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Variational cluster approach to superconductivity and magnetism in the Kondo lattice model
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We investigate in detail antiferromagnetic (AF) and superconducting (SC) phases as well as their coexistence
in the two-dimensional Kondo lattice model on a square lattice, which is a paradigmatic model for heavy-fermion
materials. The results presented are mainly obtained using the variational cluster approximation (VCA) and
are complemented by analytical findings for the equations of motion of pairing susceptibilities. A particularly
interesting aspect is the possibility to have s-wave SC near half-filling as reported by Bodensiek et al. [Phys.
Rev. Lett. 110, 146406 (2013)] When doping the system, we identify three regions which correspond to an AF
metallic phase with small Fermi surface at weak coupling, an AF metal with a different Fermi surface topology
at intermediate coupling, and a paramagnetic metal with a large Fermi surface at strong coupling. The transition
between these two AF phases is found to be discontinuous at lower fillings, but turns to a continuous one
when approaching half-filling. In the quest for s-wave superconductivity, only solutions are found which possess
mean-field character. No true superconducting solutions caused by correlation effects are found in the s-wave
channel. In contrast, we clearly identify robust d-wave pairing away from half-filling. However, we show that
only by treating antiferromagnetism and superconductivity on equal footing, artificial superconducting solutions
at half-filling can be avoided. Our VCA findings support scenarios previously identified by variational Monte
Carlo approaches and are a starting point for future investigations with VCA and further approaches such as
cluster-embedding methods.
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I. INTRODUCTION

Strong correlations lead to unconventional behavior. This is
in particular true for heavy-fermion materials, where elements
with partially filled f shells contribute strongly localized
f electrons that are perceived as local moments by the
conduction electrons of the s, p, or d shells. It is this interaction
between conduction electrons and f electrons which leads to
the emergence of a variety of unconventional phases. Two
questions which are still debated concern the nature of the
quantum critical point, which is found between a magnetically
ordered and a disordered phase in some of these materials
[1–9] and the nature of superconductivity in others [10–21].
From a theoretical point of view, these questions are often
addressed within a paradigmatic model of heavy-fermion
systems, namely, the Kondo lattice model (KLM) [22], whose
phase diagram on a two-dimensional (2D) square lattice at
T = 0 is the topic of this paper.

In this model, the coupling between localized f spins
and conduction electrons results at weak coupling in an ef-
fective Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction
between the f spins, which leads to an antiferromagnetic
(AF) ordering. In the limit of strong coupling, the local spins
are screened by the conduction electrons and local Kondo
singlets between conduction electrons and f spins are formed.
At zero temperature, the AF order is destroyed at a critical
coupling strength Jc, which amounts to a quantum critical
point (QCP). For this QCP, two scenarios are discussed. In case
of a local QCP [2,3,23], the breakdown of antiferromagnetic
order coincides with the absence of Kondo screening (so-called
Kondo breakdown). If only the AF long-range order vanishes
at the QCP, it is a QCP of Hertz-Millis-Moriya type [5,24–26].

The second important phenomenon treated in our paper
is the emergence of unconventional (non-phonon-mediated)

superconductivity (SC) encountered in certain heavy-fermion
systems. Such phases are often found in the vicinity to
an antiferromagnetic QCP [8], but superconductivity due to
magnetic spin fluctuations associated to other types of order
have also been reported [13,15,27,28]. In some compounds,
superconductivity and antiferromagnetism are even reported to
coexist [16,29]. Within the KLM, the aforementioned RKKY
interaction leads to an antiferromagnetic QCP, and numerical
approaches have indeed reported d-wave SC close to this QCP
recently [30–33].

The scope of this paper is to investigate these aspects
by obtaining and characterizing the phase diagram of the
KLM via the variational cluster approximation (VCA). Since
it is a cluster method, it is able to take into account the
k dependence in Green functions, in contrast to previous
dynamical mean-field theory (DMFT) studies. In particular,
we want to gain further insights into the realization of d-wave
SC and the possibility of stabilizing s-wave SC as reported
by Bodensiek et al. [34]. Where possible, the results will be
compared to the scenarios obtained by other methods, such as
dual fermions [33], dynamical cluster approximation (DCA)
[35,36], real-space DMFT (rDMFT) [37], and (variational)
Monte Carlo [(V)MC] approaches [30,31,38].

The paper is organized as follows: In the next section the
VCA method, which we adopt to study the KLM and the
physical quantities of interest, is introduced. Next, in Sec. III
we discuss the phase diagram for fillings 0.8 � n � 1, which
is the main result of this paper. In Sec. IV we illustrate the
results of the paramagnetic phase at and away from half-filling.
Section V is then devoted to the investigation of magnetism
in this region of the phase diagram. In particular, we discuss
the ground state and the characteristic Fermi surfaces for three
distinct regimes at weak, intermediate, and strong coupling. In
Sec. VI we study superconductivity for local s-wave and nodal
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d-wave order. Concerning s-wave SC, we find only mean-field-
like solutions and no local superconductivity is induced by
correlation effects. In contrast, robust d-wave SC is found and
analyzed in detail. In Sec. VI C, we complement this numerical
study by considering the equations of motion (EOM) for the
pairing susceptibility. Finally, we discuss the interplay of d-
wave SC and AF in Sec. VI D. A summary and outlook in
Sec. VII conclude the paper.

II. MODEL AND TECHNIQUE

In this paper, we study the Kondo lattice model (KLM)

H = −
∑

〈i,j〉,α
tij (ĉ†iαĉjα + H.c.) − μ

∑
i

n̂i

+ J

2

∑
i,α,β

Ŝi · ĉ
†
iασαβ ĉiβ (1)

using the variational cluster approximation (VCA) at zero
temperature. Here, the creation and annihilation operators
of a conduction electron on site i with spin σ are denoted
by c

(†)
iσ and the spin operators of the localized spin on site

i by Ŝi . The first two terms describe a tight-binding band
with nearest-neighbor hopping tij on a square lattice and a
chemical potential μ, which controls the filling of the system.
Throughout the paper, we choose an isotropic hopping on
the lattice, i.e., tij = t for neighboring sites i and j , and
tij = 0 else. The last term of Eq. (1) is the antiferromagnetic
spin-spin Heisenberg interaction between localized spins (f
electrons) and conduction band electrons (c electrons), where
σ represents the vector of Pauli matrices.

The VCA is a well-established cluster method for strongly
correlated electron systems [39–44]. It is based on the
framework of self-energy functional theory [45], where the
self-energy functional (SEF)

�(�) = F (�) + Tr ln
(
G−1

0 − �
)

(2)

is used to calculate the grand potential �. Here, G0 denotes
the noninteracting Green function and F (�) = �LW[G(�)] −
Tr[�G(�)] is the Legendre-transformed Luttinger-Ward func-
tional �LW [46,47]. � is obtained at the stationary point of
�(�) with respect to all possible self-energies, which means
that δ�(�)/δ� = 0. Since the Luttinger-Ward functional is
universal in the sense that it only depends on the interaction,
it is the same for a reference system with identical interaction
terms. Using such a reference system, one can rewrite the
self-energy functional and obtains

�(�′) = �′(�′) + Tr ln
(
G−1

0 − �′) − Tr ln G′, (3)

where all quantities of the reference system have been denoted
by a prime and G′ is the interacting Green function of the
reference system. The approximation of VCA consists in
choosing a tiling of the original system into identical clusters
as a reference system. For the cluster system, the grand
potential �′, the self-energy �′, and the interacting Green
function G′ can be calculated at zero temperature using exact
diagonalization. This approximation amounts to restricting the
variational space of self-energies in Eq. (2) to those which can
be realized on a cluster of finite size.

In practice, the one-body terms of the cluster are varied and
lead to a change in the cluster self-energies. One determines
them such that the SEF is stationary with respect to their
corresponding cluster self-energy. Out of the large set of one-
body terms that could possibly be added to the cluster one
chooses a subset as variational parameters. A more detailed
derivation and discussion of the technique can be found in
Refs. [45,48–50].

Although VCA has been used on a variety of purely
electronic models so far, it turned out to be difficult to treat
spin interactions directly [51,52]. So far, in the context of
heavy-fermion systems, it has only been used to study the
periodic Anderson model [44], which is related to the KLM in
the limit of infinitely large Coulomb repulsion [53]. In this
work, however, we apply it to the KLM [Eq. (1)], which
is an electronic system with pure spin interactions, though
local ones. Here, VCA is applied to the KLM in its standard
form, i.e., quantities that enter the calculation of the SEF like
the noninteracting Green function of the lattice G0 and the
interacting Green function of the cluster G′ are Green functions
only of the electronic part of the KLM. In this way, the
onsite spin interactions are included in the cluster self-energies.
However, propagation of the f spins is not included and would
require an extension of the technique, e.g., based on an adapted
Luttinger-Ward functional [54].

In order to fix the density n to a preset value, the grand
potential (approximated by the self-energy functional) is
Legendre transformed to the free energy [55] and μ is used
as a variational parameter. As further variational parameters,
we then choose the hopping on the cluster t ′ij , the chemical
potential of the reference system μ′ to ensure thermodynamic
consistency [56], and the strengths of potential Weiss fields,
further discussed below. In the main part of the paper, we use
an isotropic hopping on the cluster, which is why we skip the
site indices and refer to the variational parameter by t ′. The
restriction to one isotropic variational parameter is justified as
discussed in Appendix B.

Observables of interest within VCA

The focus of VCA is the calculation of one-body expecta-
tion values. The electron density n is obtained by computing

〈n〉 = −∂�

∂μ

μ′=μ′
opt= 1

N

∫
C<

dz

2πi
Tr[δRR′δσσ ′G(k,z)], (4)

where G denotes the one-particle Green function and the con-
tour of the integration surrounds the negative real-frequency
axis counterclockwise. The vector R runs over the cluster sites,
σ denotes the value of the spin, and μ′

opt is the value of the
cluster chemical potential at the saddle point of the SEF.

As usual in VCA, to allow for the possibility of long-range
order on the cluster, one has to add a fictitious Weiss field to
the cluster Hamiltonian only. In the case of magnetism it takes
the form

HAF = M
∑

R

eiQ·R(nR↑ − nR↓), (5)

where the wave vector Q = (π,π ) corresponds to Néel
antiferromagnetism and R runs over the cluster sites [57].
The strength M of this field is then used as a variational
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parameter. Finally, the staggered magnetization of c electrons
can be obtained at the stationary point as

mc = 1

N

∫
C<

dz

2πi
Tr[eiQ·R(−1)σ GRσ,Rσ (z)]. (6)

Note that the staggered magnetization of f spins is only
available on the cluster as the Green function of the system
does only contain excitations with respect to the conduction
electrons

m
f

cl = 1

N

∑
R

eiQ·R〈
n

f

R,↑ − n
f

R,↓
〉
. (7)

Superconductivity (SC) is captured in a similar way by
adding the Weiss field

HSC = D
∑
i,j

(�ijci↑cj↓ + H.c.), (8)

where D is the strength of the Weiss field and �ij the geometric
factor which is adapted to the specific superconducting channel
studied. In particular, in this paper we focus on local s-wave
SC with

�ij = δij , (9)

and on d-wave SC with

�ij =
{+1 : ri − rj = ±ex,

−1 : ri − rj = ±ey,
(10)

in the case of dx2−y2 SC, where ex/y denote unit vectors along
the lattice directions.

III. PHASE DIAGRAM

The main findings of this work are summarized in the
phase diagram sketched in Fig. 1. At half-filling the system
is insulating for all coupling strengths J/t . Two different
insulating phases are found, namely, an antiferromagnetic
(AF) phase at small couplings J < Jc which is induced by
the effective RKKY interaction and a paramagnetic phase
for larger couplings J > Jc caused by Kondo screening. The
transition between both phases is continuous, which renders
the transition point Jc to be a quantum critical point.

As soon as the system is doped away from half-filling, three
different phases occur. Close to half-filling and for strong cou-
plings J/t , the system is in a paramagnetic metallic phase with
a large Fermi surface. It extends down to the critical coupling
strength Jc, but when doping further away from half-filling,
d-wave superconducting order builds up. At weak couplings
J < Jc, doping the system results in a coexistence of antifer-
romagnetism and d-wave superconductivity. Inside this phase,
both phenomena show within the VCA cooperative behavior
for J/t � 1.2 and competitive behavior for smaller couplings
as discussed in Sec. VI D. When keeping the ratio J/t fixed,
the more the system is doped away from half-filling, the more
the antiferromagnetic order is reduced and it finally vanishes
continuously at a critical electron filling nc(J ). There, the
coexistence phase goes over to a pure d-wave superconductor.

