = |V [x])∗aμ′μ.
The task here is to get the coupling constants explicitly for
implementing experiments.

To this end, let us transform Ĥ ∂ to the standard summation
form. We define Ĥ ∂ that satisfies

Ĥ ∂ (n,x) = I − τĤ ∂ (n,x) + O(τ 2). (17)

It means to the first order of τ, Ĥ ∂ is the evolution operator
of a Hamiltonian Ĥ ∂ for an infinitesimal imaginary time. This
relation is true because in Eq. (14), F̂ L(R) is obtained by the
decomposition of I − τĤB , and the boundary tensor |V [x]) has
the similar structure since it forms a continuous MPS [58,98]
in the imaginary-time direction.

Then, the few-body Hamiltonian in Eq. (15) can be rewrit-
ten in a standard summation form as ĤFB = I − τĤ FB +
O(τ 2) with

Ĥ FB =
∑

〈i,j〉∈cluster

Ĥ (i,j ) +
∑

〈x∈cluster,n∈bath〉
Ĥ ∂ (n,x). (18)

The two summations contain the physical and physical-bath
interactions, respectively, and all terms are local as discussed
above. Again, ĤFB is the evolution operator of Ĥ FB for an
infinitesimal imaginary time to the first order of τ , i.e., ĤFB �
e−τĤ FB

.
The coupling constants of the physical-bath interactions

can be calculated by expanding Ĥ ∂ as

Ĥ ∂ (n,x) =
∑

αα′
Jαα′ (n,x)Ŝα′

(n)Ŝα(x) (19)

with Jαα′ (n,x) the physical-bath coupling constants and {Ŝα}
and {Ŝα′

} the corresponding spin operators (including identity)

that give the complete basis for the Hermitian matrices. {Ŝα} is

in fact the physical spin operator. For {Ŝα′
}, one can generally

choose the generators of SU(N) groups, which give a complete
basis for an N × N Hermitian matrix. Then, the bath spins
should be SU(N) spins. If a symmetry [99–101] is used in
the tensors, for example SU(2) symmetry for spin models, the
bath spins are SU(2) spins with higher total momentum, and
one will explicitly have the coefficients from the elements of
Ĥ FB . Moreover, it is possible to translate the whole few-body
Hamiltonian into the second-quantized picture, by expanding
it with the bosonic or fermionic operators. The key is that the
chosen operator basis has to completely expand the physical-
bath Hamiltonian.

From our numerical results, we can see that the properties
of the infinite model can be accurately mimicked by very
small bath dimension D and cluster size. Suppose we set the
tolerance of the experimental error as O(10−2). In this case,
the cluster can be chosen as two sites. Then, we have Np = 2,
with Nb = 4 for honeycomb lattice and Nb = 10 for simple
cubic lattice. For the spin- 1

2 models on simple cubic lattice,
the dimension of the bath sites can be chosen as D = 2. This
means the bath spins are simply spin- 1

2 , same as the physical
ones, which makes it easy to implement in experiments.

In short, the steps to mimic an infinite many-body system
with a few-body model are as follows:

(i) Starting from the Hamiltonian of the target model [e.g.
Eq. (1)], compute the physical-bath Hamiltonian Ĥ ∂ [Eq. (14)]
by our AOP algorithm.

(ii) Write Ĥ ∂ into Ĥ ∂ by Eq. (17), so that the total
Hamiltonian of the few-body model is in a standard summation
form [Eq. (18)].

(iii) According to the symmetry of the system, choose a
set of matrix basis to expand Ĥ ∂ [Eq. (19)]. The basis will
determine which kind of spins will be used as the bath sites,
and the expansion coefficients will be the coupling constants.

(iv) Build the few-body experiment with several physical
sites in the bulk and bath sites on the boundary (e.g., Fig. 1 or
the inset of Fig. 4). The coupling constants in the bulk are the
same as the target model, and the coupling constants on the
boundary are given by the expansion coefficients of Ĥ ∂ .

(v) Observe the properties of the bulk, which mimics the
ground state of the infinite system.

