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Dynamical phases with novel topological properties are known to arise in driven systems of free fermions. In this
paper, we obtain a ‘periodic table’ to describe the phases of such time-dependent systems, generalizing the periodic
table for static topological insulators. Using K theory, we systematically classify Floquet topological insulators
from the ten Altland-Zirnbauer symmetry classes across all dimensions. We find that the static classification
scheme described by a group G becomes G×n in the time-dependent case, where n is the number of physically
important gaps in the quasienergy spectrum (including any gaps at quasienergy π ). The factors of G may be
interpreted as arising from the bipartite decomposition of the unitary time-evolution operator. Topologically
protected edge modes may arise at the boundary between two Floquet systems, and we provide a mapping
between the number of such edge modes and the topological invariant of the bulk.
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I. INTRODUCTION

The discovery of topological insulators and the theoretical
and experimental activity that it inspired has led to
major advances in our understanding of zero-temperature
gapped phases [1,2]. While the first new systems to be
discovered were specific topological phases of insulators and
superconductors in one to three dimensions [3–9], these were
eventually arranged into a ‘periodic table,’ which extended
the classification to all dimensions and symmetry classes [10].
This unifying approach revealed a remarkable underlying
periodicity, using connections between K theory and Bott
periodicity on the one hand, and free fermionic topological
phases with symmetries on the other.

The generalized topological insulators that this classifica-
tion scheme describes exhibit robust, topologically protected
edge modes in the presence of a boundary and are characterized
by invariant integers encoded in the topology of their wave
functions. In this way, the periodic table captures the complete
set of bulk-edge connections between bulk Hamiltonians and
their protected edge states. Equivalently, one can interpret
the periodic table as expressing the connection between the
unitary time evolution of a constant Hamiltonian (evaluated
after some time T ), and the corresponding edge eigenstates.
In this picture, the periodic table may be regarded as part of
a more general framework of topological bulk-edge connec-
tions between unitary time evolution operators and protected
edge modes. When the Hamiltonians involved are no longer
constrained to be time independent, new types of bulk-edge
connection may occur. In this paper, we seek to capture
the structure of these dynamical bulk-edge connections by
constructing a generalized periodic table for free fermionic
systems with time-dependent Hamiltonians.

Among our motivations for studying these systems is
the set of (time-periodic) Floquet topological insulators that
have recently been the subject of much experimental and
theoretical effort [see Refs. [11,12] for a review]. Some of
these efforts have considered using periodic driving to force
a system into a topological state [13–23], and significant
experimental progress has been made in this direction in
photonic systems [24–27] and using ultracold atoms [28,29].
Floquet states (albeit nontopological ones) have also been

observed in the solid state on the surfaces of topological
insulators [30,31]. Other recent work has demonstrated the
possibility of generating intrinsically dynamical topological
phases that cannot be realized in static systems [32–41].

Although we will make connections to Floquet theory, our
approach provides a description of time-dependent topological
phases in a manner that does not require time periodicity.
Instead, we consider equivalence classes of unitary time-
evolution operators in general and focus on the instantaneous
topological edge states that might exist in a system after a par-
ticular time evolution. Our main result will be the production of
a generalized periodic table of Floquet topological insulators,
which may be found in Table II. In the process, we find many
new Floquet topological phases that have not been considered
before and provide a general and unifying description for all
symmetry classes and dimensions. As in the case of (static)
topological insulators, this picture provides a connection
between the manifestations of Bott periodicity in K theory
and the topological phases of driven free fermionic systems,
describing both the strong and weak invariants of the system.

Some elements of our generalized periodic table have
appeared in the context of Floquet systems elsewhere in the
literature. Notably, previous work has considered dynamical
topological phases in 1D chains with emergent Majorana
fermions [33,35], 2D systems without symmetries [34], and
driven analogues of the 2D time-reversal invariant topological
insulators [39]. Topological phases of 1D chiral lattices have
also been described in Ref. [36], albeit using a different
definition of chiral symmetry than will be used in this work.
In addition, Ref. [38] describes a band singularity approach to
the characterization of Floquet topological phases, introducing
new results for 3D systems with time-reversal symmetry. After
the completion of our work we discovered Ref. [41], which
extends the formulation of strong topological invariants for
classes A and AIII to all dimensions. While our work does not
rely on invariants for classification and discusses several other
cases, our results seem to be consistent with these existing
discussions and incorporates them into a general, unifying
periodic table. Our results also capture the complete set of
strong and weak topological invariants in each case.

Several other works discuss driven, 1d topological phases in
the context of quantum walks [42–45]. In particular, a complete
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classification of 1d quantum walks has been obtained using
scattering theory [44]. These results are consistent with our
classification of 1d Floquet systems, although the setting and
symmetry definitions used are slightly different. In the opposite
limit, time-dependent topological systems have also been
studied through adiabatic cycles, where a system parameter
is varied slowly while maintaining a gap in the Hamiltonian
[46–50]. In Ref. [50], a classification of adiabatic pumps of this
form was obtained for classes AIII and DIII. These results also
agree with our classification scheme for these classes, although
it should be noted that Floquet systems are generically very
far from the adiabatic limit (and there is no requirement to
maintain an instantaneous gap).

In this paper we consider noninteracting systems, but the
ideas we outline also develop some of the intuition required
for the study of interacting topological phases, a topic that
has been the focus of much recent study, both by the current
authors and others [51–58]. Importantly, the statements we
make in the noninteracting case can, to a great extent, be
made mathematically precise, while arguments for interacting
systems necessarily require a certain amount of conjecture.
In this way, we hope that this paper will provide a useful
corroboration of the ideas introduced in Ref. [54].

The outline of this paper is as follows. In Sec. II, we
introduce unitary evolution operators in the context of time-
dependent systems and establish the homotopy formalism
that we will require throughout the text. In Sec. III we
introduce unitary loops and explain how a general unitary
evolution may be deformed into a unitary loop followed by
a constant Hamiltonian evolution, a theorem that is central
to our approach. We go on to classify unitary loops for the
Altland-Zirnbauer (AZ) symmetry classes in Sec. IV, before
relating this classification scheme to general unitaries and edge
modes in Sec. V. Finally, we give some concluding remarks in
Sec. VI. In order to aid ease of reading, we have omitted some
of the more mathematical sections from the main text. These
may be found in the appendices.

II. UNITARY TIME EVOLUTION OPERATORS
AND THEIR PROPERTIES

A. Time-dependent quantum systems

The aim of this paper is to classify the novel types of
topological edge mode that can arise in a noninteracting
quantum system after it has evolved in time due to some
time-dependent Hamiltonian H (t). In general, instantaneous
eigenstates satisfy the time-dependent Schrödinger equation
and evolve in time through the unitary transformation

|ψ(t)〉 = T exp

[
−i

∫ t

0
H (t ′)dt ′

]
|ψ(0)〉 ≡ U (t)|ψ(0)〉, (1)

with T the time ordering operator. U (t) is the time evolution
operator, and, being unitary, has eigenvalues that lie on the
unit circle in the complex plane. We write these eigenvalues
as e−iε(t)t , and focus on the instantaneous quasienergies given
by {ε(t)}, taken to lie in the range −π/t < ε(t) � π/t . In
a spatially periodic system, the instantaneous single-particle
quasienergies form bands labeled by the momentum k and a
band index. In some ways, these bands bear a resemblance to

the ordinary bands of a (static) periodic Hamiltonian, although
we will find that the periodic nature of the quasienergy
spectrum generally allows for a much richer structure.

We are particularly interested in the quasienergy spectrum
after evolution through some time period T , and we write the
quasienergies at t = T simply as ε. At this point, a system
with an open boundary should have a similar quasienergy
spectrum to the corresponding periodic system, with the
possible addition of energy levels in the gaps between the bulk
bands. The existence of gap states indicates the presence of
topologically protected edge modes, which we aim to classify
in this text.

Most previous work in this area has focused on Floquet
systems: those whose time-dependent Hamiltonians satisfy
H (t + T ) = H (t) for some time period T . In a Floquet
system, we can use an analogy of Bloch’s theorem to write
the instantaneous eigenstates as |ψ(t)〉 = e−iε(t)t |φ(t)〉 with
|φ(t + T )〉 = |φ(t)〉. In this way, after a complete time period,
Floquet states simply pick up a phase, since U (T )|ψ(0)〉 =
e−iεT |ψ(0)〉. It should be noted, however, that the time
evolution operator U (t) is generally not periodic, even if it
is derived from a periodic Hamiltonian.