When only considering AF, at the aforementioned value
J/t ∼ 1.2, the Fermi surface changes its topology when
keeping the filling n constant and varying J/t , as discussed
in Sec. V B. At lower fillings within the AF phase, this
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FIG. 1. Schematic phase diagram as obtained with VCA using
a 3 × 2 cluster. At half-filling the system is an antiferromagnetic
insulator for J < Jc = 1.94t and a paramagnetic insulator for J > Jc.
Away from half-filling there are three phases: a paramagnetic metal
close to half-filling at strong coupling, a d-wave superconductor, and
a coexistence region of antiferromagnet and d-wave superconductor.
Furthermore, when suppressing SC, within the AF phase at J/t ∼
1.24 an additional transition line between AF phases with different
Fermi surface topology appears (not shown), as discussed in Sec. V B.

is accompanied by a jump in the value of the AF order
parameter, indicating for a discontinuous transition, which
becomes continuous at fillings n � 0.97.

In the forthcoming sections we will describe in detail how
this phase diagram has been obtained. Furthermore, putative
s-wave SC, pure antiferromagnetic and d-wave SC solutions,
as well as their interplay will be discussed.

IV. PARAMAGNETIC PHASE OF THE KLM

In this section, we start our investigation of the phase
diagram by treating the simplest possible approach in the VCA.
It consists in only considering paramagnetic (PM) solutions,
i.e., we neglect possible long-range order at this first stage.
As VCA does not allow for phases with broken symmetries
unless proper Weiss fields are added, it is possible to investigate
such PM solutions at all coupling strengths irrespective of the
“true” ground state of the system. As we will see later in
Secs. VI B and VI D, this phase is the correct physical solution
at large coupling close to half-filling. However, even for other
parameter regimes, the paramagnetic solution serves as a
starting point and is always considered a reference solution:
even if additional solutions with broken symmetries such as AF
or SC occur, one needs to check, whether their energy is lower
than this normal-state solution without broken symmetry.

A. Kondo insulator at half-filling

The simplest type of insulator which can be encountered
here is the (atomic) Kondo insulator at half-filling that consists
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FIG. 2. Quasiparticle gap �qp at half-filling in the paramagnetic
(J > Jc) and antiferromagnetic (J < Jc) insulator obtained by using
a 3 × 2 cluster. The solutions for the pure paramagnet (PM) without
addition of an AF Weiss field as well as the solution when including
AF are shown. The quantity plotted amounts to μ(n = 1.001) (for
details see text).

of local singlets between f spins and conduction electrons.
Here, we investigate the paramagnetic solution by doping the
system away from half-filling and determine the spectral gap
�μ = �qp/2. One characteristic of an insulator is a vanishing
electronic compressibility χe = 1

n2
∂n
∂μ

. This corresponds to
a plateau at half-filling in a n-versus-μ plot, which we
investigate as a function of J/t for the paramagnetic solution.
Instead of calculating the electron filling as a function of
chemical potential, it is possible to obtain the quasiparticle
gap by doping the system slightly away from half-filling.
Using �qp = limε→0+ μ(n = 1 + ε), it is possible to extract
the quasiparticle gap more efficiently. In order to determine
the quasiparticle gap, one then calculates the stationary points
at n = 1 + ε as a function of J/t . The choice of a finite ε

leads to an error in �qp, but for fillings close to half-filling
(e.g., for n = 1.001) the system is metallic and the chemical
potential nearly coincides with the quasiparticle gap �qp at
half-filling. The so-obtained quasiparticle gap is shown in
Fig. 2. As expected from the strong-coupling picture of a
Kondo insulator the quasiparticle gap grows linearly in J/t for
large coupling. However, at intermediate couplings, J/t � 1.8
deviations from this behavior are found and the gap reduces
much faster. Finally, at J/t � 0.8 the gap vanishes and the
system becomes metallic.

Based on the exact, finite-size extrapolated QMC results of
Ref. [38], one expects to find a finite quasiparticle gap for all
positive (antiferromagnetic) values of J/t if considering the
correct ground state for every value of J/t . This is an important
aspect, as only for J > Jc we expect the PM solution to be the
ground state. Below Jc the system orders antiferromagnetically
(see next section) and the gapless paramagnet is not the ground-
state solution at T = 0.

B. Paramagnetic phase away from half-filling

In the previous section, we saw that for strong coupling J/t

the ground state of the Kondo lattice model at half-filling is
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FIG. 3. Local density of states [DOS, see Eq. (11)], at large cou-
pling J/t = 8.0 close to half-filling (n = 0.95). The two resonances
are separated by roughly 3/2J and correspond to the breakup of
Kondo singlets.

paramagnetic. More precisely, it consists of singlets between
the local spins and the conduction band electrons. At large J/t

all electrons are bound into such singlets and the ground state
is hence insulating.

This picture changes once the system is doped away from
half-filling, as Kondo singlets are broken up and electrons can
again move through the system. This induces a metal which
naturally displays a Fermi surface (FS). We will discuss the
behavior of the FS in the various regions of the phase diagram
in detail in Sec. V B. An example for the PM solution discussed
here is the right panel of Fig. 10, which shows the Fermi surface
at J/t = 3.0 and an electron filling of n = 0.95. Despite the
low electron filling, the Fermi surface is large and measuring
its area gives a value of nFS ≈ 1.95. Such a large value is
expected from the Friedel sum rule [58–60], as the local f

spins take part in the charge transport in form of the Kondo
singlets and therefore contribute with n

f

FS = 1 to the Fermi
surface volume.

The existence of the Kondo singlets away from half-filling
is also clearly seen in the local density of states (DOS)

DOS(ω) = − 1

π
lim

η→0+
ImG(ω + iη), (11)

where G(ω) = ∑
k G(k,ω), and which is shown in Fig. 3 for

large coupling J/t = 8.0 close to half-filling. It shows two
peaks, which are separated by roughly 3J/2, which is roughly
twice the energy of a singlet |Esinglet| = 3J/4. The peaks hence
can be related to the breakup of Kondo singlets, which we
expect from the Kondo insulator at strong couplings and half-
filling [61]. Instead of two isolated sharp peaks, due to the finite
contribution by the hopping term, the structures are broadened.
Since the system is doped away from the symmetry point at
half-filling, the two signals are not perfectly symmetric with
respect to the center of the gap between them.

V. MAGNETIC PHASE DIAGRAM

The competition between Kondo singlet formation and
RKKY interaction sets the stage for Doniach’s phase diagram
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[22]. One possibility to study this competition is the investi-
gation of antiferromagnetic correlations, as RKKY interaction
mediates an antiferromagnetic ordering of the f spins, which
induces such an ordering for the conduction electrons, too. At
half-filling, these antiferromagnetic correlations are expected
to be suppressed from a certain Jc/t on as at this point Kondo
singlet formation is energetically favorable and absorbs free
electrons which could mediate the antiferromagnetic ordering.

A. Antiferromagnet at half-filling

We start our investigation of the AF solution of the KLM at
half-filling. In this case, it is possible to use clusters with up to
eight physical sites (4 × 2) when considering only the strength
of the AF Weiss field and of the isotropic hopping on the cluster
as minimal set of variational parameters. This allows to study
a finite-size extrapolation of the critical coupling strength Jc

and to compare the extrapolated results at infinite cluster size
to the exact QMC results of Ref. [38].

In the previous section, the paramagnet has been analyzed
at half-filling and showed discrepancies from exact results
at small and intermediate coupling strengths. This leads to
deviating quasiparticle gaps at intermediate couplings and
even to metallic behavior at weak coupling in case of the
3 × 2 cluster. However, such a scenario is an artifact caused
by suppressing AF order in the VCA: when including and
optimizing the SEF for an additional AF Weiss field, at small
couplings clearly an AF phase with lower energy than the
PM is stabilized. The resulting AF ordering and the perfect
nesting of the corresponding Fermi surface leads to an AF gap,
even at very small J (see Fig. 2). Hence, an insulating phase
is stabilized, which, however, is conceptually different from
the paramagnetic insulator, which is caused by spin-singlet
formation.

This happens at the critical coupling strength Jc/t , at
which the magnetization vanishes and the SEF shows only one
stationary point, namely, the “trivial” one corresponding to the
previously discussed paramagnetic insulator. Therefore, VCA
at half-filling correctly shows an insulator for all finite values
of J . However, in contrast to the QMC results of Ref. [38], the
quasiparticle gap shows a peak when decreasing the coupling
strength below Jc/t instead of a monotonous decrease for all
coupling strengths J < Jc. This feature has also been reported
for other approximative techniques such as dynamical cluster
approximation [36].

We now turn to the AF order parameter. Figure 4 shows
in the top panel the staggered magnetization m of the
conduction band electrons. Note, however, that the staggered
magnetization of the localized spins mf can be calculated
on the cluster only as the Green function contains only
information on the conduction electrons. Hence, in contrast
to m, mf is not calculated as the expectation value using
the system’s Green function. For this reason, we turn to the
staggered magnetization of the conduction band electrons m

instead. As the choice of sign is somewhat arbitrary (the
self-energy functional is symmetric with respect to the Weiss
field strength Mc), in subsequent plots we will only show
positive values of m. The strength of m increases for small
couplings with the coupling strength and reaches a maximum
at a value Jmax/t which depends on the cluster size. For larger
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FIG. 4. Top: staggered magnetization m for the different clus-
ter sizes and geometries shown. As a reference, values of Jc/t

obtained with dual fermions [33], quantum Monte Carlo [38], and
DMFT+NRG [62] are shown. Bottom: finite-size extrapolations of
the value of the critical coupling Jc/t to the infinite-size cluster limit.
The blue (solid) line takes into account only the regularly shaped
clusters, as indicated, while the green (dashed) line considers the
remaining cluster types. The scaling factor equals the number of
intracluster links divided by twice the number of cluster sites.

values of J/t , it decreases rapidly and vanishes smoothly at
the critical coupling Jc, where the system stays insulating, but
without magnetic order.

Compared to the DMFT results of Ref. [62], where a
NRG solver was used to precisely capture the low energies
inherent to Kondo (lattice) systems, the magnetization curve
has the same characteristics, but the absolute values differ.
In particular, the value of the critical coupling strength Jc/t

is lowered. This can be understood by recalling that the
electronic fluctuations inside the 4 × 2 cluster are a natural
antagonist to AF order. By increasing the size of the cluster,
the spatial extent of the fluctuations which enter the reference
self-energy grows and thereby changes the variational space
for the determination of stationary points. Hence, it is useful
to systematically increase the cluster size and in this way to
determine the value of Jc/t after a finite-size extrapolation.

Such a finite-size scaling would be best controlled when
using clusters of different sizes but the same geometry, e.g.,
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quadratic clusters. Unfortunately, the accessible clusters are
limited to small total sizes and one needs to also resort to other
cluster shapes, e.g., ladder geometries. In Ref. [63], Sénéchal
et al. compared different scaling factors and tested the outcome
of a finite-size extrapolation in case of the Hubbard model on
a two-dimensional square lattice, where larger clusters could
be used due to the smaller local basis. The most promising
scaling factor of this comparison, which is also applied in the
lower panel of Fig. 4, consists in taking the number of links on
the cluster and dividing it by twice the number of cluster sites.
It scales to one in the limit of infinite cluster size and takes the
ratio of boundary and bulk into account.

When taking into account all available cluster sizes for the
KLM, also quite pathological ones such as 1 × 2 and CL4
(see Fig. 4), which include dangling sites, it is not a surprise
that the critical value Jc/t spreads a lot depending on the
cluster geometry. However, an extrapolation by considering
only the “ladder” clusters 2 × 2, 3 × 2, and 4 × 2 (blue fit
in the lower panel of Fig. 4) results in an infinite-cluster-
size value of Jc/t = 1.48 ± 0.28, which is very close to the
QMC results of Ref. [38] which give Jc/t = 1.45 ± 0.05 in
the thermodynamic limit. The VCA results are therefore in
agreement with this numerically exact approach within our
estimated error bars. However, larger clusters are needed to
confirm the result of the ladder cluster extrapolation and to
improve on this rough fit.

Nevertheless, it is remarkable that the critical value obtained
by this rough fit is much better than the one obtained using
DMFT+NRG in Ref. [34]. In a recent study [33], Otsuki
obtained similar values for Jc/t by applying the dual-fermion
approach to the KLM, further indicating that it is important
for the physics of the KLM to allow for spatial fluctuations
beyond the single impurity ansatz used in DMFT.

Further properties of the ground state at half-filling

After having identified the AF properties of the KLM at
half-filling, we briefly present additional aspects of the ground
state which will become relevant in the following sections. A
detailed discussion can be found in Appendix A.