V. SUMMARY AND OUTLOOK

We propose an ab initio TN approach that allows for
accurate survey of the ground states of infinite many-body
systems in higher dimensions by an effective few-body models
embedded in an “entanglement bath.” On one hand, our
scheme gives to birth to a flexible and efficient numeric
algorithm for quantum lattice models. Our approach can
directly access the thermodynamic limit by introducing the
physical-bath interactions, which outperforms the finite-size
methods such as ED and DMRG. The embedding idea allows
for efficient and accurate simulations of infinite 3D quantum
models, surpassing the existing TN methods. It is free from
the “negative-sign” problem and can access to frustrated spin
and fermionic models. It can accurately capture many-body
features including entanglement, phase transitions, and critical
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behaviors, thus it goes beyond the DFT-based approaches. It
could be readily applied to other (d � 3)-dimensional systems
and could be generalized to (d � 4)-dimensional models.

In practice, our numerical simulations show that with only
a handful of sites, the few-body models can accurately capture
the many-body features of the infinite systems. With less than
18 physical and 12 bath sites, the difference between our results
and the state-of-the-art TN methods is less than O(10−3). For
the spin models on simple cubic lattice, the properties of the
quantum phase transitions in a magnetic field, including the
phase transition point and critical exponents, are faithfully
captured by the few-body model containing only 8 physical
and 24 bath sites.

On the other hand, the few-body Hamiltonian only contains
local interactions among a handful of sites, it can be realized
by, e.g., cold atoms or ions. It is possible to further improve
the experiments by using the trick of synthetic gauge fields,
where the higher spins, for instance, can be extended to
lower spins in a synthetic dimension [102]. We suggest
to investigate infinite many-body systems by realizing the
predicted few-body Hamiltonian with cold atoms or ions. The
many-body phenomena are expected to be observed in the
bulk. Furthermore, our work exhibits a different perspective of
designing quantum devices [103] by utilizing the many-body
properties that appear in the bulk of the few-body system,
e.g., controlling the entanglement or quantum fluctuations by
driving the system to approach or leave the critical region.

ACKNOWLEDGMENTS

We acknowledge L. Tarruell, I. Cirac, E. Tirrito, X. Chen, N.
Li, and J. Kong for enlightening discussions. C.P. is grateful
to ICFO (Spain) for the hospitality during her visit and is
thankful for financial support from UCAS and ICFO. S.J.R.
is indebted to N. Li for her kind help on illustrating the
figures of lattices. C.P. thanks Y.-H. Lan for modifying the
references format. This work was supported by ERC AdG
OSYRIS (ERC-2013-AdG Grant No. 339106), the Spanish
MINECO grants FOQUS (Grant No. FIS2013-46768-P),
FISICATEAMO (Grant No. FIS2016-79508-P), and “Severo
Ochoa” Programme (Grant No. SEV-2015-0522), Catalan
AGAUR SGR 874, Fundació Cellex, EU FETPRO QUIC,
EQuaM (FP7/2007-2013 Grant No. 323714), and CERCA
Programme / Generalitat de Catalunya. S.-J.R. acknowledges
Fundació Catalunya-La Pedrera. Ignacio Cirac Program Chair
at ICFO. G.S. and C.P. were supported by the MOST of China
(Grant No. 2013CB933401), the NSFC (Grant No. 11474279),
and the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDB07010100).

APPENDIX A: AB INITIO OPTIMIZATION PRINCIPLE
APPROACH IN ONE DIMENSION

Understanding the 1D AOP [84,98] will be a lot of
help to understand the higher-dimensional version. In this
appendix, we present the 1D AOP scheme that does not have
the Hermitian requirement [98]. Let us take the following
translationally invariant Hamiltonian as an example, which

FIG. 9. The illustration of the self-consistent eigenvalue equa-
tions of 1D AOP approach.

reads as

ĤInf =
∑

n

Ĥn,n+1, (A1)

with Ĥn,n+1 the two-body interaction.
With the Hamiltonian, the next step is to prepare the cell

tensor that parametrizes the self-consistent equation. This step
is the same for the AOP approaches introduced in Sec. III.
One first chooses a supercell that obeys the translational
invariance, e.g., two adjacent sites. The bulk interaction is
simply the coupling between these two spins, i.e., Ĥ B(i,j ) =
Ĥ (i,j ). Then, we define the two-body operator F̂ ∂ (i,j ) =
I − τĤ (i,j ) as the shifted interaction on the boundary of the
supercell and do the singular value decomposition as

F̂ ∂ (i,j ) =
∑

a

F̂ L(i)a ⊗ F̂ R(j )a. (A2)

F̂ L(i)a and F̂ R(j )a are two sets of one-body operators (labeled
by a) acting on the left and right spins of F̂ ∂ (i,j ), respectively.