Although Floquet theory provides a useful setting in
which to discuss time-dependent systems, we emphasize that
our conclusions will be much more general than this. The
statements we make are essentially about the topology of the
space of unitary evolutions (with symmetry), and the unitary
evolutions that we classify do not necessarily need to be
generated by a time-periodic Hamiltonian. Instead, they may
be considered as paths within the space of evolutions. The
phase space of unitary evolutions is discussed in some detail
in Ref. [58].

B. Particle-hole, time-reversal, and chiral symmetries

In this paper, we are concerned with free fermionic systems
that fall within the symmetry classes of the AZ classification
scheme [59–61]. These classes are distinguished by the
presence or absence of two antiunitary symmetries and one
unitary symmetry, as well as the general form of the relevant
symmetry operators.

In systems with particle-hole symmetry (PHS), there exists
a PHS operator P = KP , where K is the complex conjugation
operator and P is unitary, that acts on the band Hamiltonian
to give

PH (k,t)P −1 = −H ∗(−k,t). (2)

Similarly, in systems with time-reversal symmetry (TRS),
there exists a TRS operator � = Kθ , where K is again the
complex conjugation operator and θ is unitary, that acts on the
band Hamiltonian to give

θH (k,t)θ−1 = H ∗(−k,T − t). (3)

With this definition, we have assumed without loss of gen-
erality that t = T/2 is the point in time about which the
Hamiltonian is symmetric.

From the definition of the time evolution operator in Eq. (1),
it follows that these symmetry operators, if present, act on
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TABLE I. Standard expressions for symmetry operators within
each Altland-Zirnbauer (AZ) symmetry class. σi are the Pauli
matrices and I is the identity.

Symmetry Operator Cartan Label S

P = σ1 ⊗ I BDI, D, DIII
P = iσ2 ⊗ I CII, C, CI
θ = I AI, BDI, CI
θ = I ⊗ iσ2 AII, CII, DIII
C = σ3 ⊗ I AIII

U (k,t) to give

PU (k,t)P −1 = U ∗(−k,t) (4)

θU (k,t)θ−1 = U ∗(−k,T − t)U †∗(−k,T ). (5)

The actions of each symmetry operator on the time evolution
unitary are derived in Appendix A.

If both TRS and PHS are present, there is an additional
unitary symmetry C = Pθ that acts on the Hamiltonian to
give

CH (k,t)C−1 = −H (k,T − t). (6)

More generally, there may be a chiral symmetry (CS) operator
C �= Pθ that acts on the Hamiltonian according to Eq. (6)
even in the absence of PHS and TRS. This defines the
final AZ symmetry class, labeled AIII. When acting on the
time evolution unitary, the CS operator gives (derived in
Appendix A)

CU (k,t)C−1 = U (k,T − t)U †(k,T ). (7)

We note that our definition of chiral symmetry for periodic
systems is slightly different from that used in some previous
works [36,38].

After a suitable basis transformation, P , θ , and C can
always be written in certain standard forms, as shown in
Table I. The operators P and θ may each either square to
+I or −I, leading (along with the chiral symmetry operator)
to ten distinct AZ symmetry classes [59–61]. We write the set
of unitaries that belong to each symmetry class as US , where
S is the appropriate Cartan label. To simplify notation, we
set T = 1 from now on, so that t ∈ [0,1]. We will also often
omit the explicit momentum and time dependence of a unitary
operator U (k,t) if the meaning is clear.

C. Gapped unitaries

We are interested in the protected edge modes that may
arise in the gaps of the quasienergy spectrum at the end of
a unitary evolution if the system has a boundary. For this
reason, we will restrict the discussion to consider only gapped
unitaries, which we define to be unitary evolutions of the form
in Eq. (1), which at their end point, U (k,1), have at least one
value of quasienergy in the closed system that no bands cross
[62]. Importantly, we do not require that the instantaneous
quasienergy spectrum be gapped for intermediate values of
t (0 < t < 1). We write the set of all such gapped unitaries
within the AZ symmetry class S as US

g and note that a unitary
evolution of this form may be represented as a continuous

matrix function U (k,t) with 0 � t � 1 and k taking values
within the d-dimensional Brillouin zone, which we call X. It
is clear that U (k,t) evolves from the identity matrix at t = 0.

The gap structure at the end of a unitary evolution will
depend on the symmetry of the underlying Hamiltonian and in
general can be rather complicated. A schematic example of a
gapped unitary evolution with PHS is shown in Fig. 1, which
emphasizes both the nontrivial evolution and the quasienergy
band structure at the end point. The most commonly considered
quasienergy gaps are those at ε = 0 and ε = π , since, in a
system with particle-hole or chiral symmetry, these are the
gaps about which the system is symmetric. In systems without
these symmetries, physically relevant energy gaps may appear
anywhere in the spectrum, although in these cases a generic
gap can always be moved homotopically (a term we define
precisely below) to ε = 0 or ε = π . For these reasons, we
will assume the gaps in the spectrum occur at these points
throughout the next two sections, leaving a general discussion
of gap structures to Sec. V.

The gapped spectrum in Fig. 1(b) resembles the band
structure of a conventional, static Hamiltonian, with two
well-separated bands and a gap at zero. In this situation, it is
useful to define the effective Floquet Hamiltonian HF through

HF (k) = i ln [U (k,1)], (8)

where the branch cut of the logarithm can be placed in the gap
at ε = π . According to Eq. (1), the Floquet Hamiltonian might
naively be interpreted as the effective static Hamiltonian that,
under time evolution, generates the quasienergy spectrum of
the corresponding unitary, U (k,1). If the Floquet Hamiltonian
is topologically nontrivial, we might expect the edge modes as-
sociated with HF to transfer to edge modes in the quasienergy
spectrum of U (k,1). Indeed, if one considers evolution with
a time-independent but topologically nontrivial Hamiltonian,
then U (k,1) for the open system will have robust edge modes
if the corresponding unitary for the closed system is gapped at
zero.

Although this intuition goes some way towards explaining
the protected edge modes of unitary operators, the time-
dependent situation is inherently more complicated: In general,
there can be edge modes in the quasienergy gaps at both ε = 0
and ε = π , the latter of which lie beyond a description in
terms of the effective Floquet Hamiltonian. Indeed, recent
studies have demonstrated systems that exhibit edge modes
in both gaps even when the effective Floquet Hamiltonian is
the identity operator (see, for example, Ref. [34]). To fully
characterize the edge modes of a unitary operator U (k,1),
we require information about the unitary evolution U (k,t)
throughout the period of evolution 0 � t � 1. In Fig. 1(a) we
show a nontrivial evolution of this form that might generate
edge modes in the gaps at ε = 0 and ε = π . An interesting
feature of Floquet systems with edge modes at ε = π is that
the unitary for the open system cannot always be written in
the form U (k,1) = e−iH (k) for some local Hamiltonian H (k).
Notably, if the system has PHS, then there is no way of shifting
the modes at ε = π to ε = 0 without breaking the symmetry.
This contrasts with the closed system, whose gapped unitary
can always be written in terms of a local Hamiltonian.
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FIG. 1. (a) Unitary evolution as a composition of a loop with a constant Hamiltonian evolution. Instantaneous quasienergy bands are shown
in blue. (b) End point of this unitary evolution, with quasienergy bands shown in blue and edge modes (which may be present in the open
system) shown in red. The full spectrum has been projected onto a single momentum direction, labeled by k.

D. Compositions and homotopy of unitary evolutions

Before outlining the classification scheme in detail, we
describe a few properties of unitary evolutions that we will
require below. We will need to consider compositions of
unitaries, and so, borrowing notation from the composition
of paths [63], we write the evolution due to U1 followed by
the evolution due to U2 as U1 ∗ U2. If H1(k,t) is the Hamil-
tonian corresponding to U1 and H2(k,t) is the Hamiltonian
corresponding to U2, the Hamiltonian corresponding to the
composition U1 ∗ U2 is given by

H (t) =
{
H1(k,2t) 0 � t � 1/2
H2(k,2t − 1) 1/2 � t � 1 . (9)

With this definition, the endpoint of any composition of
unitaries always occurs at t = 1.