Two quantities that are sensible to Kondo singlet formation
between f spins and c electrons are the local spin-spin
correlator 〈 
Si · 
si〉 = ∂�

∂J
and the local magnetic susceptibility

of the f spins χ
f

loc [see Eq. (12)].
In Fig. 5 we show our results for both quantities obtained

for a 3 × 2 cluster. Qualitatively, the results stay the same
for the 4 × 2 cluster so that we will base our discussion on the
results for the smaller clusters. Also note that, due to the higher
computational cost, for the 4 × 2 clusters only Mc could be
used as variational parameter. In Appendix B, the influence of
also including the cluster hopping t ′ into the set of variational
parameters for the 3 × 2 clusters is discussed.

In a recent rDMFT study [37], the spin-spin correlator 〈S+ ·
s−〉 was used to investigate the magnetic phase transitions
in the doped KLM. It showed small discontinuities at first-
order transitions and had no features in case of second-order
transitions. As far as the transition from a paramagnetic to
an antiferromagnetic insulator is considered, the correlator
〈 
Si · 
si〉 seems to be a good indicator for the transition point Jc,
too: At the value of Jc/t at which the staggered magnetization
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−0.2

0

0.2

3 × 2 cluster

0

0.5

1

0.0 0.5 1.0 1.5 2.0

mc
AF
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∂ Ss /∂J (fit)

J/t

χf
loc = ∂2Ω/∂h2

f

FIG. 5. Staggered magnetization, expectation value of the spin-
spin correlator 〈
S · 
s〉 = ∂�/∂J , and local f -spin susceptibility
χ

f

loc = ∂2�/∂h2
f |hf →0 as a function of J/t at half-filling using a

3 × 2 cluster. Black lines are fits of the spin-spin correlator, blue
lines denote their derivatives. They have been fitted with second-order
polynomials in the AF and PM regions up to Jc/t ± 0.05. The set of
variational parameters includes {Mc,t

′}.

becomes finite, the gradient of 〈 
Si · 
si〉 jumps and its curvature
changes sign.

In the strong-coupling limit, the spin-spin correlator con-
verges to a value of − 3

4 per site which is expected for
pure Kondo singlets. When approaching zero coupling, the
correlator goes to zero as well, which means that electrons and
f spins are uncorrelated.

To investigate Kondo singlet formation between f spins
and conduction electrons, one often studies the local magnetic
susceptibility χloc [64]. Compared to the spin-spin correlator,
which is finite for all nonzero J/t , the local susceptibility
allows for a clearer identification of a putative Kondo break-
down via a divergence. In Fig. 5 we show results for the local
magnetic susceptibility of the f spins, which is calculated
via the self-energy functional at the stationary point [65]. To
calculate the local f -spin susceptibility, we added a small
magnetic field term to the Hamiltonian acting locally on one
of the f spins: hf Sz

i . For small field strengths |hf | � 0.03, we
extracted [66] the local susceptibility

χ
f

loc = ∂2�(hf )

∂h2
f

∣∣∣∣
hf →0

. (12)

Just as for 〈
S · 
s〉, the local susceptibility allows for a clear
identification for the onset of AF at Jc, but does not show
any clear indications for changes within the AF phase. This
indicates that there is no Kondo breakdown within the AF
phase. The question remains as to whether the divergence seen
in Fig. 5 could be indicative for Kondo breakdown. However,
one generically expects such a divergence at a continuous
transition from a PM to AF phase, so that it remains difficult
to address this point using the local susceptibility.

Another quantity which shows the difference between the
AF ground state and the PM alternative solution at half-filling
for J < Jc is the spin-dependent local DOS as shown in Fig. 6.
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FIG. 6. Density of states (DOS) at half-filling for several J/t in
the antiferromagnetic phase. The rest of the parameters are the same
as in Fig. 19 and the scale of DOS(ω) is kept the same for all panels.

It is obtained by a staggered average over the sites inside the
cluster,

ρ̃σ (ω) = 1

N

∑
R

eiQ·RρRσ (ω), (13)

where ρRσ (ω) denotes the local density of states on cluster
site R.

At small interaction strengths, two pronounced main
resonances (MR) at the band edges are visible, which are
separated by the quasiparticle gap, and right next to them
small side resonances (SR) can be found (see, e.g., as shown
for the value J/t = 0.8 in Fig. 6). If one limits the discussion
to the filled part of the DOS for one of the sublattices, the main
resonance is mainly made up of the majority-spin electrons and
the side resonance predominantly of minority-spin electrons,
although with a considerable admixture of majority-spin
electrons. Increasing J affects the main and side resonances
differently: the weight of the main resonance first increases
but then decreases again with a maximum at J/t ≈ 1.2, which
coincides with the point of maximal staggered magnetization.
For J/t > 1.2, the main peak starts to split into two peaks
MR1/2, which have initially similar weight. When approaching
the critical interaction strength Jc, the weight of the peaks
diminishes and redistributes between MR1 and MR2 such that
the peak MR1 closer to the side resonance retains more weight.
The side resonance moves to larger frequencies when J/t is
increased and gains a bit of weight.

At the transition, the side resonance of the minority
electrons and MR1 of the majority electrons merge to one new
side resonance and the resonance MR2 is made up equally
from both spin-up and -down electrons.

This reshuffling of weight when approaching the phase
transition reflects the competition between the two different
mechanisms that are responsible for the formation of a
quasiparticle gap. In the antiferromagnetic region close to
the transition there are already strong precursors of the
paramagnetic insulator visible in form of a notable contribution
of minority-spin electrons to the peak at the gap edges. In
contrast, for J/t � 1.2, this contribution is not clearly visible,
and the gap is stabilized by AF fluctuations.
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FIG. 7. Comparison of the PM and the AF solutions at J =
1.6t < J AF

c as a function of electron filling n. For n > nc ≈ 0.91
(vertical dashed line in the plot), the AF solution is energetically
preferred (see upper panel). The lower panel shows the value of
the staggered magnetization of the antiferromagnetic solution. For
n < nc the staggered magnetization mc is zero and the solution is
therefore paramagnetic. The dashed lines are fits to the data points
and only a guide to the eye.

The energy of the side resonance roughly agrees with the
value of 3/4J . When identifying this resonance with a Kondo
singlet peak, it is thereby possible to trace the existence of
Kondo singlets even back to the weak interaction regime
deep in the antiferromagnetic phase. In other words, the
antiferromagnetic order is far from perfect and the ground
state in the antiferromagnetic region can be interpreted as still
having a finite amount of Kondo singlets. This is in agreement
with the behavior of the local susceptibility, which in Fig. 5
does not indicate any change within the AF phase, and will be
discussed in more detail in Sec. V B.

B. Doping the antiferromagnet

The situation in the half-filled Kondo lattice model is
quite special: in the ground state, every local moment can be
screened in the large-J limit with exactly one electron to form
a singlet at each site. Removing conduction electrons from the
half-filled system creates unpaired local moments which can
be interpreted as spinful c holes. In the paramagnetic case,
Kondo singlets can still be formed for sufficiently large Kondo
coupling, although the electrons gain mobility due to vacancies
in the conduction band (see Sec. IV B). For smaller values of J

doping the system is also interesting as the number of electrons
which mediate the antiferromagnetic order of the local spins
via RKKY interaction is then reduced. Naively, one would
hence expect that the antiferromagnetic correlations diminish
when the system gets doped.

In Fig. 7 the energies of the AF and PM solutions as
a function of electron filling are compared. It can be seen
that the AF solution exists down to a critical electron filling
of nc ≈ 0.915. When approaching this filling from above,
the staggered magnetization of the AF solution vanishes
continuously and the corresponding energy approaches the
one of the PM solution. As its energy is always lower than
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FIG. 8. Staggered magnetization of the AF solution as a function
of electron filling n and J/t using a 3 × 2 cluster with variational
parameters μ, μ′, t ′, and Mc. Circles denote data points, their filling
is color coded and shows the value of the staggered magnetization
m. The dashed lines denote transitions. The one on the left label by
“1st” indicates a discontinuity of the value of m when keeping n fixed
and varying J/t . At fillings n � 0.97, this becomes continuous (not
shown). The dashed line to the right labeled by “2nd” indicates the
continuous phase transition between AF and PM metal.

the one of the PM, the AF metallic phase is realized close to
half-filling and goes over to a PM phase continuously when
approaching nc.

In the DMFT study of Ref. [67], Otsuki et al. identified an
AF ground state at J = 0.2W (with W the bandwidth, which
in the 2D case treated here is W = 8t) down to fillings nc(J =
0.2W ) ≈ 0.9. In our VCA approach, we obtain a similar result
at J/t ≈ 1.6, as shown in Fig. 8, which shows the magnetic
phase diagram close to half-filling, which we obtained using a
3 × 2 cluster.

In this figure, the gray regions denote PM solutions,
while the AF region is shown in blue, where the staggered
magnetization is color coded.

Aside from the magnetic properties of the system it is also
interesting to investigate the metal-insulator transition as a
function of electron density n. In the half-filled case it was
shown in the previous subsection that the AF insulator goes
over to a Kondo insulator at Jc. When doping the PM (Kondo)
insulator it was also shown that the system turns metallic once
the system is doped away from half-filling.

Here, the “new” transitions are the ones from AF insulator
to AF metal for J < Jc at n = 1 → 1 − ε and from AF to
PM metal for J < Jc at nc,AF. Note that so far we have
been neglecting superconductivity. Therefore, one needs to
test for stability against SC order, which is further discussed
in Sec. VI D.

In order to make the difference between AF and PM
metals more visible, Fig. 9 shows the DOS at J/t = 1.6 for
different electron densities n. In contrast to Fig. 6, where
the transition from AF to PM was studied at half-filling
as a function of coupling strengths, the spectrum is not
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FIG. 9. Density of states (DOS) for J/t = 1.6 using the 3 ×
2 cluster with {μ,μ′,t ′,Mc} as variational parameters. The electron
fillings 0.91 < n < 1 correspond to the AF metal phase. The panels
show fillings close to the AF insulator (n = 0.99), close to the PM
metal (n = 0.92), and right in the middle of the phase. The results
obtained at n = 0.85 are deep in the PM metal phase. The DOS
has been obtained on a k grid of 100 × 100 points and an artificial
broadening of η = 0.05 has been added.

particle-hole symmetric. Still, the redistribution of electron
density between up and down electrons when approaching
the magnetic order-disorder transition is similar. The relative
position of the three peaks does not change much when
reducing the electron filling, but their size changes from
the pronounced two main resonance structure known from
the half-filled case to a roughly equally sized three-peak
structure close to the transition. Already at n = 0.99 the
main resonances are not entirely made up from the majority
spins, but also carry little weight from the minority spins. The
difference between the position of the third peak and the middle
of the gap at positive frequencies is at n = 0.99 roughly 1.15
which is close to the value of 3/4J = 1.2. When doping further
away from half-filling, the relative peak position changes and
differs more and more from 3/4J . This is somewhat expected
as the value of 3/4J was obtained by assuming a perfect Kondo
insulator. Once electrons are removed even at strong coupling
the singlets are mobile and the resulting dispersion changes.
Finally, in the paramagnetic region, electrons of both spins
contribute at each energy equally to the density of states.

This redistribution has consequences for the composition
of the Fermi surface, which is discussed in the following
subsection.

Changing Fermi surface topology

Once the system is doped away from half-filling, it is
metallic and hence possesses a Fermi surface. Deep in the
paramagnetic phase (strong coupling J ) mobile Kondo singlets
form, which leads to a large Fermi surface (see Sec. IV B). It
is interesting to consider the changes of the FS at the onset
of AF order and at the transition within the AF phase. Since
the FS is closely related to the spectral function A(k,ω) =
− 1

π
limη→0+ ImG(k,ω + iη), we will mainly discuss this

quantity here, as it is directly accessible by the VCA. In
Appendix C we will discuss the results for the FS obtained
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FIG. 10. Characteristic spectral function A(k,iη) for the three
regimes that can be identified in the AF solution off half-filling, here
shown at filling n = 0.90 with broadening η = 0.01: PM metal with
a large Fermi surface (d) and AF metal with small Fermi surface (a).
At intermediate coupling, the Fermi surface volume jumps to a much
higher value (b), but the system stays AF (c).

from further analyzing A(k,ω) and see that it reflects the same
behavior.

Figure 10 shows characteristic results for A(k,ω = 0 + iη)
(with broadening η = 0.01) close to half-filling (n = 0.90)
at the Fermi energy for three different regimes. Aside from
the already described PM case, one can identify two distinct
phases by looking at the spectral function of the resulting
metallic solutions. In the AF phase, the Brillouin zone halves,
which is indicated in the figure by a dashed line. At small
coupling strengths, A(k,iη) shows a closed structure, and when
focusing on the inner sheet, it resembles the small closed Fermi
surface that is found in the weak-coupling region by other
numerical techniques such as dual fermions [33] or rDMFT
[37]. The structures in A(k,iη) at strong and weak coupling
are essentially those found before in the emission spectrum
by VMC [30] and in the FS by DCA [36] studies. For larger
coupling strengths close to the transition to the PM, the surface
topology is different [Figs. 10(b) and 10(c)].