The cell tensor is defined as the product of the (shifted) bulk
Hamiltonian with F̂ L

a and F̂ R
a as

F̂ (i,j )a1a2 = F̂ R(i)a1 F̂
L(j )a2H̃

B(i,j ), (A3)

with H̃ B(i,j ) = I − τĤB(i,j ).
Then, with two boundary tensors |V [x]) (guessed or previ-

ously obtained in the last iteration) and the cell tensor F̂ (i,j ),
we define three eigenvalue equations (Fig. 9) as

Ĥ (i,j )μ′
1μ2,μ1μ2 =

∑

a1a2

[
V [1]

∣∣
a1μ1μ

′
1
F̂(i,j )a1a2

∣∣V [2]
]
a2μ2μ

′
2
,

(A4)

M
[1]
a1μ1μ

′
1,a2μ2μ

′
2
= 〈Ã[1](i,j )|μ′

1μ
′
2
F̂ (i,j )a1a2 |Ã[1](i,j )〉μ1μ2 ,

(A5)

M
[2]
a1μ1μ

′
1,a2μ2μ

′
2
= 〈Ã[2](i,j )|μ′

1μ
′
2
F̂ (i,j )a1a2 |Ã[2](i,j )〉μ1μ2 .

(A6)
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FIG. 10. The illustration of the encoding scheme for a 2D TN.

By solving the leading eigenvector of Ĥ(i,j ) given by
Eq. (A4), we obtain the central tensor |A(i,j )〉μ1μ2μ3μ4 . The
central tensor can be considered as a state in the Hilbert space
of the supercell labeled by two virtual indexes. Meanwhile,
|V [x]) is obtained as the (left) leading eigenvector of M [x]

[Eqs. (A5) and (A6)]. M [x] is defined by the isometries
|Ã[x](i,j )〉 that is obtained by the QR decomposition of
|A(i,j )〉. For example, for x = 1, we have

|A(i,j )〉μ1μ2 =
∑

ν

|Ã[1](i,j )〉νμ2R
[1]
νμ1

. (A7)

|Ã[1](i,j )〉 is orthogonal, satisfying
∑

μ2

〈
Ã[1](i,j )

∣∣
μ1μ2

Ã[1](i,j )
〉
μ′

1μ2
= Iμ1μ

′
1
. (A8)

These isometries play the role of the renormalization group
flow in the standard DMRG [24]. Similarly, |V [x])axμxμ′

x
can

be understood as a “state” defined in the space of the boundary
index ax labeled by μx and μ′

x . One can see that these equations
are parametrized by the solutions of others, and can be solved
in an alternative way in practice.

In the language of TN, Eqs. (A4)–(A6) encode an infinite
TN that represents the imaginary-time evolution for the ground
state (Fig. 10). Define a local scalar function shown in the top

of Fig. 10. It is easy to see that this function is maximized
at the fixed point of the self-consistent equations. Then, one
can reconstruct an infinite MPO multiplied with an MPS and
its conjugate by repetitively replacing |V [x]) by M [x]|V [x]).
Still, the scalar function is maximized, meaning the MPS is
the dominant eigenstate of the MPO. One can again iteratively
replace one MPS by the product of the MPS and the MPO to
reconstruct the whole infinite TN. Note such a reconstruction
can be understood in an opposite order: by going from the
bottom to the top of Fig. 10, it actually gives a contraction
scheme of the TN.

There are two important constraints to realize such a
reconstruction. In the step from the local scalar function to
MPO, we have (V [x]|V [x]) = 1 since it should be the eigenstate
of M [x]. In the second step from the MPO to the whole TN,
we require that the MPS is normalized, which is actually a
nonlocal constraint. In the original proposal of the 1D AOP
[84], this constraint is turned to be local with some tricks under
the assumption that all eigenvalue problems are Hermitian. In
the generalized 1D version [98] presented above, the MPS is
normalized because of the orthogonality of |Ã[x](i,j )〉.