In general, this composition rule produces an evolution that
is no longer time-reversal symmetric about t = T/2, even if
H1 and H2 individually are symmetric. The discussions below
become considerably simpler if the composite Hamiltonian
retains our definition of TRS. For this reason, if we wish
to consider systems with TRS, we should instead define the
Hamiltonian corresponding to the composition U1 ∗ U2 by

H (t) =
⎧⎨
⎩

H2(k,2t) 0 � t � 1/4
H1(k,2t − 1/2) 1/4 � t � 3/4
H2(k,2t − 1) 3/4 � t � 1

, (10)

which we see has the required symmetry.
For classification purposes, we split the set US

g into
equivalence classes. Following the classification scheme of
static topological insulators in Ref. [10], we carry out this
partition using homotopy. We define homotopy in the usual
way, and say that two unitary operators U1,U2 ∈ US

g are
homotopic if and only if there exists a function h(s), with
s ∈ [0,1], such that

h(0) = U1, h(1) = U2, (11)

with h(s) ∈ US
g for all intermediate values of s. In this way,

the gap structure at t = 1 (but only the gap structure at this
point) must be preserved throughout the homotopy. We write
homotopy equivalence as U1 ≈ U2.

In order to compare unitaries with different numbers of
bands, we introduce the further equivalence relation of stable
homotopy as follows. We define U1 ∼ U2 if and only if there
exist two trivial unitaries, U 0

n1
and U 0

n2
, such that

U1 ⊕ U 0
n1

≈ U2 ⊕ U 0
n2

, (12)

where ⊕ is the direct sum and n1,n2 are positive integers that
give the number of bands in the trivial unitary. The appropriate
trivial unitaries U 0

n must belong to the setUS
g , and will be given

explicitly when required.
Finally, since we are ultimately interested in the behavior at

a system boundary, the discussion is simplified considerably
if we also define equivalence classes of pairs of unitaries. The
pairs (U1,U2) and (U3,U4), where both members of each pair
have the same number of bands, are stably homotopic if and
only if

U1 ⊕ U4 ∼ U2 ⊕ U3. (13)

We write this equivalence as (U1,U2) ∼ (U3,U4).

III. DECOMPOSITION OF UNITARY EVOLUTIONS

Our approach will be to isolate the new, dynamical topo-
logical behavior from the static topological behavior that is
encoded in a nontrivial Floquet Hamiltonian. We will initially
restrict the discussion to unitaries that have gaps at both ε = 0
and ε = π (with possible additional gaps elsewhere in the
spectrum), considering more general cases in Sec. V. We write
the set of such unitaries as US

0,π .
To proceed, it is useful to define two special types of

unitary evolution. First, we define a unitary loop to be a unitary
evolution that satisfies U (k,0) = U (k,1) = I. A unitary of this
form can be seen to act trivially on a closed system but may
generate nontrivial edge modes in a system with a boundary.
Secondly, we define a constant Hamiltonian evolution as a
unitary evolution that may be expressed as U (k,t) = e−iH (k)t

for some static Hamiltonian H (k), whose eigenvalues have
magnitude strictly less than π . The utility of identifying these
two types of unitary evolutions becomes apparent when one
considers the following theorem:
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Theorem III.1. Every unitary U ∈ US
0,π can be continu-

ously deformed to a composition of a unitary loop L and
a constant Hamiltonian evolution C, which we write as
U ≈ L ∗ C. L and C are unique up to homotopy.

Theorem III.1 is proved in Appendix C and is illustrated
schematically in Fig. 1(a). By a slight abuse of terminology,
we will often call the unitary composed of the loop and
the constant the ‘decomposition’ of the original unitary.
Heuristically, the decomposition can be interpreted as an
initial loop, which may generate nontrivial edge modes at
ε = π , followed by a constant evolution by the static Floquet
Hamiltonian HF . Since we have assumed there is a spectral
gap at ε = π , the branch cut required for the definition in
Eq. (8) can be placed in this region, and the final quasienergy
bands can be consistently thought of as emanating from
the point ε = 0. In addition, since we are assuming that the
complete unitary evolution is gapped at both ε = 0 and ε = π ,
the static Hamiltonian required for the constant evolution
must be gapped at zero. We write the set of unitary loops
in symmetry class S as US

L and the set of constant, gapped
Floquet Hamiltonian evolutions in symmetry class S as US

C .
Through this unique decomposition, we see that a general

unitary evolution from U0,π can be classified by separately
considering the unitary loop component and the constant
evolution component. A specific phase may be labeled by the
pair (nL,nC), where nL and nC are invariant integers associated
with the unitary loop and constant evolution components,
respectively.

Next, we label the set of static gapped Hamiltonians in
symmetry class S, whose eigenvalues E satisfy 0 < |E| < π ,
by HS . The set of gapped Floquet Hamiltonian evolutions in
US

C is clearly in one-to-one correspondence with the set of static
Hamiltonians in HS . This follows from the bijection C(t) =
exp (−iHF t), where HF is the unique Floquet Hamiltonian
with eigenvalue magnitude strictly between 0 and π . From the
definition of homotopy given in Sec. II D, we see that C1 ≈ C2

within US
C if and only if H1 ≈ H2 within HS , where Hi is the

static Hamiltonian corresponding to Ci . In addition, it follows
that C1 ∼ C2 if and only if H1 ∼ H2, if we write the trivial
unitary as

U 0
n (k,t) = exp

( − iH 0
n

)
, (14)

where H 0
n is a suitable trivial Hamiltonian.

In this way, we can classify pairs of constant Hamiltonian
evolutions (C1,C2) by instead classifying pairs of static
Hamiltonians (H1,H2). This is a relative classification that is
equivalent to the well-known classification of static topological
insulators, which is summarized in the periodic table given in
Ref. [10]. The classification of pairs of unitary loops (L1,L2)
does not, however, have a static analog.

Through this decomposition, the periodic table of static
topological insulators may be viewed as a subset of a
larger classification scheme that also includes time-dependent
Hamiltonians. In this picture, static topological insulators
correspond to compositions of nontrivial constant Hamiltonian
evolutions with trivial unitary loops. More general dynamical
topological phases arise through compositions of constant
evolutions with nontrivial unitary loops. In the next section
of this paper we set out to classify the nontrivial unitary loops
that may exist in each symmetry class.

IV. CLASSIFICATION OF UNITARY LOOPS

A. Unitary loops with particle-hole symmetry only

With the machinery defined in previous sections, we are
now ready to give a systematic discussion of the classification
of unitary loops. We begin by considering loops in systems
that have PHS but no other symmetry, belonging to the set US

L

with S ∈ {C,D}.

1. Hermitian maps

To proceed, we define a Hermitian map corresponding to a
given unitary U (k,t) through

HU (k,t) =
(

0 U (k,t)
U †(k,t) 0

)
, (15)

which we see satisfies H 2
U = I. In addition, we define the two

new symmetry operations

P1 =
(

P 0
0 P

)
, P2 =

(
P 0
0 −P

)
, (16)

which are derived from the standard PHS operator P . Using
Eq. (4), we see that the Hermitian map satisfies the following
new symmetry relations:

P1HU (k,t)P −1
1 = H ∗

U (−k,t)
(17)

P2HU (k,t)P −1
2 = −H ∗

U (−k,t).

We write the set of Hermitian maps that square to the
identity, satisfy these symmetries, and which additionally
satisfy HU (k,0) = HU (k,1) (but which are not necessarily
derived from unitary loops) as H S . We write the subset of
H S that corresponds specifically to unitary loops as H S

L , and
note that from the properties of unitary loops, members of H S

L

must satisfy

HU (k,0) = HU (k,1) =
(

0 In

In 0

)
. (18)

There is a one-to-one mapping between a unitary loop U ∈ US
L

and the corresponding Hermitian map HU ∈ H S
L , a statement

that is proved in Appendix D.
It is easy to verify that U1 ≈ U2 if and only if HU1 ≈ HU2 ,

which extends the definition of homotopy equivalence to H S .
Next, we note that the trivial unitary loop is given by

U 0
n (k,t) = In, (19)

and the corresponding trivial matrix in H S
L is given by

H 0
U,n(k,t) =

(
0 In

In 0

)
. (20)

This allows us to define the stable homotopy equivalence of
Hermitian maps through

HA ∼ HB ⇔ HA ⊕ H 0
U,n1

≈ HB ⊕ H 0
U,n2

, (21)

in the space H S
L . Again, it is clear that U1 ∼ U2 ⇔ HU1 ∼

HU2 .
As in the case of unitaries, we can also consider pairs of

Hermitian maps, (HU1 ,HU2 ), where both members of each
pair have the same number of bands. This allows us to define
the equivalence relation (HU1 ,HU2 ) ∼ (HU3 ,HU4 ) if and only
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if HU1 ⊕ HU4 ∼ HU3 ⊕ HU2 . These pairs of Hermitian maps
form an additive group, described in Appendix E, which we
can use to classify the relative topological invariants of the
corresponding pair of unitary evolutions.

2. Classification of unitaries using K theory

We will omit the technical steps of the K-theory argument
in this section and instead give an overview of the method.
For further details, we refer the reader to Appendix E and
references therein.