Small closed structures appear, but the doubling of the
surface that corresponds to AF long-range order still persists.
Figure 10(b) shows the drastic change in topology at Jc,FS/t =
1.24 from one open (AF2) to two closed sheets in AF1. We
interpret the fact that the structures in AF2 are not symmetric in
the x and y directions as a finite-size effect of the asymmetric
3 × 2 cluster used in Fig. 10. Since the correlation length
diverges at the critical point, it is not surprising that it exceeds
the cluster size in its vicinity, which then causes finite-size
effects. However, the AF2 phase is stable within all three
cluster sizes, which strongly suggests that it persists for larger
clusters. An intermediate AF phase was also observed within

0

0.1

0.2

0.3

AF1 AF2 PM

FS change

(a)

-0.4

-0.2

0

2

4

6

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.25

0.8 1.2 1.6

(b)

0.2

0.25

0.8 1.2 1.6

0.2

0.25

0.8 1.2 1.6

3 × 2

mc
AF

Ss

J/t

χf = ∂2Ω/∂h2
f

J/t

2 × 2

J/t

3 × 2

J/t

4 × 2

FIG. 11. (a) Staggered magnetization mc
AF, expectation value of

the spin-spin correlator 〈
S · 
s〉 = ∂�/∂J , and local susceptibility
χ

f

loc = ∂2�/∂h2
f |hf →0 as a function of J/t at n = 0.95 using a 3 × 2

cluster. (b) Staggered magnetization around the AF1-AF2 transition
for the three indicated clusters.

VMC and DCA [30,36], although with different topology. Still,
in those studies the FS also contained closed structures in
form of hole pockets. Since the topology in the AF2 phase
still changes for different cluster sizes, a more systematic
study of this phase using larger cluster sizes would be
useful.

It is this very region close to the transition to the paramagnet
where the spin-spin correlator 〈
Si · 
si〉 at half-filling suggests
a considerable admixture of Kondo singlets in the ground
state. Figure 11(a) shows the staggered magnetization, the
spin-spin correlator, and the local magnetic susceptibility of
the f spins for a filling of n = 0.95. Compared to the half-filled
case, the antiferromagnetic phase is divided into two regions
with the aforementioned different (Fermi surface) topologies.
The transition between both AF phases at Jc,FS/t = 1.24 is
discontinuous as both m and 〈
S · 
s〉 jump at the transition.
For smaller electron densities, the transition between the AF
phases remains to be discontinuous down to an electron density
of n = 0.8. There, the second AF solution AF2 vanishes and
when increasing the coupling strength in the AF metal AF1 the
system directly jumps to the PM metal solution. Therefore,
the transition between AF metal and PM metal is of first
order for n � 0.8. When approaching half-filling, the jump
in the staggered magnetization reduces until the transition
between both AF phases becomes continuous at n = 0.97.
As at half-filling, the local magnetic susceptibility χ

f

loc shows
a divergence at the onset of AF. However, inside the AF the
local susceptibility has an additional increase at Jc,FS.

In Fig. 11(b) the jump in the staggered magnetization is
shown for the three cluster sizes studied here. As can be
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FIG. 12. DOS (top panel) and relative position of the resonances
in the DOS (bottom panel) at n = 0.95 for different coupling strengths
in the antiferromagnetic region obtained from the AF solution of the
VCA. A change of the peak structure close to the Fermi energy at
ω = 0 happens at J/t � 1.2: the main peak splits and an additional
side resonance develops. Close to Jc the structure already resembles
the three-peak structure known from the Kondo insulating region for
J > Jc.

seen, the jump size at the transition is finite for all cluster
sizes, but not systematic, so that a finite-size extrapolation
of both the jump size and the jump position are not possible
with the available cluster sizes. A discontinuous transition
between the AF phases was also found using VMC approaches
[30,68], but within the framework of DCA [36] and rDMFT
[37] the transition between the two AF phases is found to be
continuous instead. Note that only the VMC works at zero
temperature like the VCA, so that the continuous nature of the
transitions seen by DCA and rDMFT could be due to finite
temperatures.

The top panel of Fig. 12 shows part of the DOS close to
the Fermi surface for different values inside the AF phase at
n = 0.95. At the largest value of the coupling strength shown,
which is close to the critical value Jc/t ≈ 1.75, three distinct
peaks are visible which are similar to the characteristic three-
peak structure of the paramagnet at J > Jc. When reducing
J , the two peaks closest to the Fermi energy approach each
other and finally seem to merge at J/t ≈ 1.2. However, the
bipartite character of this main resonance can be still seen
in a shoulder at ω ≈ −0.18. Further decreasing the coupling
strength results in a more and more broadened shoulder which
at small coupling strengths such as J/t = 0.6 can only be
guessed to still exist.

More importantly, the leftmost peak which might be
identified at half-filling as being an indicator for Kondo singlet
formation survives even down to small coupling strengths. The
relative peak position with respect to the center of the gap to

the right of MR2, plotted in the bottom panel, is reduced for
decreasing coupling strength and jumps at the Fermi surface
change between the two AF phases. However, it is difficult
to quantify the peak height of this signal from the DOS as
it would be necessary to remove the background which is a
priori unknown.

At this point, we return to the question of whether the Kondo
breakdown happens at finite or at zero coupling strengths. In
particular, the local susceptibility and the spin-spin correlator
allow to investigate whether the Kondo breakdown coincides
with the discontinuous transition between the two AF phases.
In the AF1 phase close to the critical coupling strength
Jc,FS/t , the spin-spin correlator is still smaller than − 1

4 ,
which indicates that the contribution of Kondo singlets is still
finite. However, for weak coupling 〈
S · 
s〉 > −0.25, so that no
definite statement of the presence of Kondo singlets can be
made. In case of a transition from itinerant to localized heavy
fermions (ILT), the local magnetic susceptibility was found to
diverge in a study by Hoshino and Kuramoto [64]. There, the
Kondo-Heisenberg model was treated within DMFT and the
ILT was only observed for finite nonlocal spin interactions JH ,
whereas the heavy fermions were found to be itinerant for the
plain Kondo lattice model (JH = 0) [64]. However, here we
find a divergence of the local susceptibility only at the onset
of AF and not at Jc,FS. This further supports the absence of a
breakdown of Kondo singlets in the AF region, in particular at
the transition point between the two AF phases.

To conclude this discussion, it is difficult to fully exclude the
Kondo breakdown scenario for very small coupling strengths.
The density of states, the spin-spin correlator, and spectra
indicate that in the AF region close to Jc Kondo singlets
make part of the charge carriers. This speaks against a local
quantum critical point, where Kondo breakdown and onset of
antiferromagnetic order coincide at Jc. Although a jump in the
staggered magnetization indicates a phase transition within
the AF phase, the absence of a divergence in χf does not
suggest a change in the composition of the heavy-fermion state
at Jc,FS. Nevertheless, the topological differences between the
Fermi surface in the weak-coupling and intermediate-coupling
regimes are evident.

By using larger clusters, it would be interesting to check
to what amount finite-size effects enter in the FS structures
that have been discussed here and how the Kondo singlet peak
evolves as a function of cluster size. Another possibility to
further investigate putative Kondo breakdown scenarios would
be to include f propagators in the VCA by basing it on an
adapted Luttinger-Ward functional [54]. It also has to be noted
that other techniques which work directly in k space, such as
DCA [35,36] or rDMFT [37], might be able to investigate the
Fermi surface evolution more precisely.

VI. SUPERCONDUCTIVITY

In this section, we investigate both local s-wave and
nodal dx2−y2 superconductivity in the KLM. Section VI A
presents the main results obtained by VCA for s-wave SC,
and some additional details of the calculations can be found in
Appendices D and D 2. It will be shown that only mean-field-
like solutions and no local SC due to correlation effects are
present. However, robust d-wave SC is found and investigated
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TABLE I. Different types of stationary points investigated around half-filling at J/t = 1.5 when varying Ds, μ′, and t ′ when considering
s-wave SC. The arrows in columns 2–4 indicate whether � has a maximum (↑) or a minimum (↓) with respect to the variational parameter.

No. D μ′ t ′ Characteristics

1 ↓ ↑ ↑ Two solutions with t ′ ≈ t

2 ↓ ↑ ↓ Two solutions: one has t ′ = 0, the other one is thermodynamically unstable
3 ↓ ↓ ↑ One solution with t ′ ≈ t , but thermodynamical stability violated off half-filling
4 ↓ ↓ ↓ One solution with t ′ = 0

in Sec. VI B. Finally, the interplay of d-wave SC and AF
is analyzed in Sec. VI D. Section VI C complements these
numerical results by considering the EOM for the pairing
susceptibilities.

For small clusters, VCA is known to prefer superconducting
solutions even at half-filling as seen in the Hubbard model [69],
which is used as a model system for high-temperature super-
conductors such as the cuprates [41]. This occurs especially if
the system only has a small gap as then allowing for pairing to
another quantum sector results in an energy gain which may be
sufficient to overcome this gap. Nevertheless, VCA allowed
for a qualitative study of superconductivity in the Hubbard
model [41,56], motivating us to apply this technique to the
KLM.

A. Absence of local s-wave superconductivity in the KLM

Our starting point for the study of s-wave superconductivity
is the observation of such a phase in Ref. [34]. By using
DMFT with a NRG solver, Bodensiek et al. identified a broad
region off half-filling and for coupling strengths J/W � 0.1
where the anomalous expectation value �s := 〈c↑c↓〉 had a
very small, but finite value.

Local pairing was already observed in the KLM by
mean-field approaches [70,71], but the superconducting state
found within DMFT is conceptually different as the pairing
does not occur between c and f electrons. Instead, the
superconductivity is only mediated by the antiferromagnetic
spin fluctuations and pairs are formed in the conduction band
only.

In contrast to this DMFT study, we here examine the
existence of this unconventional scenario by including spatial
fluctuations, as treated by the VCA.

1. Half-filling

At half-filling, adding only an s-wave SC Weiss field
leads to a stable stationary point of the SEF. However,
this solution has a large Weiss field strength, and including
the intracluster hopping strength t ′ in the set of variational
parameters reveals the local nature of the solution: the hopping
t ′ is zero and the reference system consists of decoupled,
locally superconducting sites. This artificial mean-field-like
solution is the only stable nontrivial stationary point at
half-filling. Other true many-body solutions, where s-wave
superconductivity is caused by the interaction, are not found.
A detailed analysis of s-wave SC at half-filling can be found
in Appendix D 1.

2. s-wave superconducting solutions off half-filling

When changing the chemical potential to leave half-filling,
the SEF shows multiple stationary points with respect to the
variational parameters. It is therefore important to decide
which stationary point corresponds to the physical solution.
The set of variational parameters is four dimensional and
includes both the chemical potential of the lattice and the
cluster, the SC Weiss field, and the cluster hopping strength.

Due to the large number of variational parameters, the 2 × 2
cluster is used to find different stationary points and to discard
unphysical solutions. Afterwards, the 3 × 2 cluster is used for
calculations on the remaining solution only.

In order to take the “correct” quantum space, one has
to choose one combination (of often at least two possible
combinations) of chemical potentials μ and μ′. In general,
one expects to be able to tune the filling by changing the
chemical potential μ around the “natural cluster fillings”
ncl = Ne/L. Even a quite weak Weiss field, which couples
two adjacent quantum sectors (e.g., with Ne and Ne − 2),
could lead to an energy gain which supersedes an energy gap
between these sectors. Especially for weakly gapped systems
this could lead to artificial superconducting solutions due
to this overcompensation effect. When including an s-wave
superconducting Weiss field and following a stationary point,
one often encounters situations where the self-energy jumps or
shows a kink as a function of one of the variational parameters.
At these points, which have been encountered before in VCA
[55], convergence to the correct stationary point is not ensured
anymore. Overall, the addition of superconducting Weiss fields
poses the problem of choosing the right stationary point, which
here means to also choose out of different quantum sectors.

One has to first of all search and review all the possible sad-
dle points and then decide which ones have to be considered.
For stable solutions, the SEF should have maxima or minima
with respect to the four variational parameters leading to eight
possible types of stationary points. Focusing on the stationary
points where the SEF is minimal with respect to the Weiss
field strength leads to the four types of stationary points listed
in Table I.

When evaluating different stationary points, the following
criteria are used to assess the solutions. One criterion is the
value of the cluster hopping parameter t ′. “Atomic” solutions
with t ′ = 0 amount to reference systems with decoupled
cluster sites that locally form a superconducting singlet state.
They are considered to be artificial mean-field solutions and
not to represent superconductivity due to many-body effects,
and hence will be discarded.