Now, we explain the few-body Hamiltonian that mimics the
ground state of the infinite 1D chain. By reviewing Eq. (A3),
the matrix [Eq. (A4)] whose eigenstate gives |A(i,j )〉μ1μ2 can
be written as the product of three parts: one bulk term and two
boundary terms. The bulk term contains simply the physical
interactions of the original model. Similar to Eq. (14) in higher-
dimensional AOP, the boundary parts are defined as

Ĥ ∂ (n,x)μxμ′
x
=

∑

ax

F̂ L(R)(n)ax
|V [x])axμxμ′

x
. (A9)

Then, similar to Eq. (18), the few-body Hamiltonian for the
1D simulator is obtained as

Ĥ FB =
∑

〈i,j〉∈cluster

Ĥ (i,j ) +
∑

〈x∈cluster,n∈bath〉
Ĥ ∂ (n,x), (A10)

where Ĥ ∂ (n,x) satisfies Ĥ ∂ (n,x) = I − τĤ ∂ (n,x) + O(τ 2),
similar to Eq. (17).

Comparing the 1D and higher-dimensional AOP versions,
we can see many connections, including the idea of defining
the eigenvalue equations, the constraints for the encod-
ing/reconstruction process, and the emergence of the few-
body Hamiltonians. The differences are also crucial. For 1D
quantum systems, we can directly encode the imaginary-time-
evolution TN. In higher dimensions, the tree approximation
is introduced. The essential reason is to satisfy the second
constraint, which is the normalization of the state ansatz
(see Appendix B). The normalization of a standard TN
state (e.g., on square lattice) requires an extra loop of TN
encoding or contraction. The AOP algorithm to directly encode
the (D + 1)-dimensional imaginary-time-evolution TN for
D-dimensional quantum system (D � 2) is still an open issue.
This will lead to a general form of the few-body Hamiltonians
(see Appendix E).

APPENDIX B: STATE ANSATZ BEHIND OUR
APPROACH IN HIGHER DIMENSIONS

At the first stage, the ansatz is an infinite tree PEPS that
optimally approximates the ground state in the rank-1 sense
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[56,104]. This can be seen from the tensor network (TN)
encoded in the self-consistent eigenvalue equations. Starting
from Eq. (6), one can substitute each of the boundary tensors
|V [x]) by the contraction of the other three |V [x]), |Ã[x]), (Ã[x]|,
and the cell tensor F̂ according to Eqs. (7)–(10). We are using
the fact that |V [x]) is the eigenvector of M [x]. By doing so
repetitively, an infinite tree PEPS formed by |A〉 and |Ã[x])
can be grown to reach the thermodynamic limit. At the same
time, the TN that gives (I − τĤtree) appears, where Ĥtree is
the Hamiltonian defined on the tree. The local interactions of
Ĥtree are exactly the same with the original model as long as
one only looks at a loop-free subsystem, thus, Ĥtree provides
a reasonable approximation. Such a tree PEPS minimizes the
energy of Ĥtree.

For better understanding the approximation of the state on,
e.g., an infinite square lattice, we could “grow” the tree in
such a way that it fills the whole square lattice. Inevitably,
some |V [x])’s on the boundary of the tree will gather at the
same site. The tensor product of these |V [x])’s in fact gives the
optimal rank-1 approximation [104] of the tensor that forms
the bulk of tree TN (translational invariant). Now, if one uses
the full-rank tensor to replace its rank-1 version (the tensor
product of four |V [x])’s), one will have the TN of I − τĤ

(with H the target Hamiltonian on square lattice) instead of
I − τĤtree, and the tree PEPS becomes the one defined on the
square lattice. Such a picture can be understood in the opposite
manner: imagining that one has the “correct” TN defined on
the square lattice, what we do is to replace certain tensors by
its rank-1 approximations to destruct all the loops of the TN.
In this sense, the tree PEPS defined on the original lattice (not
actually a Cayley tree or Bethe lattice [105,106]) in stage one
provides the optimal loop-free approximation of the ground
state, where the loops are destructed by the rank-1 tensors. It
would be very helpful to refer to the figures and the discussions
in Ref. [56] that are given considering TN contractions.