The general idea is to use the Morita equivalence of
categories to map the group of equivalence classes of pairs
in H S onto a K group of the kind KR0,q(M) [or, later,
K(M) for classes A and AIII]. The KR0,q(M) are a set of
well-studied K groups of manifolds which are described, for
example, in Refs. [64–66]. In these expressions, M is the
manifold S1 × X, where X is the Brillouin zone and S1 is
the circle corresponding to the time direction, whose initial
and final points (t = 0 and t = 1) are identified due to the
assumed periodicity of Hermitian maps in H S . The space M

is, in the terminology of Ref. [66], a real space, i.e., a space
with an involution corresponding to k → −k. The reduction
using Morita equivalence relations is equivalent to Kitaev’s
trick of replacing negative generators with positive generators
[10].

For class D, the resulting group of the equivalence classes
of pairs is KR0,1(S1 × X), while for class C the resulting
group is KR0,5(S1 × X). Specifically restricting ourselves to
the subset H S

L , the group of equivalence classes of pairs of
loops is then isomorphic to the relative K group

KR0,1(S1 × X,{0} × X) = KR0,2(X) Class D
(22)

KR0,5(S1 × X,{0} × X) = KR0,6(X) Class C,

where the point {0} ∈ S1 corresponds to the initial time
of the evolution. The equalities in these two equations are
well-known K-theory isomorphisms [65,66]. The last results
are identical to the K groups classifying static topological
insulators from these classes, and we note that the K group
captures both the strong and weak invariants.

B. Unitary loops with time-reversal symmetry

We now discuss the classification of unitaries that have
TRS and which may also have PHS. These correspond to the
symmetry classes AI and AII (TRS only), and classes BDI,
CII, DIII, and CI (TRS and PHS).

Although it is possible to work with the unitary operators
directly, the calculations become considerably simpler if we
instead define symmetrized unitaries, US(k,t), through

US(k,t) = exp

[
−i

∫ 1+t
2

1−t
2

H (k,t ′) dt ′
]
. (23)

It is clear that there is a one-to-one correspondence between
unitary operators U (k,t) and their symmetrized forms US(k,t),
and further, that both expressions agree at t = 0 and t = 1.
Under a particle-hole transformation, a symmetrized unitary
with PHS satisfies the same relation as the original unitary,

PUS(k,t)P −1 = U ∗
S (−k,t), (24)

while under time reversal, the symmetrized unitary operator
transforms as

θUS(k,t)θ−1 = U
†∗
S (−k,t), (25)

relations that are derived in Appendix B. For the rest of this
section we will drop the subscript S and assume that we are
using symmetrized unitaries.

As in the previous section, a (symmetrized) unitary evolu-
tion that belongs to US

0,π is equivalent to a composition of a
unitary loop with a constant Hamiltonian evolution. However,
since the unitaries involved now have TRS, composition
is defined using the time-reversal symmetric expression in
Eq. (10). The classification of the constant Hamiltonian
evolution component follows the discussion in Sec. III, with
topological edge modes at ε = π , if present, arising from the
loop component.

1. Hermitian maps

To classify the unitary loops in these classes, we again de-
fine a Hermitian map corresponding to a given (symmetrized)
unitary U (k,t) as in Eq. (15). This time, we require up to four
symmetry operators,

P1 =
(

P 0
0 P

)
, P2 =

(
P 0
0 −P

)
,

(26)

θ1 =
(

0 θ

θ 0

)
, θ2 =

(
0 θ

−θ 0

)
,

which are derived from the symmetry operators P and θ . If
the relevant symmetry is present, these operators act on the
Hermitian map HU to give

P1HU (k,t)P −1
1 = H ∗

U (−k,t)
(27)

P2HU (k,t)P −1
2 = −H ∗

U (−k,t)

for classes BDI, CII, DIII, and CI, and

θ1HU (k,t)θ−1
1 = H ∗

U (−k,t)
(28)

θ2HU (k,t)θ−1
2 = −H ∗

U (−k,t)

for classes AI, AII, BDI, CII, DIII, and CI.
As before, we write the set of Hermitian maps that square to

the identity, satisfy these symmetries, and which additionally
satisfy HU (k,0) = HU (k,1), as H S , and write the subset of
this that corresponds to unitary loops as H S

L . There is again
a one-to-one mapping between the set of U ∈ US

L and the
corresponding set of Hermitian maps HU ∈ H S

L , a statement
that can be proved using a method similar to that given in
Appendix D. As in Sec. IV A, homotopy, stable homotopy,
and the equivalence of pairs can be defined for Hermitian
maps in H S .

2. Classification of unitaries using K theory

We can now use K-theory arguments to map the equivalence
classes of pairs in H S onto K groups. Using the arguments
of Sec. IV A for each symmetry class, we find the group of
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equivalence classes in each case maps onto

KR0,7(S1 × X) Class AI
KR0,3(S1 × X) Class AII
KR0,0(S1 × X) Class BDI
KR0,4(S1 × X) Class CII
KR0,2(S1 × X) Class DIII
KR0,6(S1 × X) Class CI.

(29)

Restricting to the subset H S
L , the groups are then isomorphic

to the relative K groups

KR0,7(S1 × X,{0} × X) = KR0,0(X) Class AI

KR0,3(S1 × X,{0} × X) = KR0,4(X) Class AII

KR0,0(S1 × X,{0} × X) = KR0,1(X) Class BDI

KR0,4(S1 × X,{0} × X) = KR0,5(X) Class CII

KR0,2(S1 × X,{0} × X) = KR0,3(X) Class DIII

KR0,6(S1 × X,{0} × X) = KR0,7(X) Class CI,

(30)

using a set of well-known K-theory isomorphisms as outlined
in Appendix E [65,66]. The last results are identical to the
K groups classifying static topological insulators from these
classes and describe the complete set of strong and weak
invariants. Overall, it follows that pairs of unitary loops within
US

L are classified by the K groups given in Eq. (30).

C. Classification of gapped unitaries in symmetry
classes A and AIII

Finally, we discuss the classification of time evolution
unitaries in the complex symmetry classes, with S ∈ {A,AIII}.
As in the previous section, the discussion is simplified if we
use the symmetrized unitaries US(k,t) defined in Eq. (23). In
terms of these, the chiral symmetry operator (relevant for class
AIII) has the action

CUS(k,t)C−1 = U
†
S(k,t), (31)

a relation that is derived in Appendix B. As before, we will drop
the subscript S and assume we are working with symmetrized
unitaries throughout this section.

1. Hermitian maps

As in the previous cases, we use Eq. (15) to define a Hermi-
tian map HU (k,t) (satisfying H 2

U = I), which corresponds to
a given (symmetrized) unitary U (k,t). The relevant symmetry
operators for classes A and AIII are

	 =
(
I 0
0 −I

)
, 
 =

(
0 C

−C 0

)
. (32)

The first of these anticommutes with any Hermitian map of
the form HU , while the second, which is derived from the CS
operator C, is relevant only for class AIII. These operators act
on HU to give

	HU (k,t)	−1 = −HU (k,t) Classes A and AIII


HU (k,t)
−1 = −HU (k,t) Class AIII. (33)

We write the set of Hermitian maps that square to the
identity, satisfy these symmetries, and which additionally
satisfy HU (k,0) = HU (k,1) as H S , and write the subset

of this that corresponds to unitary loops as H S
L . There is

again a one-to-one mapping between the set of U ∈ US
L

and the corresponding set of Hermitian maps HU ∈ H S
L , a

statement that can be proved using the method of Appendix D.
Homotopy, stable homotopy, and equivalence of pairs in H S

can be defined as in previous sections.

2. Classification of unitaries using K theory

We can now use K-theory arguments to map the equivalence
classes of pairs in H S onto K groups. For each symmetry
class, we find the mapping to

K1(S1 × X) Class A
K2(S1 × X) Class AIII.

(34)

Restricting to the subset H S
L , the groups are then isomorphic

to the relative K groups

K1(S1 × X,{0} × X) = K0(X) Class A
(35)

K2(S1 × X,{0} × X) = K1(X) Class AIII,

which follow from known K-theory isomorphisms [65,66].
The last results are identical to the K groups classifying static
topological insulators from these classes, and it follows overall
that pairs of unitary loops from classes A and AIII are classified
by the K groups given in Eq. (35). The K groups capture the
complete set of strong and weak invariants.