Another important criterion is thermodynamical stability.
The electron filling n can be obtained either by calculating
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FIG. 13. SEF and cluster hopping strength t ′ at the stationary
point of the SEF with respect to μ, μc, and t ′ as a function of the Weiss
field strength Ds . Plotted are two solutions for J/t = 2.4 at n = 0.9,
one corresponding to a maximum with respect to t ′ (filled symbols),
the other one corresponding to a minimum (empty symbols). Note
the SEF having an extremum in either case at Ds = 0, indicating no
s-wave SC order being stabilized.

the derivative of the (approximated) grand potential or by
calculating the trace of the VCA Green function. In order
to have thermodynamical stability, both ways of calculating
n should lead to the same value. Despite having included the
cluster chemical potential in the set of variational parameters,
in some cases thermodynamic stability is violated.

These two criteria already reduce the number of realistic
solutions of Table I with t ′ �= 0 and thermodynamic stability
to the one solution of type 1. There, the stationary point of the
SEF is a maximum with respect to μ′ and t ′ and a minimum
with respect to Dc.

Since the 2 × 2 cluster shows anomalies in the hopping
parameter t ′ on the cluster already for intermediate values of
J/t , the 3 × 2 cluster is considered in order to investigate the
most promising stationary points off half-filling.

In contrast to our previous analysis, where no (clearly phys-
ical) s-wave solution was found, we now take the converged
parameters of the paramagnetic solution at a filling of n ≈ 0.95
as a starting point and add an s-wave superconducting Weiss
field to the set of variational parameters. Again, various
stationary points are found, but most of them are identified
as unphysical according to the above criteria and therefore
neglected.

In Fig. 13 the cluster hopping parameter t ′ after maximiza-
tion (solution 1) or minimization (solution 2) is plotted as
a function of the superconducting Weiss field strength Ds . If
one wants to exclude “unphysical” solutions, where the cluster
consists of isolated sites and a resulting local self-energy enters
the calculation of the SEF, one can restrict the search to small
values of Ds shown in this figure. As can be seen from Fig. 13,
no stationary point is found in this region (Ds < 0.4) except
the nonsuperconducting solution at Ds = 0.

The qualitative picture shown in Fig. 13 also holds for
smaller coupling strengths and fillings around n = 0.90 and
we believe that it prevails for even smaller fillings. For small
Ds , a solution with reasonable intracluster hopping strength
t ′ ∼ t is found, but already for comparably small values of
Dc ∼ 0.4–0.5 the cluster hopping drops to zero. At this point,

the cluster hopping of the second solution, which is zero for
small Weiss field strengths, diverges. The solution breaks down
and one is left with the case of decoupled sites inside the
reference cluster that was discussed before.

We show in Appendix D 2 that treating both s-wave SC
and AF does not stabilize a (different) s-wave SC solution.
The only stable solution showing s-wave SC is the one with
vanishing hopping t ′ on the reference system. An s-wave SC
solution caused by correlations is not found. In the following,
we consider d-wave SC instead.

B. Nodal d-wave superconductivity

Before treating the possible coexistence of AF and SC
order, in the spirit of the investigation so far, we will only
add a SC Weiss field to the paramagnetic case as additional
variational parameter to check for the possible existence
of d-wave SC at all. This is in particular interesting since
d-wave superconductivity is often found experimentally in
heavy-fermion systems [21] and also numerical studies of
the Kondo lattice model indicate the existence of a d-wave
superconducting phase [31,33]. Although in the recent study
of Ref. [33] by Otsuki, a p-wave superconductor was found
for coupling strengths around the critical point Jc, we will not
further investigate this type of SC order due to the already very
large number of variational parameters and the accompanying
complexity of our treatment. Instead, we focus in this section
on superconductivity with dx2−y2 symmetry and leave the
investigation of this further interesting SC channel with VCA
to future studies.

First, the paramagnetic solution will be taken as a starting
point to investigate superconductivity by adding a Weiss field
with d-wave symmetry. In Sec. VI D antiferromagnetism will
be treated on equal footing with superconductivity and the
interplay of both symmetry-broken phases will be discussed.

In the case of s-wave SC, the Cooper pairs form locally and
clusters are affected in a uniform way by the Weiss field. The
geometry and size of the cluster enter the calculation through
the intracluster hopping and in case of antiferromagnetism
through the mediated effective RKKY interaction only. This
changes for the case of extended pairing, such as the nonlocal
dx2−y2 SC: due to its geometry, the 2 × 2 cluster is for instance
known to favor d-wave pairing, which might bias the result.
For this reason, the 2 × 2 cluster will only be briefly discussed
and mainly used as a reference to the 3 × 2 cluster, for which
most of the results will be shown.

As long as no AF Weiss field is used in addition to the
SC one, the paramagnetic phase diagram at half-filling has
to be used as a starting point. In contrast to the “full” phase
diagram which by including AF shows an insulator at arbitrary
coupling strength J/t at half-filling, the paramagnetic phase
diagram also shows a metallic phase at half-filling. To be more
precise, the system is metallic in the weak-coupling region
and becomes insulating when the coupling exceeds some value
J > Jc,INS, where Kondo screening is large enough to form an
insulator consisting of the Kondo singlets.

When looking at the anomalous expectation value �dx2−y2 =
〈ci↑ci±ex↓ − ci↑ci±ey↓〉, which serves as the order parameter
of a superconducting phase, it is not surprising that no
superconductivity is found in the insulating region (see
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Fig. 14). In contrast to the expectation that there should
not be any superconductivity at all at half-filling because of
the insulating phases, one finds d-wave superconductivity for
weak coupling up to J/t ≈ 1.1. This is the region where the
incomplete (paramagnetic) treatment of the system showed
an anomaly in the cluster hopping. For the 2 × 2 cluster, the
cluster hopping has a minimum at J/t ∼ 1.4 and starts to
grow for smaller coupling; in case of the 3 × 2 and 4 × 2
clusters, t ′ even showed a kink when plotted as a function
of J at J/t ∼ 0.8, which marked the phase transition to
a metal for smaller coupling strengths. As will be shown
below, for the 3 × 2 cluster the onset of superconductivity
is comparable to this coupling strength Jc,INS. Although this
reveals the need of including antiferromagnetism into the
calculations, it still provides the correct starting point for
the strong-coupling region, i.e., the paramagnetic region J >

Jc,AF. There, leaving half-filling should be valid as antiferro-
magnetism is not realized at or off half-filling as was shown in
Sec. V.

Leaving the study of the region with coupling J < Jc ≈
2.05t to the next subsection where antiferromagnetism is
included in the investigation, it remains to consider here the
region with J > Jc. Still, it is interesting that the maximum of
the anomalous expectation value (J/t ∼ 2.1) amounts to the
region where antiferromagnetic fluctuations lead to the onset
of AF long-range order if one permits this type of ordering.
The corresponding electron density at the maximum is roughly
n ≈ 0.65. Close to half-filling, the paramagnetic metal persists
at coupling stengths J > Jc and only doping of ε ∼ 0.1–0.2
leads to a finite �d . When lowering the electron density further,
the size of the anomalous expectation value diminishes and
finally goes to zero at small n.

Before including an antiferromagnetic Weiss field, d-wave
superconductivity is investigated in the region around Jc using
a 3 × 2 cluster (see Fig. 15). For this cluster, Jc/t ≈ 1.95. The
overall phase diagram compares qualitatively well to the one
of the 2 × 2 cluster and it even gives quantitatively similar
results.
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FIG. 15. Anomalous expectation value when considering d-wave
SC. The figure shows �d obtained using a 3 × 2 cluster and
variational parameters μ′, t ′, and D. The circles are data points, the
color code indicates the value of �d at these points. For J � J SC

ano ≈
0.9 there is a superconducting solution even at half-filling, but one
has to be careful as this region coincides with an anomaly in t ′. The
interaction strength J where the anomaly occurs is quite close to the
one found in the paramagnetic solution (J PM

ano ≈ 0.84).

C. Equations of motion for the pairing susceptibility

As discussed in Sec. VI A, there is no evidence for local s-
wave SC in the VCA treatment of the KLM. Here, we consider
a complementary approach by studying generic features of
the EOM for the pairing susceptibilities. EOM in the context
of the KLM have been used before, e.g., for small clusters
or in combination with a mean-field approach [72,73]. Here,
however, we adapt the approach specifically to treat SC.

Since we expect SC to be induced by the interaction, we
here sketch the main results for the EOM of the interaction
term of the KLM and leave further details to Appendix E.
It is convenient to rewrite the interaction part of the KLM
Hamiltonian (1) in terms of annihilation (creation) operators
for the electrons in the conduction band c

(†)
i,σ and the localized

electrons in the f band f
(†)
i,σ , respectively, giving [74]

HI =
∑
i,σ

[
Jz

4
(ni,σNi,σ − ni,σ̄Ni,σ ) + J⊥

2
(c†i,σ ci,σ̄ f

†
i,σ̄ fi,σ )

]
.

(14)

The operators ni,σ (Ni,σ ) represent the onsite occupation
number of the conduction band (f -band) electrons with spin
σ on site i. For the latter, the constraint Ni,σ + Ni,σ̄ = 1 has to
hold. In case of the isotropic KLM treated here, the coupling
strengths are Jz = J⊥ ≡ J .

The EOM for the pairing susceptibility is obtained by
considering

C(t) = 〈�†
ij (t)�i ′j ′(0)〉 (15)

for the pairing operators

�
†
ij = F (i,j )c†i↑c

†
j↓.
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The function F (i,j ) takes into account the geometry of the
pairing order parameter. For the various channels of interest,
it reads as

F (i,j ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δi,j , s wave

+1 : ri − rj = ±ex,

+1 : ri − rj = ±ey, extended s wave

+1 : ri − rj = ±ex,

−1 : ri − rj = ±ey, dx2−y2

+1 : ri − rj = ±(ex + ey),

−1 : ri − rj = (ex − ey), dxy . (16)

The time derivative of �
†
ij (t) is given by the Heisenberg

equation

d

dt
�

†
ij (t) = −i[c†i,σ (t)c†j,σ̄ (t),HI ]. (17)

Details of the calculation and the resulting expressions are
found in Appendix E. One finds that

d

dt
�

†
ij (t) = 0 for s-wave pairing.

This is an interesting observation since it shows that the
dynamical properties of the pairing susceptibility in the s-wave
channel will not depend on the interaction, and hence are the
same as the ones of free electrons. Note that this result does not
completely rule out the possibility for having s-wave SC. How-
ever, it restricts the possible mechanisms which might stabilize
it to ones, in which the frequency dependence of the pairing
susceptibility does not play a role. This needs further investi-
gations, which we leave for future research. However, together
with the lack of evidence for s-wave pairing in our VCA treat-
ment and also in further numerical approaches [33], this further
restricts the possibility of realizing such a phase in the KLM.

However, this does not hold for the extended s-wave and
the d-wave channels. Note that the results for the d-wave
channel [e.g., Eq. (E9)] contain an interesting aspect: the time
derivative of �

†
ij contains expressions which are a product of

two creation operators (and hence a pair of two fermions)
and of the staggered magnetization of the local moments.
This indicates that AF order should directly contribute to the
dynamics of the SC response function, so that a coexistence
or even a cooperative interplay between AF and d-wave SC
order might come into appearance. In the next section, such
a possible cooperative interplay between SC and AF order is
further investigated using the VCA.

D. Competition of antiferromagnetism and superconductivity

In the previous subsection we have seen that away from
half-filling superconducting phases can manifest in the phase
diagram of the Kondo lattice model. References [75–77] show
that antiferromagnetic spin fluctuations can assist anisotropic
even-parity pairing such as the d-wave superconductivity
investigated here. Also, the EOM treatment in Sec. VI C
brought up the question for possible cooperative interplay of

AF and d-wave SC order. Here, we are going to investigate
this aspect in detail.

Especially for small couplings J/t , another symmetry
breaking enters in the form of antiferromagnetic ordering of
the conduction electrons. The interplay of these two effects
is known to be important for d-wave superconductivity in
the Hubbard model as possibly realized in high-temperature
superconductors [41]. In principle, there are three scenarios
which are possible. The most improbable is that the two phases
are independent and, hence, considering magnetism and super-
conductivity leads to the same magnetization and anomalous
expectation value as treating these effects separately. It is also
possible that both phases coexist and that they either compete,
which means that the onset of antiferromagnetism reduces
superconductivity and vice versa, or that they cooperate, in
that case the superconductivity would be enhanced due to the
antiferromagnetic ordering.