There are several issues we shall stress. First, one will
actually not do the above substitutions to reconstruct the
tree PEPS. It is automatically encoded in the self-consistent
equations. The “reconstruction picture” is proposed only to
understand the ansatz behind the approach. Second, one may
notice that the self-consistent equations proposed here are
slightly different from those for the rank-1 decomposition
of a single tensor [104]. The reason is that in our case, the
normalization of the PEPS should be considered when doing
the rank-1 approximation. We here borrow the idea of iDMRG
on the tree PEPS [85,86] to satisfy this constraint. The third
issue is about the uniqueness of the reconstruction of the tree
PEPS. Indeed, the contraction of three |V [x])’s, |Ã[x]), (Ã[x]|,
and F̂ to substitute |V [x]) is not unique. However, it is unique
when we require the presence of |Ã[x]), (Ã[x]|, and F̂ , in order
to recover the TN’s of I − τĤ as well as the tree PEPS. This
is due to the uniqueness of the rank-1 decomposition, which
is argued to be a concave problem [104].

Such a tree approximation is also closely related to the
iPEPS algorithms called simple update [38,55,60], where the
infinite PEPS is updated by considering the local environment.
After reaching the fixed point, the PEPS satisfies a set of
self-consistent equations, which lead to a similar tree structure
[55]. Even some long-range effects are ignored; simple updates
are still quite accurate especially for gapped states.

Aimed at reducing the error of the tree approximation, the
second stage of our approach is to construct the few-body
Hamiltonian ĤFB on a larger cluster by reusing the bath
obtained in the first stage, and then calculate the ground state
of ĤFB with a finite-size algorithm. The ansatz behind can
be considered as a generalized tree PEPS. In the center of
the PEPS, the tensor contains all the physical sites inside the
cluster, connected with several infinite tree brunches that are
the same to those appearing in stage one. The bath sites carry
the entanglement between the physical sites in the cluster and
these infinite tree brunches.

APPENDIX C: “FINITE-LOOP” EFFECTS

Thanks to the infinite tree brunches in the PEPS ansatz, our
algorithm does not suffer the conventional finite-size effect
in the algorithms such as ED, QMC, or DMRG. Thus, the
effects from the finiteness of the cluster in the second stage
are essentially different. In the first stage, the system size
is already infinite because the bath encodes the information
of an infinite tree in the eigenvalue equations. Only the loops
beyond the supercell are destroyed in an optimal manner (rank-
1 approximation of the tensors) [56]. In stage two, there will be
no tree error inside the cluster since all interactions there are
fully considered. If the cluster contains larger loops than the
cell tensor used in stage one, the precision will be improved. On
the other hand, there will be no improvement if one increases
the size of the cluster without having larger loops. For this
reason, the “finite-size effects” of AOP mean the errors caused
by the finiteness of the considered loops.

APPENDIX D: COMPUTATIONAL COST

The motivation to use the tree approximation is its efficiency
especially for 3D quantum models. The computational cost of
the first stage is that of the generalized DMRG on an infinite
tree PEPS [85,86], which roughly scales as O(d2N0D3z) with d

the dimension of the physical Hilbert space on one site, N0 the
number of physical sites in the supercell, D the dimension
of a virtual index, and z the coordination number of the
lattice [107].

To solve the few-body Hamiltonian, the computational cost
(leading term) with ED scales as O(dNDN∂

) (N and N∂ the
number of physical and bath sites, respectively), and that with
DMRG scales as O[(N + N∂ ) max(d,D)3χ6] (χ the bond
dimension cutoff of DMRG). The cost is similar to solving
a nearest-neighbor finite-size system that contains two kinds
of sites, whose local Hilbert space is of dimension d (physical)
and D (bath), respectively. Surely one can choose other
algorithms to solve the few-body Hamiltonian in the second
stage, such as QMC or finite PEPS algorithms [108,109].
Benefiting from the fact that the few-body Hamiltonian is the
product (or summation) of local couplings, the efficiency will
be similar to that when applying to the standard (short-range)
Hamiltonians. In addition, it is possible to update the bath
simultaneously in stage two, and the computational cost would
be approximately identical to the cluster update schemes of
TN.
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FIG. 11. The illustrations of three kinds of possible few-body
Hamiltonians that contain several interacting physical and bath sites.
All the physical interactions (black lines) inside the chosen cluster
should be fully considered. The left figure illustrates the one by
using the tree DMRG for the physical-bath interactions Ĥ ∂ (blue
dashes), where there are no bath-bath interactions. By choosing other
algorithms (e.g., SRG or CTMRG) to calculate Ĥ ∂ , it is possible to
also have nearest-neighbor (middle figure) or even long-range (right
figure) bath-bath interactions (red dots).