V. DISCUSSION

A. Complete classification of unitary evolutions

In the preceding section we obtained groups for the
equivalence classes of pairs of unitary loops from the ten AZ
symmetry classes. These groups are of the form KR0,q(X) for
real symmetry classes and of the form Kq(X) for complex
symmetry classes, where X is the Brillouin zone torus. The
final K groups were given in Eqs. (22), (30), and (35).

We noted that these K groups are identical to those obtained
from the topological classification of static (single-gapped)
Hamiltonians in the same symmetry classes. Depending on the
dimension of the Brillouin zone X, these K groups are isomor-
phic to a groupG ∈ {∅,Z2,Z}, reproducing the well-known pe-
riodic table of topological insulators and superconductors [10].

A general unitary evolution, however, will not correspond
directly to a loop evolution. As discussed in Sec. III, we can
decompose a unitary evolution that is gapped at both ε = 0
and ε = π into a loop followed by an evolution with a static
Hamiltonian. More generally, there may be gaps present in
the endpoint spectrum at other quasienergies. In this way, to
completely classify the space of gapped unitary evolutions, we
must first identify the different end point gap structures that
are compatible with each symmetry class.

1. Systems without particle-hole or chiral symmetry

In systems without PHS or CS (classes A, AI, and AII), there
are no restrictions on the quasienergies at which physically rel-
evant gaps may occur. To see this, we can imagine composing a
unitary evolution U , which has a gap at ε0, with an evolution by
a trivial Hamiltonian proportional to the identity, U0 = e−itI.
For class A, the evolution by U0 can simply follow the
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TABLE II. Classification of gapped unitary evolutions by sym-
metry class and spatial dimension d . The number of relevant spectral
gaps is given by np ∈ {1,2} for systems with PHS or CS and by
n ∈ Z+ for systems without PHS or CS. The table repeats for d � 8
(Bott periodicity).

S d = 0 1 2 3 4 5 6 7

A Z×n ∅ Z×n ∅ Z×n ∅ Z×n ∅
AIII ∅ Z×np ∅ Z×np ∅ Z×np ∅ Z×np

AI Z×n ∅ ∅ ∅ Z×n ∅ Z×n
2 Z×n

2

BDI Z
×np

2 Z×np ∅ ∅ ∅ Z×np ∅ Z
×np

2

D Z
×np

2 Z
×np

2 Z×np ∅ ∅ ∅ Z×np ∅
DIII ∅ Z

×np

2 Z
×np

2 Z×np ∅ ∅ ∅ Z×np

AII Z×n ∅ Z×n
2 Z×n

2 Z×n ∅ ∅ ∅
CII ∅ Z×np ∅ Z

×np

2 Z
×np

2 Z×np ∅ ∅
C ∅ ∅ Z×np ∅ Z

×np

2 Z
×np

2 Z×np ∅
CI ∅ ∅ ∅ Z×np ∅ Z

×np

2 Z
×np

2 Z×np

evolution U , while for classes AI and AII, the TR-symmetric
composition given in Eq. (10) should be used. The composition
U ∗ U0 therefore remains within the specified symmetry class
but continuously moves the quasienergy gap at ε0 to ε0 + t

(modulo 2π ). Any edge modes initially present at ε0 will be
moved with the gap. In these symmetry classes, there is nothing
special about the gaps at ε = 0 and ε = π , even though we
implicitly assumed gaps at these points in the main text.

Therefore, if there is only one gap present in the end
point spectrum, we can always (temporarily) shift it to ε = π ,
continuously and while preserving the symmetry. The resulting
unitary can then be deformed to a loop, and follows the
K-theory classification outlined in Sec. IV. In this way,
a single-gapped unitary evolution without PHS or CS is
classified by the group G ∈ {∅,Z2,Z}, depending on the AZ
symmetry class.

If there are several gaps in the end point spectrum, we can
continuously rotate it so that one gap arises at ε = π . Then,
following the arguments of Sec. III, the unitary evolution
may be decomposed into a loop followed by a constant
Hamiltonian evolution. The loop piece is classified by the
K group KR0,q(X) or Kq(X), and the constant piece is
one-to-one correspondence with a static Hamiltonian. The
gaps of the static Hamiltonian are classified by the same K
groups KR0,q(X) or Kq(X) as the unitary loop, and so the
complete classification contains a factor of G for each gap in
the quasienergy spectrum. An alternative way to see this is to
imagine rotating each gap in the spectrum to ε = π in turn.
Then, using the classification of unitary loops, we see that each
gap contributes a factor of G.

Overall, a gapped unitary evolution without PHS or CS
may have n ∈ Z+ physically relevant gaps at its end point.
The topological classification of such a system is given by
G×n, where G ∈ {∅,Z2,Z} depends on the AZ symmetry class
and is given in Table II.

2. Systems with particle-hole or chiral symmetry

In systems with particle-hole symmetry (classes BDI,
D, DIII, CII, C, CI) or chiral symmetry (class AIII), the

quasienergies ε = 0 and ε = π are special: It is about these
points that the spectrum has the full symmetry of the system,
and eigenstates at these points have symmetry-related partners
at the same quasienergy. In an open system, any topologically
protected edge modes will appear at one of these gaps.

In this way, for a unitary evolution with PHS or CS,
physically relevant spectral gaps may occur at one or both
of ε = 0 and ε = π . If only the gap at ε = π is present,
then the evolution may be homotopically deformed to a
loop without closing the gap. The classification of such an
evolution is then given by the corresponding K group derived
in Sec. IV. If gaps at both ε = π and ε = 0 are present, then the
evolution may be continuously deformed to a loop followed
by a constant Hamiltonian evolution. The loop part of the
evolution may be classified as before and, as argued in Sec. III,
the constant evolution is in one-to-one correspondence with a
static Hamiltonian, and follows the usual classification scheme
for static topological insulators. The complete classification
therefore has an additional factor of KR0,q(X) (for real
symmetry classes) or Kq(X) (for complex symmetry classes),
corresponding to the constant part of the evolution. Overall, a
unitary evolution with gaps at both ε = 0 and ε = π has the
classification G × G ∈ {∅,Z2 × Z2,Z × Z}, depending on the
specific K group.

Finally, we consider the case where there is only a
gap at ε = 0. Since there is no gap at ε = π , we cannot
continuously deform the unitary evolution into a loop followed
by a constant Hamiltonian evolution (recall that we require
the constant Hamiltonian to have instantaneous eigenvalues
strictly between −π and π ). In contrast to the cases without
PHS or CS considered in Sec. V A 1, we also cannot rotate the
spectrum by composing the unitary with a trivial evolution, as
this composition would not preserve the symmetry. There is,
however, a mapping between the endpoint unitary with a gap
at ε = 0 and the end point unitary that has been rotated by
�ε = π so that the gap is now at ε = π .

For instance, in the simplest case of class AIII, we may
choose the symmetry operator to take the form C = σ3 ⊗ I,
which acts as σ3 on the two sublattices on each site. Then, the
map produced by evolving with the Hamiltonian H = πσ1 ⊗ I
has the final form eiH = −1, which changes the eigenvalues of
the previous eigenstates but not their spatial dependence. The
final unitary U = −1 therefore maps all edge state at ε = 0
onto edge states at ε = π . Thus, from our previous K theory
classification, we conclude that unitaries with a gap at ε = 0
have the same classification as unitaries with a gap at ε = π ,
and so also have the same edge behavior. A similar technique
may be used for all other symmetry classes with PHS or CS. In
this way, the classification of unitary evolutions with a single
gap at ε = 0 is also given by G ∈ {∅,Z2,Z}, depending on the
specific K group.

Overall, we see that a gapped unitary evolution with PHS
or CS may have np ∈ {1,2} physically relevant gaps at its end
point. The topological classification of such a system is given
by G×np , where G ∈ {∅,Z2,Z} depends on the AZ symmetry
class.

The classification of noninteracting gapped unitary evolu-
tions is summarized in the periodic table given in Table II,
with entries listed according to symmetry class, dimension,

155118-8



PERIODIC TABLE FOR FLOQUET TOPOLOGICAL INSULATORS PHYSICAL REVIEW B 96, 155118 (2017)

U1 U2

0
−

0

r

FIG. 2. Schematic diagram of the interface between a system
described by unitary U1 and a system described by unitary U2 �= U1.
The vertical axis shows the quasienergy spectrum at t = T and the
horizontal axis gives the displacement, with the interface occurring in
the neighborhood around r = 0. Bulk bands are shown in blue, with
protected edge modes shown in red at the interface.

and endpoint gap structure. It may be noted that the periodic
table for static topological insulators is contained within
this dynamical periodic table: Static topological insulators
correspond to evolutions with a trivial unitary loop component,
which, in our generalized classification scheme, leads to one
factor of the classifying group G×nP or G×n being trivial.