However, considering the results of the previous section,
approaching this question within VCA might seem to be
tricky as we have encountered problems for weak coupling.
Nevertheless, as this is the very region where at least in the
normal phase antiferromagnetism dominates, one has to con-
sider both broken symmetries together to properly address this
weak- to intermediate-coupling regime. As shown in Sec. V,
antiferromagnetism already sets in for intermediate interaction
strengths where the divergence of t ′ does not yet pose a prob-
lem, but one has to bear in mind that any doping of the system
reduces the antiferromagnetic correlations. Hence, doping the
system sufficiently in order to observe superconductivity might
already be too much doping to observe antiferromagnetism.
Especially for intermediate-coupling strengths close to J AF

c

this means that one has to investigate a very narrow μ window
corresponding to small doping.

We have used a 3 × 2 cluster to revisit the half-filled system
at J < J AF

c , this time using both a d-wave superconducting
and an antiferromagnetic Weiss field at the same time. For all
coupling strengths, the solution coincides with the AF insulator
that was already found in Sec. V. While the stationary point
with M = 0 still exists, a comparison of the corresponding
energies shows that the antiferromagnetically ordered phase is
always lower in energy. Especially at weak coupling allowing
both for superconductivity and for antiferromagnetism results
in an antiferromagnetic insulator and no superconducting
solution with lower energy is found at half-filling.

In case of the 3 × 2 cluster, the critical coupling strength
is Jc,AF ≈ 1.95. Here, we have a closer look at the behavior
in the two AF phases identified in Sec. V B by considering
J/t = 1.8 in Fig. 16 and J/t = 1.2 in Fig. 17, respectively.
By keeping J/t at these values, we avoid crossing the transition
line between the two AF phases.

Figure 16 shows both the pure antiferromagnetic and
the pure d-wave superconducting solutions as well as a
solution with coexistence of superconductivity and antifer-
romagnetism. Starting with the “pure” solutions at J/t = 1.8,
for small doping the antiferromagnetic solution has a lower
energy than the superconducting one, but their energies cross
at n ≈ 0.98. From considering these two phases only, the
system would be antiferromagnetic for 0.98 � n � 1 and d-
wave superconducting for fillings smaller than 0.98. However,
compared to the “pure” phases, the solution with coexistence
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FIG. 16. Results when considering d-wave SC and AF away from
half-filling obtained using a 3 × 2 cluster at J/t = 1.8. The top panel
shows the ground-state energy as a function of filling for the various
cases indicated. The vertical lines indicate the transition points at
which AF order vanishes when considering AF only or AF+SC,
respectively. The center and bottom panels show the anomalous
expectation value and the staggered magnetization as a function of
electron density n for the superconducting, the antiferromagnetic, and
the coexisting SC+AF solutions as indicated.

of AF and SC has the lowest energy and should therefore be
realized in the system.

In the coexistence region, the anomalous expectation value
does not change much compared to the solely superconducting
solution with Mc = 0. At the same time, the staggered
magnetization is enhanced compared to the AF solution.
The coexistence region therefore enlarges the superconduct-
ing region to a value close to half-filling and extends the
antiferromagnetic region down to an electron density of
n ≈ 0.955. In this sense, the interplay of antiferromagnetism
and d-wave superconductivity at J/t = 1.8 can be considered
to be cooperative. Outside of the coexistence region, no
antiferromagnetic order is present and the solution coincides
with the one shown in Fig. 15 where d-wave superconductivity
without antiferromagnetism was considered.

When reducing the coupling strength, the interplay between
antiferromagnetism and superconductivity changes. Figure 17
shows the same quantities for a coupling of J/t = 1.2. Still,
there exists a coexistence region which has lowest energy
and which is therefore preferred as compared to the pure
AF and SC solutions. Close to half-filling (n � 0.98), the
coexistent solution has comparable order parameters as the
pure solutions. For smaller electron density, the staggered
magnetization of this solution is reduced compared to the pure
antiferromagnetic phase, but the anomalous expectation value
is perceptibly larger than the one of the pure d-wave solution.
When extrapolating the staggered magnetization, it becomes
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FIG. 17. The same as in Fig. 16 showing the energy (top panel)
and the order parameters (center and bottom panels) as a function of
filling n, this time for J/t = 1.2.

clear that the antiferromagnetic region will be reduced com-
pared to the antiferromagnetic phase diagram shown in Fig. 8.
At the electron density nc where the antiferromagnetic order
breaks down, the pure superconducting solution should be
recovered. Until then (i.e., for nc < n < 0.98), the anomalous
expectation value is larger than in the pure d-wave solution.
The interplay of both symmetry-breaking mechanisms is there-
fore characterized by a competition between superconductivity
and antiferromagnetism at J/t = 1.2.

The results of the investigation of the interplay of antiferro-
magnetism and d-wave superconductivity are summarized in
Fig. 18. It shows the coexistence region of antiferromagnet and
superconductor. This region is limited by an electron density of
n = 1, where superconductivity breaks down, and by a critical
coupling strength Jc(n) (indicated by a dashed line in Fig. 18),
which marks the breakdown of the antiferromagnet.

Note that the transition between two AF phases with
different Fermi surface topology discussed in Sec. V B seems
to be absent when considering AF and SC simultaneously.
Instead, the staggered magnetization m changes smoothly
around J/t ∼ 1.24. This can be explained by the increase of
m in the “cooperative” region J/t � 1.24 and the reduction
of m in the “competing” region J/t � 1.24 compared to
the “pure” AF solution. Hence, we do not find supporting
evidence for the existence of two distinct SC+AF phases,
while a more careful investigation might still identify subtle
behavior related to this effect.

VII. SUMMARY AND OUTLOOK

Exploiting the strength of VCA that phases with broken
symmetry can either be probed or actively avoided by
choosing a suitable variational space, the different phases of
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when simultaneously considering d-wave SC and AF. The circles are
data points. The values for the anomalous expectation value (intensity
color coded in red) and for the staggered magnetization (color
coded in blue) as obtained using a 3 × 2 cluster are displayed. The
dashed line indicates the transition line at which the AF continuously
disappears when increasing J/t .

the KLM were analyzed separately, as well as their interplay.
This leads to the main result of this work, which is the phase
diagram displayed in Fig. 1. As the half-filled KLM has
special features in the phase diagram, it has been analyzed
separately from the doped model.

In the paramagnetic phase, due to the absence of Weiss
fields, the set of variational parameters is comparatively small
so that it was possible to investigate cluster size effects and to
identify a necessary minimal set of variational parameters.
Differences between the 2 × 2, the 3 × 2, and the 4 × 2
clusters were found at small couplings, however, the influence
of multiple (anisotropic) hopping strengths for asymmetric
clusters turned out not to change the results qualitatively.
At half-filling and strong coupling, all clusters lead to a
Kondo insulator with quasiparticle gap, which is essentially
independent from the cluster size. However, the asymmetric
3 × 2 and 4 × 2 clusters showed an unexpected transition
to a paramagnetic metal at J/t ≈ 0.8. As confirmed by
adding an AF Weiss field, in this region a gapped long-range
antiferromagnetic order emerges due to effective RKKY
interaction, so that the metallic phase at half-filling has not
been investigated in further detail. Doping the system away
from half-filling at strong couplings resulted in a metallic
phase with a large Fermi surface. The Fermi surface area in
this region amounts to the sum of electron density and f -spin
density, which indicates the participation of f spins in the
charge-transfer process via mobile Kondo singlets.

The addition of an AF Weiss field as variational parameter
allows for the investigation of an emerging antiferromagnetic
phase below a critical coupling strength Jc/t . At half-filling,
finite-size extrapolation is possible. Despite the smallness of
the clusters, the extrapolation reveals an infinite-cluster-size
value of Jc/tVCA ≈ 1.48 ± 0.28, which agrees within error

bars with the one obtained by numerically exact QMC methods
[38] at half filling, Jc/tQMC ≈ 1.45 ± 0.05. Although only
three cluster sizes for ladder-shaped clusters could be used,
it is impressive to see that the extrapolated value nicely fits
to these exact results, giving us confidence for the further
results obtained by VCA. Unfortunately, only very limited
cluster sizes can be treated for this model, so that a finite-size
extrapolation in most cases is not possible. However, due to
the excellent results at half-filling, we expect that such an
extrapolation would lead to results similar to those obtained
with numerically exact approaches such as tensor-network
methods [78–80]. It would be desirable to develop improved
cluster solvers for larger clusters, so that in future work a finite-
size extrapolation within the VCA for arbitrary parameters
would become possible.

At half-filling, the transition from PM to AF insulator is
seen in the spin-spin correlator 〈
S · 
s〉, the local susceptibility
χf , and the DOS. Off half-filling (1 > n � 0.8), the AF
solution becomes metallic and the staggered magnetization
decreases when reducing the electron filling. At some critical
filling nc(J ), the magnetization vanishes smoothly and the
system continuously goes over to a PM metal.

The AF metal possesses two different regions, one at weak
coupling with a small Fermi surface and the other one at larger
coupling showing closed pocket structures. This needs further
investigations, and we believe that using larger cluster sizes
would be very helpful to better understand these features of the
Fermi surface. Our results for the spin-spin correlator, the local
susceptibility, and the DOS indicate the existence of Kondo
singlets in the antiferromagnetic phase over a wide region of
parameters, and they seem to persist down to weak-coupling
strengths. Such an existence of Kondo singlets in the AF
phase has been reported before, e.g., by variational Monte
Carlo (VMC) [30,68], real-space DMFT (rDMFT) [37], and
dynamical cluster approximation (DCA) [35], and contradicts
the Kondo breakdown scenario of mean-field theory [30].
However, when considering only AF Weiss fields in the VCA,
we also identify a discontinuous transition within the AF
phase at lower values of the filling, which turns continuous
for n � 0.97. This is similar to what has been reported in
Refs. [30,68], while rDMFT [37] and DCA [35] studies
identify a continuous transition, albeit at finite temperature.

Note that as the VCA in its current formulation is limited to
the electronic degrees of freedom and does not include excita-
tions of the f spins in the Green function, it is difficult to ad-
dress the question of Kondo screening in a direct approach. In-
cluding spin excitations in an extension of standard VCA might
allow for a detailed future investigation of Kondo screening.

In addition to the AF properties, we investigated the phase
diagram for possible s-wave SC phases. This was recently
reported by a DMFT+NRG approach [34], but, however,
has not been found with DMFT or DMFT-like techniques
using different impurity solvers since. Already at half-filling
using the 2 × 2 cluster a seemingly superconducting solution
could be traced back to a solution of atomic mean-field
nature. Extending the variational space, additional stationary
points in the self-energy functional were investigated. Most
of them can be discarded since they either correspond to
artificial mean-field solutions of isolated SC sites or because
they violate thermodynamic stability. To exclude artificial
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solutions, a parameter regime for the Weiss field strength was
identified and investigated for the most promising stationary
points using the 3 × 2 cluster. In this parameter regime of
small Weiss fields, the only stable solutions correspond to a
PM metal and not to s-wave SC. Also, allowing for a possible
coexistence with AF did not lead to stable s-wave SC solutions.
Interestingly, EOM for the s-wave pairing susceptibility show
no J dependence, which might be a further indication that
s-wave SC is suppressed in the KLM on a square lattice.

In contrast, d-wave SC is stabilized over a wide range of
the parameters treated here. However, also here care needs
to be taken: including only the d-wave SC Weiss field at
half-filling leads to a stable SC solution for weak couplings,
which disappears when also including AF in the treatment. Off
half-filling, also in the presence of AF, d-wave SC is stabilized,
and a coexistence region for couplings J < Jc is found, which
persists down to a critical density nc(J ). Inside this coexistence
phase two regions were found, in which within the VCA
treatment at small couplings AF and d-wave SC seem to be in
competition, while close to Jc both appear to act cooperatively.

In order to establish a connection to experiments, the
model should be extended, in particular, also concerning the
existence of a quantum critical point. Possibilities are to
include additional terms suppressing Kondo singlets, which
might lead to a tunable Kondo breakdown. An example are
long-range hopping terms, which lead to frustration and have
been used in the past [31,32,36,81]. Another possibility is
to extend the model to the Heisenberg-Kondo lattice model
[64,82–84]. In both cases, the modifications of the Kondo
lattice model can also lead to changes in the superconducting
channel [31,83,84]. The additional Heisenberg interaction
leads to a d-wave SC condensate, which consists of magnetic
pairs of f electrons on neighboring sites, as well as composite
pairs containing two conduction electrons [85]. Recently, it
was shown that singlet pairing correlations are enhanced in
the vicinity of a Kondo-destruction quantum critical point
[86], which motivates the study of d- and s-wave SC for the
Heisenberg-Kondo lattice model. However, in order to be able
to study these scenarios with the VCA, one needs to include
the possibility to treat nonlocal interactions.