APPENDIX E: GENERAL FORMS OF FEW-BODY
HAMILTONIAN

As discussed above, the dominant error comes from the
destruction of the loops. As a consequence, the interactions
between the bath and the physical sites are the tensor product
of local terms

ĤFB =
∏

〈x,n〉
Ĥ ∂ (n,x). (E1)

It means that in the standard summation form, there are no
bath-bath interactions (Fig. 11). The tree branches in the
ground-state ansatz are not connected to each other from
anywhere else than the central part.

One can adopt other TN algorithms such as the cluster
or full update schemes [33,34,41,42,44–46,48,49,110,111] to
obtain the physical-bath interactions. Then, the Hamiltonian
will not simply be the tensor product, but generally given by

ĤFB =
∑

{α}

∏

〈x,n〉
Ĥ ∂ (n,x)αx,n . (E2)

Then, the bath-bath interactions will appear in the standard
summation form. See the illustrations of three possible
situations in Fig. 11. The extra summations will lead to another
(similar) PEPS ansatz beyond the one with tree branches,
which should better mimic the infinite environment. However,
the computational cost with the currently known methods will
become much more sensitive to the coordination number and
the dimensionality of the model, making the 3D ground states
extremely difficult to access.

APPENDIX F: DISCUSSIONS ABOUT IMAGINARY-TIME
EVOLUTION PICTURE AND CRITICALITY

IN HIGHER DIMENSIONS

The idea of approximating an infinite Hamiltonian with a
finite effective one has been proposed for the time evolution
of 1D quantum systems [112]. An important difference
in our work is that the “evolution” of the finite effective
model is constructed not from a new Ĥ but with a shift
(I − τĤ ) that is in fact the imaginary-time evolution operator.

It brings several operational advantages for simulating the
ground states, in particular, of higher-dimensional systems.
The triangular structure of the Hamiltonian is avoided here,
thus, the eigenvalue equations for the boundary tensors have
stable solutions and the entanglement bath is well defined. The
few-body Hamiltonians with the bath of higher-dimensional
systems can be easily constructed as the summations of local
terms.

Our scheme makes it possible to adopt the (1 + 1)-D
scaling theories for characterizing criticality [113] to higher-
dimensional models. It is known that any TN algorithms,
essentially, cannot give directly a divergent correlation length
at the critical point. For 1D quantum systems, it has been
shown that at the critical point, any MPS with a finite bond
dimension is gapped and possesses a finite correlation length
ξ [113] satisfying

ξ ∼ Dκ , (F1)

with D the bond dimension of the MPS and κ its scaling
exponent. One can see that with a finite D, ξ is always finite,
and the information of the criticality is hidden in the algebraical
scaling behavior whenD increases. For the scaling of magnetic
field h near the critical point, the algebraic behavior of ξ versus
h can still survive, however, the value of the exponent might
be inaccurate.

For a 2D PEPS, one has to compute the contraction of a 2D
TN (e.g., by iTEBD with MPS) to get its correlations using
finite-dimension cutoffs, and thus the results will still be finite
[114]. To tackle this difficulty, it has been proposed that the
divergence of the correlations can be studied by the scaling of
the bond dimension of the MPS, from which the central charge
of the conformal field theory to characterize the criticality can
be accurately obtained [113,114].

In our approach, the dynamic correlation length of the
ground state ξ is given by the correlation length of an infinite
MPS formed by |V [x]) in the imaginary-time direction, written
as |ψ̃〉 = ∑

{μ}
∏ |V [x])axμxμ′

x
. Such an MPS (dubbed as time

MPS) is quasicontinuous (discretized up to the Trotter step
τ → 0). Let us explain how to get ξ in the AOP approach. In
higher dimensions, the scheme is similar.