B. Bulk-edge correspondence

At the interface between a system described by unitary
U1 and a system described by unitary U2, the principle
of bulk-edge correspondence asserts that there should exist
protected edge modes, shown schematically in Fig. 2. A
particular edge mode can be labeled by a quantum number, and
the complete set of quantum numbers is isomorphic to the set
of equivalence classes of (U1,U2). We can therefore determine
the quantum number of the edge modes by appealing to the
bulk classification scheme given above.

We first consider systems without PHS or CS, which may
have any number of gaps n. As discussed in Sec. V A, in
these cases we can always rotate the final spectrum so that one
gap arises at ε = π . Then, the classification described above
gives one integer nL corresponding to the loop component,
and (n − 1) integers nCi

corresponding each other gap, which
derive from the gap classification of the corresponding static
Hamiltonian. We write the quantum numbers associated with
the edge modes as nπ for the gap at ε = π and ni for the edge
modes in each other (ith) gap.

We leave a full discussion of the bulk-edge correspondence
to future work, but for completeness, we note here that the two
sets of integers are related through

nπ = nL

(36)
ni = nCi

+ nL,

where addition is again taken modulo two for systems with
a Z2 classification. In general, we see that the edge modes
associated with each gap may be different.

Alternatively, as described in Sec. V A 1, we can also
classify the gaps of a system without PHS or CS by rotating
the spectrum so that each gap occurs at ε = π in turn and
then calculating the corresponding loop invariants. This gives
a loop invariant nLi

for each gap in the spectrum, which maps
directly onto the corresponding number of edge modes ni .

We now consider unitary evolutions with PHS or CS, which
may have gaps at one or both of ε = 0 and ε = π . If there is
just one gap, the bulk index described above maps directly
onto the number edge modes. In the more interesting case,
there may be gaps and edge modes at both ε = 0 and ε = π .
A unitary evolution of this form is classified in the bulk by a
pair of integers from the appropriate group G × G, according
to Table II. We write the integer associated with the loop
component as nL and the integer associated with the gap in
the constant Hamiltonian evolution as nC . These must have a
one-to-one relation with the quantum numbers associated with
the edge modes in the gaps, which we write as n0 for the gap
at ε = 0, and as nπ for the gap at ε = π .

As in the previous case, the number of edge modes in each
gap is related to the bulk invariants through

nπ = nL

(37)
n0 = nC + nL,

where addition is taken modulo two for systems with a Z2

classification.

C. Strong and weak topological invariants

A number of explicit dynamical topological invariants have
been proposed for various symmetry classes [34,36,38,39,41].
Our aim here is not to provide an exhaustive list of these
expressions, but we note that our mapping of unitaries onto
Hamiltonians in principle allows the existing structure of
topological invariants for static Hamiltonians to be applied
to these dynamical systems. In many of these cases, the
dynamical topological invariants can be related directly to the
band invariants of the static effective Hamiltonian (see, for
example, Refs. [34,39,41]).

We may also use standard K theory results relating,
for instance, the K group of a torus to the K groups of
spheres to infer the existence of a set of weak topological
invariants, similar to those of static topological insulators and
superconductors. For example, in the case of class A for d = 3,
there is no strong invariant classifying unitary loops, just as
there is no strong invariant for static Hamiltonians in class
A [10]. There is, however, a set of three weak invariants
associated with 2d cross sections of the Brillouin zone torus.
Similar weak invariants exist for all other symmetry classes.
For the classes which involve antiunitary symmetries, the
number of invariants may be inferred using standard formulas
of the type

K̃
d−q

R (Td ) ∼=
d−1⊕
s=0

(
d

r

)
π0(Rq−s), (38)

where we have used the notation of Ref. [10] for these K
groups.
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D. Disordered unitary evolutions

Up to this point we have considered unitary evolutions in
systems with lattice translational symmetry that are protected
by gaps in the quasienergy spectrum. One might worry that
these evolutions are sensitive to perturbations and that a small
amount of disorder could cause the gaps of the final unitary
to collapse. While our analysis so far has allowed us to
make rigorous statements about systems with translational
symmetry, it is not directly applicable to such disordered
systems. Nevertheless, as we now argue, we expect the
translationally invariant systems considered previously to be
representative of a set of broader Floquet phases which are
robust against small local perturbations.

To argue this, we appeal to the intuition established for
disordered static topological insulators [1,2]. In these systems,
adding a moderate amount of (symmetry-respecting) disorder
can localize states in the bulk without affecting the anomalous
states at the edge. Topological edge modes may nevertheless
exist in a mobility gap, i.e., a region in the spectrum where there
are no extended states that connect different edges. Edge states
may only be created or destroyed if the disordered Hamiltonian
is tuned through a critical point, at which point the mobility gap
collapses. As long as a mobility gap is maintained at the energy
of the edge modes, the edge modes themselves are protected.
In this way, the original TI classification scheme obtained for
translationally invariant systems may be extended to describe
a much broader set of phases. Correspondingly, the group G
obtained using K theory continues to describe the disordered
phase.

We now consider the effect of disorder on a Floquet
system. The discussion differs from the static case in two
main ways: First, the disorder is now time dependent, and we
assume, without loss of generality, that it may be incorporated
by adding a term λVdis(t) to the translationally invariant
Hamiltonian. Secondly, there may now be dynamical edge
modes present in the quasienergy gap at ε = π .

We can simplify the discussion using the Trotterization
procedure of Refs. [56,67]. There, it was shown that a unitary
evolution of the form

U (1) = T
∫ 1

0
[H (t ′) + λV (t ′)]dt, (39)

with V (t) a small local perturbation, is equivalent to the unitary
evolution

U (1) =
[
T

∫ 1

0
[λṼ (t ′)]dt

][
T

∫ 1

0
[H (t ′)]dt

]
, (40)

where Ṽ (t) is another local perturbation related to V (t) through
conjugation with the unperturbed Hamiltonian. In this way, a
concurrent perturbation can be ‘pulled out’ to the end of the
evolution.

Using this procedure, we see that a weakly disordered
loop is equivalent to an unperturbed loop followed by a
weak disordering potential. The unperturbed loop may exhibit
nontrivial loop order, which is manifested as edge modes in
the gap at ε = π . As long as the instantaneous unitary operator
U (t) (for the full system) has a mobility gap at ε = π at all
times after the loop, one expects the edge modes to persist and
the order to be protected.

In the more general case, the unperturbed evolution does
not describe a pure loop and instead may be decomposed into
a loop evolution followed by a constant Hamiltonian evolution
(as described in Sec. III). This unperturbed evolution will
in general have (symmetry-protected) topological order (SPT
order) associated with both the loop and constant components,
and may have edge modes at any of the np or n gaps in the
quasienergy spectrum, as discussed in Sec. V B. When we
follow this evolution with the disordering perturbation λṼ (t),
the edge modes will persist as long as the unitary operator at
times following the unperturbed evolution has a mobility gap
at each of the edge mode quasienergies, and the SPT order will
be protected.

In this way, given an arbitrary translationally invariant
evolution described by H (t), which leads to a gapped HF

that may exhibit edge modes, there is a set of disordered
perturbations λV (t) (which need not be small) that allow these
edge modes to persist. There is therefore a well-defined notion
of SPT order for a broad range of disordered Floquet systems,
and the classification introduced in this work describes well-
defined Floquet topological noninteracting phases. Moreover,
it is likely that there are strongly disordered versions of these
Floquet phases (so-called called Anderson Floquet phases)
which again have a set of robust edge modes. The robustness
of topological Floquet systems to disorder has already been
demonstrated, e.g., in the two-dimensional Class A system
discussed in Ref. [37]. Further investigation of these disordered
Floquet systems is an important open avenue for future
research.

Finally, we note that in any realistic Floquet system there
will inevitably be interactions between particles, although the
strength of these interactions can often be made extremely
small. Despite this, it is known that driving a system with even
weak interactions can lead to heating to infinite temperature at
long times [68–70]. To describe true Floquet phases, therefore,
the systems we have discussed should also be stable to heating
of this kind. This may likely be achieved by adding disorder to
the system: In the presence of strong disorder and interactions,
a system may undergo many-body localization (MBL) and
avoid heating at infinite time [71–76] (see Ref. [77] for a
review of MBL). The existence of MBL in dimensions higher
than one is currently a matter of debate [78,79]. However,
even if MBL ultimately fails at infinite times, the localization
properties are believed to hold over prethermal time scales that
are parametrically large. In this way, we expect the systems
described in this work to be representative of true (or at
least prethermal) Floquet topological phases, robust to weak
interactions, in the presence of disorder.