In order to better connect with results obtained by tech-
niques such as DMFT, dual fermions, or DCA, the VCA study
could also be extended by using clusters with additional bath
sites. This would allow to consider in addition to the spatial
fluctuations also dynamical fluctuations between cluster and
bath sites, an aspect which might help to better understand
the discrepancy between DMFT+NRG and VCA results with
respect to s-wave superconductivity. Including bath sites in
VCA also offers a route to investigate the transition from
d- to p-wave superconductivity found in Ref. [33] with a
complementary cluster technique.
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APPENDIX A: DETAILED ANALYSIS OF THE
PARAMAGNET AT HALF-FILLING

Within VCA, the spin-spin correlator between f spins and
c electrons can be easily obtained as a functional derivative
of the self-energy functional at its stationary point: 〈 
Si · 
si〉 =
∂�/∂J . For perfect Néel order, the f spins and conduction
electrons order and a spin-spin correlator of − 1

4 per site would
be expected as a staggered Weiss field breaks the local spin
symmetry.

For this reason, the behavior of the local spin-spin correlator
can be used to shed some light onto the possible breakdown of
Kondo singlet formation: Throughout the paper, we assumed
for 0 < J < Jc that the ground state can be constructed by
considering three different contributions, corresponding to a
state without correlation between electron and f spin, an AF
ordered Néel state, and a Kondo singlet state, respectively.

In this picture, at least in the region in which 〈
S · 
s〉 <

−0.25, a considerable admixture of Kondo singlets should be
present in the ground state in order to obtain an expectation
value, which is lower than the one of the Néel state. Even
for small coupling strengths where the spin-spin correlator is
larger, the absence of a kink for J < Jc casts the occurrence
of a sudden Kondo breakdown into doubt. Hence, considering
only the local spin-spin correlator in principle still renders two
scenarios possible: either Kondo singlets survive down to small
coupling strengths within the whole antiferromagnetic phase
or they smoothly decay when reducing the coupling strength.

In the following, we briefly compare the density of states
(DOS) of the PM and AF solutions. Figure 19 shows the
DOS at J/t = 1.0 for both solutions. The paramagnetic DOS
consists in equal parts of the density of states of electrons
with up and down spin. In contrast, the antiferromagnetic
DOS has different contributions for up and down electrons
when focusing on one of the sublattices A and B. Due to
the particle-hole symmetry of the DOS at half-filling, we
limit the discussion to the electronic part only and focus
on the region ω ∈ (−1.5,1.5). Note that although Fig. 19
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FIG. 20. Variation of the cluster hopping parameters inside the
3 × 2 cluster at half-filling. Using three different cluster hopping
parameters t ′

1,t
′
2,t

′
3 as indicated by different colors in the inset instead

of only one parameter t ′ leads to a reduction in the free energy, but
not to qualitative differences for the paramagnetic (top panel) and
antiferromagnetic case (lower panel). For the latter, especially the
value Jc/t for the onset of antiferromagnetism and the value of the
staggered magnetization do not change much when using anisotropic
cluster hopping (black circles) in comparison to the result when
varying only t ′ (continuous yellow line).

suggests finite spectral weight at ω = 0, this is only due to
the large broadening (η = 0.05). Both solutions indeed show
a quasiparticle gap when reducing the broadening. In the AF
solution, the DOS is characterized by a sharp resonance right
at the border of the quasiparticle gap, followed by a side
resonance at larger frequency. The paramagnet has a smaller
quasiparticle gap and three distinct peaks can be identified.
Compared to the antiferromagnet, where the main resonance
is separated from the side resonance by a dip, the three peaks
of the paramagnet are quite close to each other.

APPENDIX B: VARIATION OF THE CLUSTER
HOPPING STRENGTH

It is shown in Appendix D 1 that it is crucial to include the
intracluster hopping t ′ into the set of variational parameters
when investigating superconductivity, in order to exclude
unphysical solutions. Here, we show the influence of t ′ on
the normal and antiferromagnetic solution.

In the top panel of Fig. 20, the values of the cluster
hopping parameters are shown at the stationary point in the
paramagnetic case at half-filling as a function of coupling
strength. When considering isotropic hopping with strength t ′
on the cluster, t ′ shows a cusp anomaly at J/t ∼ 0.9. This
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FIG. 21. Variation of the cluster hopping parameters inside the
3 × 2 cluster at J/t = 1.6 as a function of electron filling. Variation
of three cluster hopping parameters t ′

1,t
′
2,t

′
3 instead of one parameter

t ′ leads to a slightly higher critical filling nc (top panel), where AF
sets in, but not to qualitative differences. Lines indicate square-root
fits. Especially, the spreading of the different values of the hopping
parameters increases when approaching the transition (lower panel),
although their mean value is still comparable to t ′.

coincides with the point, where the paramagnetic solution has
zero quasiparticle gap and hence changes from a paramagnetic
insulator at large coupling to a paramagnetic metal. Even
when considering anisotropic hopping on the cluster with
hopping strengths t ′1,t

′
2,t

′
3 as shown in the sketch in Fig. 20, the

anomaly shifts to smaller coupling strength J/t , but persists.
The transition can also be seen in the arithmetic mean of the
three cluster hopping terms t̄ ′ = (4t ′1 + 2t ′2 + t ′3)/7.

When allowing for antiferromagnetism by adding a stag-
gered Weiss field, at half-filling the system is insulating for all
coupling strengths and the cusp singularity in t ′ is absent (see
lower panel of Fig. 20). This is still the case when choosing
anisotropic hopping parameters on the cluster. Furthermore,
anisotropic cluster hopping only leads to minor changes of the
critical coupling strength Jc/t , where AF sets in, and of the
value of the staggered magnetization m.

Away from half-filling, allowing for anisotropic cluster
hopping leads to an increase of the critical electron filling nc,
where AF sets in (see top panel of Fig. 21). The AF region is
thereby reduced, but the shape of the staggered magnetization
curve as a function of electron density n stays qualitatively
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the same. When considering the values of the cluster hopping
terms in the lower panel, it can be seen that the anisotropy
in the cluster increases when reducing the electron density,
although the arithmetic mean value t̂ ′ is still comparable to t ′.

APPENDIX C: LUTTINGER’S SUM RULE
AND KONDO BREAKDOWN

In this Appendix, we discuss in more detail the relation of
the FS to the spectral function A(k,ω) shown in Sec. V B. A
consistency check for the validity of these results is to consider
Luttinger’s sum rule. To do this, in the KLM one needs to take
care due to the strongly correlated character of the system. In
the following, we approach this within the VCA.

For Fermi liquids at zero temperature, Luttinger’s theorem
states that the volume of the electrons’ Fermi surface amounts
to the number of electrons [87]. A nonperturbative proof of
Luttinger’s theorem for the Kondo lattice model was given by
Oshikawa [88], but since it assumes Fermi liquid behavior, it
cannot be directly transferred to the AF metal for intermediate
values of J/t . Nevertheless, the theorem can be extended to
the case of non-Fermi liquids (see, e.g., Ref. [89].

In addition, it was shown by Ortloff et al. [90] that the Lut-
tinger theorem can be violated by conserving approximations
based on the self-energy functional theory of Potthoff such
as VCA. For finite systems, they showed that the (extended)
Luttinger sum rule should rather be formulated as

2
∑

k

∑
m

αm(k)�[ωm(k)] = 2
∑

k

(Pk − Zk), (C1)

where Pk = ∑
m �[ωm(k)] denotes the sum of all positive

poles ωm(k) and Zk = ∑
n �[ζn(k)] the sum of all positive

zeros ζn(k) of the Green function

Gk(ω) =
∑
m

αm(k)

ω − ωm(k)
.

Right at the Fermi energy ω = 0 the sum of all poles constitutes
the Fermi surface, whereas the sum of all zeros constitutes the
Luttinger surface [91,92]. The spectral function is A(k,ω +
iη) = − 1

π
ImGk(ω + iη) = −∑

m
αm(k)η

[ω−ωm(k)]2+η2 , which means
that the Fermi surface can be read off from limη→0+ A(k,0 +
iη). However, poles with small weight αm can be easily missed
when reconstructing the Fermi surface from the spectral
function, so that care needs to be taken.

The left-hand side of Eq. (C1) amounts to the summation
of the weight of the spectral function up to the Fermi energy.
Within our VCA approach, the Green function only includes
the propagation of conduction band electrons, which means
that

nc
e = 2

Nk

∑
k

∫ 0

−∞
dω A(k,ω + i0+) (C2)

is always fulfilled due to thermodynamical consistency of the
approach (Nk denotes the number of k points in the Brillouin
zone). Since between two poles ωm and ωm+1 there exists
exactly one zero ζm̃, the right-hand side of Eq. (C1) amounts to
sum all zeros ζ ∗ between the largest negative and the smallest
positive pole if ζ ∗ > 0 [93]. In other words, the electron density
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Eq. (C3) and nc
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strength J/t for the 3 × 2 cluster. ne is split into the contribution
of the “outer” part of the Brillouin zone (nV1
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is obtained by [92]

ne = 2

Nk

∑
k

�[G(ω = 0,k)]. (C3)

The value of this sum is shown in Fig. 22 as a function of
coupling strength J/t . An additional complication occurs once
antiferromagnetic order is present since there the Brillouin
zone is halved compared to the paramagnetic case at large
coupling. When plotting the same region in k space, the
Brillouin zone is captured twice, indicated by the dashed line
in the inset of Fig. 22 for J/t = 0.6. For this reason, we plot
the sum over the “inner” (nV2

e ) and “outer” (nV1
e ) half of the BZ

as shown in the inset.
For a large Fermi surface, where the f spins participate in

the charge transport via Kondo singlet formation, the electron
density is ne = nc

e + 1. As shown in Fig. 22, this is nicely
fulfilled by our VCA results. In case of a small Fermi surface,
the f spins are frozen out in an antiferromagnetic order and
ne = nc

e. As one can see from Fig. 22, nV2
e = nc

e is fulfilled
in the AF1 region and the contribution of nV1

e tends to zero
for weak-coupling strength. In-between, a drastic reduction
of nV1

e takes place and it seems that the FS with many hole
structures in the AF2 region weakly violates Luttinger’s sum
rule. For a detailed study of this effect, one needs a finite-size
extrapolation in the cluster size, which is not possible since
only small clusters can be treated for this model.

In Fig. 23 we show how the FS, the Luttinger surface, and
the spectral function relate to each other. We display both
the Fermi and the Luttinger surfaces, as well as ne according
to Eq. (C3) for three characteristic values of the coupling
strength. The determination of ne is very stable within VCA
since one does not need to resort to any kind of artificial
broadening. For better comparison, these results are overlayed
to the ones for the spectral function at the Fermi energy
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[A(k,ω = 0 + iη),η = 0.01t], which is often used to extract
the FS, especially within techniques, which do not have direct
access to the poles of the propagator [36]. Here, we use the
so-called Q-matrix formalism [42] and directly obtain all poles
and weights of the (cluster) Green function. This includes poles
with negligibly small weight; note that it is these poles which
lead to additional structures when comparing to A(k,0 + iη),
otherwise the behavior of the FS and of limη→0+ A(k,0 + iη)
is identical, which justifies using the spectral function for the
discussion in Sec. V B. Note that the small but finite broadening
of η = 0.01 in Fig. 23 makes it difficult to determine the
Luttinger surface precisely. Nevertheless, due to the small
weight of some poles, zeros occur in their close vicinity
and show up in the Luttinger surface (see, e.g., the plot for
J/t = 3.0 in Fig. 23). For this reason, poles with (very) small
weight do not significantly add to the Luttinger sum (C1). In
case of the PM, the poles that contribute finite weight to the
spectral function contribute and the overall sum of Eq. (C1)
corresponds to an electron density of ne = 1.90.

For the case of doped Mott insulators it was shown that
the intricate interplay of zero and pole surfaces of the Green
function are closely related to main features of the Mott
physics [94,95]. However, it is still debated whether the
Luttinger theorem can be applied to strongly correlated metals
[92,96–102]. A further investigation of this issue for the Kondo
lattice model would be interesting. However, it would require
the treatment of larger clusters and is left for future studies.

APPENDIX D: DETAILED ANALYSIS OF s-WAVE
SUPERCONDUCTIVITY WITHIN VCA

In the following, we show additional detailed calculations
for putative s-wave SC in the KLM using VCA. First of all,
an s-wave solution at half-filling is identified and discussed
in Appendix D 1. To complement the discussion of putative
s-wave SC off half-filling in Sec. VI A 2, we analyze possible
additional solutions when treating AF and s-wave SC on equal
footing in Appendix D 2.