The dynamic correlation function of the ground state is
defined as 〈�|Ŝe−βĤ Ŝ|�〉/e−βE − 〈�|Ŝ|�〉2 with |�〉 the
ground state and E the ground-state energy. In our framework,
it is the contraction of a TN, where the two operators are
put in the same column. Thanks to the encoding scheme,
such a contraction becomes the contraction of a tensor stripe
(Fig. 12). This stripe is the product of ĤFB’s [Eq. (15), also
called the transfer matrix] with the two operators in-between.
The dynamic correlation length is defined as the exponent of
the correlation length. One can see that such an exponent is
obtained simply by

ξ = τ

log �0 − log �1
, (F2)

with �0 and �1 the two largest eigenvalues of ĤFB .
An advantage of the dynamic correlation properties is that

we find much less finite-loop or finite-dimension cutoff effects
than the spatial correlations. This is also supported by a recent
DMRG work [115], where the finite-size effects are found
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FIG. 12. The illustrations of the computation of the correlation
functions in 1D AOP.

to be much smaller for the dynamic correlations. Meanwhile,
a finite-dimensional matrix cannot give a critical spectrum. It
means one cannot directly obtain a divergent correlation length
at the critical point, and a scaling of the dimension would be
necessary to identify the criticality. How to do such kinds of
scalings for 2D and 3D states is still an open question.

APPENDIX G: RELATIONS TO OTHER ALGORITHMS

By taking certain limits of the computational parameters,
the relations among our approach and other algorithms are
illustrated in Fig. 13. The simplest situation is to take the
dimension of the bath sites dim(μx) = dim(μ′

x) = 1, and then
Ĥ ∂ can be written as a linear combination of spin operators
(and identity). Thus, in this case, |V [x]) simply plays the role
of a mean field. If one only uses the bath calculation of the
first stage to obtain the ground-state properties, the algorithm
will be reduced to the tree DMRG [85,86]. If one takes the
minimal supercell with D = 1 in stage one, the entanglement
bath will be reduced to a magnetic mean field. By choosing a
large cluster, the DMRG [24] simulation in stage two becomes
equivalent to the standard DMRG for solving the cluster in
a mean field. If one uses D = 1 and chooses a supercell of
a tolerably large size in the first stage without entering stage
two, or if one chooses a small cluster with D = 1 in stage one
and uses ED in stage two to solve the few-body Hamiltonian
with a tolerably large cluster, our approach will become the ED
on the corresponding finite system in a mean field. By taking
the proper supercell, cluster, algorithms, and computational
parameters, our approach outperforms others.

APPENDIX H: GENERALIZATION TO (d � 4)
DIMENSIONS

Benefiting from its flexibility, it is possible to generalize
our approach to even (d � 4)-dimensional quantum models.

FIG. 13. Relations between AOP and several existing algorithms
(PEPS, DMRG, and ED) for the ground-state simulations of 2D and
3D Hamiltonians. The corresponding computational setups in the first
(bath calculation) and second (solving the few-body Hamiltonian)
stages of AOP algorithm are given above and under the arrows,
respectively.

The main problem to be tackled is the computational cost.
In the second stage by using DMRG, for example, the cost
increases polynomially with the size of the cluster, thus also
polynomially with the dimensionality d. In the first stage
with tree DMRG, the cost increases exponentially with d,
which makes the simulations for higher-dimensional models
extremely expensive. Luckily, the main task here is to solve
(2d + 1) number of self-consistent eigenvalue equations, say
five [Eqs. (6)–(10)] for 2D, seven for 3D, and nine for 4D
quantum systems. One way to lower the cost from exponential
to polynomial expenses is to use a finite algorithm such as
DMRG to solve each eigenvalue problem. It is certain that the
stability and efficiency have to be tested.

APPENDIX I: OPEN ISSUES

Several followup issues are to be further investigated.
The flexibility allows for possible incorporation with other
methods. For example, the TN techniques with symmetries
[99–101] can be introduced to lower the computational cost so
that much larger clusters can be reached in the second stage.
Aside from the tree DMRG [85,86], the other TN optimization
schemes such as TN variational techniques [48–50] and tensor
renormalization group algorithms [39,41–43,45,46] can be
adapted when the cost is tolerable. The finite-size scaling of the
cluster should be explored. Our approach could also be readily
generalized to higher-dimensional bosonic and fermionic
lattice models. The entanglement embedding idea with the
physical-bath Hamiltonian proposed here can be adopted to
develop algorithms for infinite systems by hybridizing with
other methods such as QMC, finite, or tree PEPS algorithms
[108,109,116], or the approaches in material sciences and
quantum chemistry, such as DFT [75] and DMET [80].
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