VI. CONCLUSIONS

In this paper we have used methods from K theory
to systematically classify noninteracting Floquet topological
insulators across all AZ symmetry classes and dimensions.
In the process, we discovered a number of new topological
Floquet phases. Although the use of K theory requires the
underlying systems to be translationally invariant, we have
argued that the classification describes a broad set of Floquet
phases that are robust to disorder. It would be interesting to
see if these can be realized in an experimental setting.
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Our results, summarized in Table II, show that the clas-
sification of a static topological system described by the
group G is extended to the product group G×n or G×np in the
time-dependent case, for a quasienergy spectrum with np or n

gaps. Our approach uses the fact that a general time-evolution
operator can be continuously deformed into a unitary loop
followed by a constant Hamiltonian evolution, and the factors
of G in the resulting classification scheme can be interpreted
as arising from these two unitary components. In Sec. V
we stated how this bulk classification scheme relates to the
number of protected edge modes that may arise in a system
with a boundary. The discussion of topological invariants
and the bulk-boundary correspondence for more general band
structures are interesting avenues for future work.

As noted in the introduction, some elements of our periodic
table have appeared elsewhere in the literature in the context
of Floquet systems, using different methods [33–36,38,39,41].
While our results are consistent with these works, a detailed
comparison yields a number of differences. First, our definition
of chiral symmetry differs from that of Ref. [36], and it
would be worth investigating under what circumstances these
definitions are equivalent and to what extent this affects
the classification scheme. Secondly, Ref. [34] introduces a
frequency domain formulation for the study of Floquet systems
that explicitly makes use of time periodicity. It would be of
interest to explore whether some variant of this approach
applies to the more general unitary evolutions we have
considered here.

In this noninteracting setting, the unique decomposition of
a unitary evolution into two components (as defined in the
text) could be proved rigorously, allowing us to separate the
dynamical topological behavior from the static topological
behavior of the Floquet Hamiltonian. It is likely that this
unitary decomposition is applicable more generally, including
in interacting systems if many-body complications are dealt

with appropriately. Indeed, we use this unitary decomposition
as a working assumption in Ref. [54], where it aids in the
classification of Floquet SPTs in one dimension. This approach
may be useful in the classification of driven, interacting
topological phases more generally, a field in which much
progress has recently been made [51–58].
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APPENDIX A: ACTION OF SYMMETRY OPERATORS
ON UNITARIES

In this Appendix, we prove the action of the three
symmetry operators on the time-evolution unitary. In order
to simplify certain steps of the calculation, we will make use
of the two-point (nonsymmetrized) unitary operators defined
through

U (k; t2,t1) = T exp

(
−i

∫ t2

t1

H (k,t ′)dt ′
)

, (A1)

where we see that U (k; t,0) ≡ U (k,t). These auxiliary uni-
taries satisfy the properties

[U (k; t2,t1)]† = U (k; t1,t2)
(A2)

U (k; t3,t1) = U (k; t3,t2)U (k; t2,t1).

1. Particle-hole symmetry

For the PHS operator, we start from

PH (k,t)P −1 = −H ∗(−k,t) (A3)

and find

PU (k,t)P −1 = P

[
T exp

(
−i

∫ t

0
H (k,t ′)dt ′

)]
P −1 =

[∑
n

(−i)n

n!
T

∫ t

0
dt1 . . .

∫ t

0
dtn PH (k,t1)P −1 . . . PH (k,tn)P −1

]

=
[∑

n

(+i)n

n!
T

∫ t

0
dt1 . . .

∫ t

0
dtn H ∗(−k,t1) . . . H ∗(−k,tn)

]
=

[
T exp

(
−i

∫ t

0
H (−k,t ′)dt ′

)]∗
= U ∗(−k,t).

(A4)

2. Time-reversal symmetry

For the TRS operator, we start from

θH (k,t)θ−1 = H ∗(−k,T − t) (A5)
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and find

θU (k,t)θ−1 = θ

[
T exp

(
−i

∫ t

0
H (k,t ′)dt ′

)]
θ−1 =

[∑
n

(−i)n

n!
T

∫ t

0
dt1 . . .

∫ t

0
dtn θH (k,t1)θ−1 . . . θH (k,tn)θ−1

]

=
[∑

n

(−i)n

n!
T

∫ t

0
dt1 . . .

∫ t

0
dtn H ∗(−k,T − t1) . . . H ∗(−k,T − tn)

]

=
ti → T − ti

[∑
n

(+i)n

n!
T

∫ T −t

T

dt1 . . .

∫ T −t

T

dtn H ∗(−k,t1) . . . H ∗(−k,tn)

]
=

[
T exp

(
−i

∫ T −t

T

H (−k,t ′)dt ′
)]∗

= U ∗(−k; T − t,T ). (A6)

We rewrite this using Eq. (A2) to obtain

θU (k,t)θ−1 = U ∗(−k; T − t,0)U ∗(−k; 0,T ) = U ∗(−k,T − t)U †∗(−k,T ). (A7)

3. Chiral symmetry

For the CS operator, we start from

CH (k,t)C−1 = −H (k,T − t) (A8)

and find

CU (k,t)C−1 = C

[
T exp

(
−i

∫ t

0
H (k,t ′)dt ′

)]
C−1

=
[∑

n

(−i)n

n!
T

∫ t

0
dt1 . . .

∫ t

0
dtn CH (k,t1)C−1 . . . CH (k,tn)C−1

]

=
[∑

n

(+i)n

n!
T

∫ t

0
dt1 . . .

∫ t

0
dtn H (k,T − t1) . . . H (k,T − tn)

]

=
ti → T − ti

[∑
n

(−i)n

n!
T

∫ T −t

T

dt1 . . .

∫ T −t

T

dtn H (k,t1) . . . H (k,tn)

]
=

[
T exp

(
−i

∫ T −t

T

H (k,t ′)dt ′
)]

= U (k; T − t,T ). (A9)

We rewrite this using Eq. (A2) to obtain

CU (k,t)C−1 = U (k; T − t,0)U (k; 0,T ) = U (k,T − t)U †(k,T ). (A10)

APPENDIX B: ACTION OF SYMMETRY OPERATORS
ON SYMMETRIZED UNITARIES

In this Appendix, we prove the action of the three symmetry
operators on the symmetrized time-evolution unitaries US(k,t)
that are defined in Eq. (23). We will derive these relations using
the corresponding expressions for the original unitaries, which
we derived previously in Appendix A, and will also make use
of the two-point unitaries defined in Eq. (A1). In particular,
we note that

US(k,t) = U

(
k;

1 + t

2
,
1 − t

2

)

= U

(
k;

1 + t

2
,0

)
U

(
k; 0,

1 − t

2

)

= U

(
k,

1 + t

2

)[
U

(
k,

1 − t

2

)]†
. (B1)

We will also make use of the symmetrized unitary relation
U

†
S(k,t) = US(k, − t).

1. Particle-hole symmetry

Starting from the unitary PHS relation

PU (k,t)P −1 = U ∗(−k,t), (B2)

we find that the symmetrized unitaries satisfy

PUS(k,t)P −1 = PU

(
k;

1 + t

2

)
P −1P

[
U

(
k;

1 − t

2

)]†
P −1

= U ∗
(

−k,
1 + t

2

)[
P −1U

(
k,

1 − t

2

)
P

]†

= U ∗
(

−k,
1 + t

2

)[
U ∗

(
−k,

1 − t

2

)]†

= U ∗
S (−k,t). (B3)
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2. Time-reversal symmetry

Starting from the unitary TRS relation

θU (k,t)θ−1 = U ∗(−k,1 − t)U †∗(−k,1), (B4)

we find that the symmetrized unitaries satisfy

θUS(k,t)θ−1 = θU

(
k,

1 + t

2

)
θ−1θ

[
U

(
k,

1 − t

2

)]†
θ−1

= U ∗
(

−k,
1 − t

2

)
U †∗(−k,1)

×
[
U ∗

(
−k,

1 + t

2

)
U †∗(−k,1)

]†

= U ∗
(

−k,
1 − t

2

)[
U ∗

(
−k,

1 + t

2

)]†

= U ∗
S (−k, − t). (B5)

Then, using the properties of symmetrized unitaries, this
becomes

θUS(k,t)θ−1 = U ∗
S (−k, − t) = U

†∗
S (−k,t). (B6)

3. Chiral symmetry

Starting from the unitary CS relation

CU (k,t)C−1 = U (k,1 − t)U †(k,1), (B7)

we find

CUS(k,t)C−1 = CU

(
k,

1 + t

2

)
C−1C

[
U

(
k,

1 − t

2

)]†
C−1

= U

(
k,

1 − t

2

)
U †(k,1)

[
U

(
k,

1 + t

2

)
U †(k,1)

]†

= U

(
k,

1 − t

2

)[
U

(
k,

1 + t

2

)]†

= US(k, − t). (B8)

Then, again using the properties of symmetrized unitaries, we
obtain

CUS(k,t)C−1 = US(k, − t) = U
†
S(k,t). (B9)

APPENDIX C: DECOMPOSITION OF UNITARIES

In this Appendix, we prove the unitary decomposition
theorem given in Sec. III, which is reproduced below.