1. s-wave superconducting solutions at half-filling

For small coupling strengths (J/W � 0.15), Bodensiek
et al. report weak indications for superconductivity even at
half-filling [34]. However, it should be noted that the anoma-
lous expectation value is very small in this region (�s ≈ 0.002)
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FIG. 24. Results for the SC Weiss field Dc and for the anomalous
expectation value �s at half-filling when considering s-wave SC.
The set of variational parameters includes {D,μ′} (top panel) and
{D,μ′,t ′} (bottom panel). In the bottom panel, only a 3 × 2 cluster is
considered whereas in the top panel the three indicated cluster sizes
are shown. Note the hopping strength within the cluster is found to
be zero within error bars and the Weiss field strength corresponds to
the one of an isolated Kondo site, Dc = 3/4J .

and DMFT suffered from convergence problems which made
it difficult to stabilize the solution [103]. Furthermore, this is
the region where other DMFT studies without superconducting
baths found an antiferromagnetic insulator [67,104], so that the
interplay between superconductivity and antiferromagnetism
should be investigated in detail.

Indeed, when using only an s-wave SC Weiss field within
VCA, the SEF possesses a minimum with respect to the
superconducting Weiss field strength Ds for large values
of J/t , corresponding to a superconducting solution. This
is unexpected since in the strong-coupling limit, Kondo
singlets should form, leading to an insulator instead. At weak
couplings, the SEF possesses an additional maximum for larger
Ds and yet another minimum with larger free energy. This
means, that, according to Potthoff’s rules for the selection
of stationary points [50], still the minimum with lower free
energy should be considered as the correct stationary point.

In contrast to the superconducting phase that was found
in Ref. [34], the solution at this stationary point exists for all
coupling strengths (see the top panel of Fig. 24). The strength
of the Weiss field at the stationary point is quite large and for
couplings larger than the hopping strength J/t � 1, it is even
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proportional to J . Furthermore, the Weiss field strength is for
strong coupling independent of the cluster size as seen when
comparing the results for the three clusters used in Fig. 24. This
indicates a local character of the solution, where the physics
is dominated by the (local) Weiss field.

One key aspect of the approximation within VCA is the
choice of the space of variational self-energies, which is given
by the cluster geometry of the reference system and the choice
of a set of one-body parameters which are used as variational
parameters. Only in few VCA studies the variation of the
cluster hopping terms t ′ leads to significant improvements
(see, e.g., Ref. [105]). However, in the following it will be
shown that including the hopping on the cluster as variational
parameter in the case of the KLM is crucial for investigating
s-wave superconductivity, as it leads to qualitatively different
behavior.

When varying D, μ′, and t ′ for large J/t (e.g., J/t = 10 in
Fig. 24), and starting with the solution found previously with
a large value of the pairing field, one arrives at a stationary
point where the hopping on the cluster is zero. Nevertheless,
the superconducting pairing D on the cluster is finite and leads
to a finite anomalous expectation value at the stationary point.
This would correspond to a cluster ground state with local
“singletlike” states of empty and doubly occupied sites, where
single electrons are localized as they cannot move within the
cluster. For all coupling strengths, the value of the Weiss field
is given by Dc = 3/4J , which is exactly the Kondo singlet
binding energy.

At half-filling, the only s-wave superconducting solution is
therefore the somewhat artificial superconductor that consists
of local Cooper pairs without any electron hopping between
the sites. Hence, no indication for a superconducting solution
caused by correlation effects that would be comparable to the
one proposed in Ref. [34] is obtained.

2. Allowing for s-wave superconductivity and
antiferromagnetism off half-filling

As no superconducting solution has been found so far, a
possible next step would be to take additionally antiferromag-
netism into consideration. Naturally, one might think of anti-
ferromagnetism and superconductivity as being two competing
phases. Treating antiferromagnetism and superconductivity on
the same footing would then not change the results obtained
until now.

However, in both mechanisms for s-wave SC put forward
by the authors of Ref. [34], spin fluctuations play an important
role. A first indication of the effect that the addition of an AF to
the SC Weiss field might have can be gained from considering
the self-energy functional as a function of Ds in both cases
(see Fig. 25). Here, the solutions for the sets of variational
parameters {μ,μ′,t ′} and {μ,μ′,t ′,Mc} are compared as a
function of the strength of a local SC Weiss field. Due to
the outcome of the discussion in the previous paragraph,
the considered Weiss field strengths are in the region of
“sufficiently small” Ds , such that t ′ �= 0.

The self-energy functional shows in both cases only one sta-
tionary point, namely, at Ds = 0, which are the paramagnetic
and antiferromagnetic solutions that are already known from
Sec. V; the antiferromagnetic solution has a smaller free energy
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including Mc into the set of variational parameters. The staggered
magnetization of the SC+AF solution diminishes for intermediate
values of Ds , hence, the self-energy functional approaches the SC
result.

and is therefore realized in the system. When increasing the
strength of the superconducting Weiss field Ds the value of the
antiferromagnetic Weiss field Mc decreases and finally goes to
zero. The question as to whether a superconducting solution
can be realized can hence be reformulated to asking whether
the change from the AF to the PM solution can be found
in some parameter regime to lead to an additional stationary
point.

Investigating the self-energy functional as a function of
Ds for J = 1.6t =̂ 0.2W and 2.4t =̂ 0.3W for electron fillings
down to n = 0.85 leads to results similar to those shown
in Fig. 13. At least for these coupling strengths and close
to half-filling no AF is found for intermediate and strong
superconducting Weiss fields, which means that the search for
stationary points amounts to the situation without additional
antiferromagnetic Weiss field. This means that even in the
region where in Ref. [34] the largest anomalous expectation
value was reported, no s-wave superconducting solutions are
identified.

Due to the large variational space and comparatively high
computational cost of the 3 × 2 cluster, the search for s-wave
superconductivity has been restricted to the region of the phase
diagram which seemed to be the most promising. Based on
this, the existence of s-wave superconductivity in the KLM
within VCA is not excluded, but in the investigated region
the calculations do not show evidence for physical s-wave SC
solutions.

APPENDIX E: EQUATIONS OF MOTION
FOR THE PAIRING SUSCEPTIBILITY

As seen in Sec. VI A and Appendix D, there is no evidence
for local s-wave SC in the VCA treatment of the KLM.
In addition, the time derivative in the EOM for the pairing
susceptibility

χjklm(ω) :=
∫ ∞

0
dt e−iωt 〈�†

jk(t)�lm(0)〉 (E1)
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in the s-wave channel in Sec. VI C does not depend on the
interaction J , further indicating the absence of s-wave SC.
Here, we complement the discussion of Sec. VI C by some
computational details.

For the derivation of the EOM, we need to take into account
the interaction part of the KLM [Eq. (14)], and in addition the
kinetic part, which we denote by

Hkin =
∑

〈i,j〉,α
c
†
i,αcj,α

(we have set tij ≡ 1).
We now consider the EOM of the pairing susceptibility

(E1), which builds on the Green function

C(t) = 〈�†
ij (t)�i ′j ′(0)〉 (E2)

for the pairing operators

�
†
ij = F (i,j )c†i↑c

†
j↓.

The function F (i,j ) takes into account the geometry of the
pairing order parameter and is given by Eq. (16).

The first step to calculate the expression of the EOM
is to differentiate Eq. (E2) with respect to time [106]. The

time derivative of �
†
ij (t) is then obtained by means of the

Heisenberg equation

d

dt
�

†
ij (t) = −i[c†i,σ (t)c†j,σ̄ (t),HI/kin], (E3)

where the EOM takes into account the dynamics driven by
the interaction part or the kinetic part by considering HI

or Hkin, respectively. The kinetic part, in general, will not
vanish. However, since it is the tight-binding part of the model
describing noninteracting electrons, it does not contain any
information about the coupling J , and we do not expect
it to induce superconductivity. For example, for the s-wave
channel, we obtain

−i[c†i,σ (t)c†j,σ̄ (t),Hkin] = i
∑
m

(c†i,σ (t)c†m,σ̄ (t)+c†m,σ (t)c†i,σ̄ (t)).

This contributes to the dynamical properties of the pairing
susceptibility, but it will be more interesting to consider the
effect of the interaction term on the EOM. To do so, we
insert Eq. (14) into (E3) and make use of the additivity of the
commutator in order to split the calculation into three parts:

R1 := iF (i,j )
Jz

4

∑
l,s

[�ij (t),nl,sNl,s], R2 := iF (i,j )
Jz

4

∑
l,s

[�ij (t), − nl,s̄Nl,s], R3 := iF (i,j )
J⊥
2

∑
l,s

[�ij (t),c†l,sc
†
l,s̄f

†
l,s̄fl,s],

(E4)

which produces

R1 = iF (i,j )
Jz

4
(c†j,σ̄ (t)c†i,σ (t)Nj,σ̄ (t) − c

†
i,σ (t)c†j,σ̄ (t)Ni,σ (t)) = −iF (i,j )

Jz

4
c
†
i,σ (t)c†j,σ̄ (t)(Njσ̄ (t) + Niσ (t)),

R2 = −iF (i,j )
Jz

4
(c†j,σ̄ (t)c†i,σ (t)Nj,σ (t) − c

†
i,σ (t)c†j,σ̄ (t)Ni,σ̄ (t)) = iF (i,j )

Jz

4
c
†
i,σ (t)c†j,σ̄ (t)(Njσ (t) + Niσ̄ (t)), (E5)

R3 = −iF (i,j )(c†i,σ (t)c†j,σ (t)f †
j,σ̄ (t)fj,σ (t) + c

†
i,σ̄ (t)c†j,σ̄ (t)f †

i,σ (t)fi,σ̄ (t)).

In order to obtain the analytical expression of Eq. (E3), we sum the three contributions of Eq. (E5) to obtain

d

dt
�

†
ij (t) = iF (i,j )

∑
σ

[
Jz

2
c
†
i,σ (t)c†j,σ̄ (t)

(
(−1)σ̄j Sz

j (t) − (−1)σ̄i Sz
i (t)

) − J⊥
2

(
c
†
i,σ (t)c†j,σ (t)Sβ

j (t) + c
†
i,σ̄ (t)c†j,σ̄ (t)Sα

i (t)
)]

. (E6)

The indices α, β stand for Sα = S+ (S−) when σ = ↑ (↓) and Sβ = S+ (S−) when σ̄ = ↑ (↓). Note that until now we have not
further specified the various cases introduced in Eq. (16), so that the result is general.

Let us now consider the s-wave case. By substituting Eq. (16) into (E5), one sees by a direct calculation that both the sum
R1 + R2 and R3 vanish:

(R1 + R2) ∝ c
†
i,σ (t)c†i,σ̄ (t)(Ni,σ̄ (t) − Ni,σ (t)) − c

†
i,σ (t)c†i,σ̄ (t)(Ni,σ̄ (t) − Ni,σ (t)) = 0, (E7)

R3 ∝ c
†
i,σ (t)c†i,σ (t)f †

i (t)fi(t) + c
†
i,σ̄ (t)c†i,σ̄ (t)f †

i (t)fi(t) = 0. (E8)

R3 is equal to zero because of Pauli’s principle since we have two c operators with the same quantum numbers on the same site,
leading to

d

dt
�

†
ij (t) = 0 for s-wave pairing,

as discussed in Sec. VI C. Hence, the result for Eq. (E2) will not depend on the interaction J , and the susceptibility (E1) will
have in the s-wave channel the same ω dependence as a system of free electrons.
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This result, however, does not hold for the extended s-wave and d-wave channels because in the corresponding expression of
F (i,j ) there is no Kronecker delta. For example, the result regarding dx2−y2 -wave ordering is

d

dt
�

†
ij (t)

=
⎧⎨
⎩

i
Jz

2

∑
σ c

†
i,σ (t)c†j,σ̄ (t)

(
(−1)σ̄j Sz

j (t) − (−1)σ̄i Sz
i (t)

) − i J⊥
2

∑
σ

(
c
†
i,σ (t)c†j,σ (t)Sβ

j (t) + c
†
i,σ̄ (t)c†j,σ̄ (t)Sα

i (t)
)
, x direction

i
Jz

2

∑
σ c

†
i,σ (t)c†j,σ̄ (t)

(
(−1)σ̄i Sz

i (t) − (−1)σ̄j Sz
j (t)

) + i J⊥
2

∑
σ

(
c
†
i,σ (t)c†j,σ (t)Sβ

j (t) + c
†
i,σ̄ (t)c†j,σ̄ (t)Sα

i (t)
)
, y direction.

(E9)

The expression for extended s-wave ordering can be easily derived from this equation as its symmetry is closely related to the
one of dx2−y2 wave [see Eq. (16)]. As expected for d-wave order, we see from Eq. (E9) that the expressions for the x direction
and for the y direction only differ by a factor of −1. Furthermore, the dxy-wave channel can be accessed likewise by a similar
calculation.
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