Theorem C.1. Every unitary U ∈ US
0,π can be continuously

deformed to a composition of a unitary loop L and a constant
Hamiltonian evolution C, which we write as U ≈ L ∗ C. L

and C are unique up to homotopy.
The proof of this theorem has two stages. First, we show

that there exists a decomposition U ≈ L ∗ C:
Lemma C.1. Every unitary U ∈ US

0,π is homotopic to a
product L ∗ C, where L is a unitary loop and C is a constant
evolution due to some static Hamiltonian (which is gapped at
zero).

Proof. Let HF be the (unique) Floquet Hamiltonian for U

and let C±(s) be the constant evolution unitaries corresponding

to the static Hamiltonians ±sHF . Consider the continuous
family of unitaries

h(s) = [U ∗ C−(s)] ∗ C+(s). (C1)

It is clear that h(0) is homotopic to U and h(1) is of the form
L ∗ C+(1) with L = U ∗ C−(1). The endpoint of U ∗ C−(1) is
U (1) exp(iHF ) = I. �

Secondly, we show that the factors L and C involved in a
decomposition L ∗ C are unique up to homotopy:

Lemma C.2. Two compositions satisfy L1 ∗ C1 ≈ L2 ∗ C2

if and only if L1 ≈ L2 and C1 ≈ C2.
Proof. L1 ∗ C1 ≈ L2 ∗ C2 implies there is some function

h(s) for s ∈ [0,1] such that h(s) preserves the gap structure for
all values of s and

h(0) = L1 ∗ C1, h(1) = L2 ∗ C2. (C2)

Let H (s) be the Floquet Hamiltonian corresponding to the
unitary h(s). H (s) then provides a homotopy between the
Floquet Hamiltonians of C1 and C2.

Let C+(s) be the constant evolution unitary corresponding
to the Hamiltonian H (s). Since H (s) is independent of
time, C+(s) is a constant evolution unitary that continuously
interpolates between C+(0) = C1 and C+(1) = C2. Thus,
C1 ≈ C2.

Now, let g(s) = h(s) ∗ C−(s), where C−(s) is the constant
Hamiltonian unitary with Hamiltonian −H (s). g(s) is a loop
for all s and interpolates between L1 and L2. Thus, L1 ≈ L2.
The proof in the reverse direction follows trivially from the
definition of homotopy. �

APPENDIX D: PROOF OF ONE-TO-ONE MAPPING
BETWEEN UNITARIES AND HERMITIAN MAPS

In this section, we prove the one-to-one correspondence
between unitary evolutions and Hermitian maps defined
according to Eq. 15. We give the proof for the case of PHS
only but note that the method may easily be extended to other
symmetry classes.

Claim D.1. There is a one-to-one mapping between the set
of Hermitian matrix maps that satisfy

P1HU (k,t)P −1
1 = −H ∗

U (−k,t) (D1)

P2HU (k,t)P −1
2 = H ∗

U (−k,t) (D2)

H 2
U = I (D3)

and the set of unitary maps that satisfy PU (k,t)P −1 =
U ∗(−k,t).

Proof. For a given U (k,t), such that PU (k,t)P −1 =
U ∗(−k,t), let

HU =
(

0 U (k,t)
U †(k,t) 0

)
(D4)

Then, with P1 and P2 as defined above, it is clear that
Eqs. (D1)–(D3) are satisfied.

Conversely, for a given HU (k,t) that satisfies Eqs. (D1) and
(D2), we note that

P1P2HU (k,t)(P1P2)−1 = −HU (k,t) (D5)

155118-13



RAHUL ROY AND FENNER HARPER PHYSICAL REVIEW B 96, 155118 (2017)

with

P1P2 =
(
I 0
0 −I

)
(D6)

for Class D, where P 2 = I, and

P1P2 =
(−I 0

0 I

)
(D7)

for class D, where P 2 = −I. If

HU =
(

A B

B† D

)
, (D8)

then Eq. (D5) implies A = D = 0, and Eq. (D3) implies
BB† = I, so that B is unitary. We can then write

HU =
(

0 U (k,t)
U †(k,t) 0

)
, (D9)

and from Eq. (D1) we see that PU (k,t)P −1 = U ∗(−k,t). �

APPENDIX E: ADDITIONAL K-THEORY DETAILS

In this Appendix, we give some additional details of the
K-theory classification scheme outlined in the main text. For
further information, we refer the reader to Refs. [10,64,65].

1. Grothendieck group of unitary maps in a symmetry class

We consider the problem of classifying unitary maps on a
manifold M (for instance, M = S1 × S1 for a periodic unitary
in 1D) in a general AZ symmetry class denoted by S. We
construct a group as follows: We take pairs (U1,U2) and
consider the operation ‘+’ defined through

(U1,U2) + (U3,U4) = (U1 ⊕ U3,U2 ⊕ U4), (E1)

where ⊕ is the direct sum. We define the equivalence of pairs
in the usual (stable homotopy) sense and choose symmetry
operators in such a way that a symmetry operator for the unitary
U1 ⊕ U3 is the tensor sum of the corresponding symmetry
operators for U1 and U3. The pairs then form an Abelian group
under +, where the trivial element consists of the equivalence
class of pairs of the form (U,U ). We denote this group by
KU (S,M).

2. Categories and K theory for classification of unitaries

In the main text we noted that the problem of classifying
unitaries in symmetry class S is equivalent to the problem
of classifying Hermitian maps (or ‘Hamiltonians’) in some
enhanced symmetry class S ′. Using the same reasoning as
above, we can define an Abelian group of pairs of these
Hamiltonians under the ‘+’ operation, which we write as
K(S ′,M).

Following Karoubi [65], for an arbitrary Banach category,
C , let us denote by C p,q the category whose objects are the
pairs (E,ρ), where E ∈ Ob(C ) and ρ : Cp,q → End(E) is
a K-algebra homomorphism, and where K is R or C and
Cp,q is a real or complex Clifford algebra with p negative
generators and q positive generators. A morphism from the
pair (E,ρ) to the pair (E′,ρ ′) is defined to be a C morphism
f : E → E′ such that f · ρ(λ) = ρ(λ) · f for each element λ

of Cp,q .
To classify the Hamiltonians above, we now construct for

every symmetry group S ′ two additive categories of the form
C p,q and C p′,q ′

, where p,q,p′,q ′ all depend onS ′. Here, C is a
category which is either the category of Real or complex vector
bundles on M , or a closely related category (depending on S ′)
[80]. If {Si} is the set of symmetry operators corresponding to
S ′, then the canonical inclusion map from {Si} to {Si,H } leads
to a quasisurjective Banach functor φ′ : C p′,q ′ → C p,q . This
allows us to define a Grothendieck group K(φ′) associated
with this functor, such that the Grothendieck group K(S ′,M)
is the same as K(φ′).

The canonical inclusion map C p,q ⊂ C p,q+1 induces a
quasisurjective Banach functor φ : C p,q+1 −→ C p,q . When
C is the category of complex vector bundles on M , then
the Grothendieck group K(φ) is denoted by Kp,q(M), and
when C is the category of Real vector bundles over the real
space M [66], then the Grothendieck group K(φ) is denoted
by KRp,q(M). Here, the real space M corresponds to the
existence of an involution which derives from k → −k.

Using, repeatedly if necessary, the canonical Morita equiv-
alences of the categories C p,q with C p+1,q+1, and C p,0 with
C 0,p+2, we can establish equivalences between the categories
C p,q and C p′,q ′

for an arbitrary symmetry class S ′ and a
category of the form C̃ p,q , where C̃ is the category of complex
vector bundles over M for S ′ ∈ {A,AIII} and the category of
Real vector bundles over M for all other symmetry classes.
This then allows us to identify K(S ′,M) with some KR0,q(M)
(with 0 � q < 8) or some K0,q (M) (with 0 � q < 2) and leads
to the results in the main text. Further details will be presented
elsewhere.
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