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Dynamical gap generation in a two-dimensional Dirac semimetal with a deformed Dirac cone
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According to the extensive theoretical and experimental investigations, it is widely accepted that the long-range
Coulomb interaction is too weak to generate a dynamical excitonic gap in graphene with a perfect Dirac cone.
We study the impact of the deformation of a Dirac cone on dynamical gap generation. When a uniaxial strain
is applied to graphene, the Dirac cone is made elliptical on the equal-energy plane, and the fermion velocity
becomes anisotropic. The applied uniaxial strain has two effects: It decreases the mean value of fermion velocity;
it increases the velocity anisotropy. After solving the Dyson-Schwinger gap equation, we show that dynamical
gap generation is promoted by the former effect but suppressed by the latter. For suspended graphene, we find
that the system undergoes an excitonic insulating transition when the strain is roughly 7.34%. We also solve the
gap equation in case the Dirac cone is tilted, which might be realized in the organic material α-(BEDT-TTF)2I3

and find that the tilt of the Dirac cone can suppress dynamical gap generation. It turns out that the geometry of
the Dirac cone plays an important role in the formation of excitonic pairing.

DOI: 10.1103/PhysRevB.96.155114

I. INTRODUCTION

Semimetals, no matter topologically trivial or nontrivial,
have attracted intensive theoretical and experimental studies
because of their intriguing properties and promising industrial
applications [1–5]. Among all known semimetals, the
two-dimensional (2D) Dirac semimetal plays a special role.
There are two famous examples for such a semimetal:
graphene [6,7] and the surface state of a three-dimensional
topological insulator [8,9]. The low-energy excitations of
these systems are massless Dirac fermions, described by the
relativistic Dirac equation.

In contrast to normal metals that possess a finite Fermi
surface, the Fermi surface of 2D Dirac semimetals shrinks to a
number of discrete points at which the valence and conduction
bands touch [6,7]. The Coulomb interaction between Dirac
fermions remains long ranged since the density of states
vanishes at the Fermi level. The influence of long-range
Coulomb interaction on the low-energy dynamics of Dirac
fermions has been investigated extensively [7]. Although weak
Coulomb interaction is found by renormalization-group (RG)
analysis to be marginally irrelevant [10–16], it gives rise
to singular renormalization of fermion velocity [11–16] and
logarithmiclike corrections to a variety of observable quan-
tities, including specific heat, optical conductivity, thermal
conductivity, compressibility, etc. [7]. The singular renormal-
ization of fermion velocity has been confirmed experimentally
in suspended graphene [17], quasifreestanding graphene on
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silicon carbide [18], and graphene on boron nitride substrates
[19].

The Coulomb interaction also can induce important non-
perturbative effects. Of particular interest is the possibility
of a semimetal-insulator quantum phase transition that is
driven by the dynamical generation of a finite excitonic gap
[20–52]. Once an excitonic gap is opened, the chiral symmetry,
corresponding to sublattice symmetry, is dynamically broken
[7,20]. The research interest in dynamical gap generation is
twofold. First, acquiring a finite gap broadens the possible
applications of graphene in the design and manufacture of
electronic devices [21]. Second, it is the condensed-matter
counterpart of the concept of dynamical chiral symmetry
breaking [53,54].

Several years before monolayer graphene was isolated in
the laboratory, Khveshchenko [20] discussed the possibility
of dynamical gap generation for massless Dirac fermions in
2D, motivated by the theoretical progress of dynamical chiral
symmetry breaking in a (2+1)-dimensional QED. He obtained
critical fermion flavors Nc

f = 8/π , above which no dynamical
gap can be generated. Later, Gorbar et al. further studied this
problem [22]. Their main results [22] are that a finite excitonic
gap can be generated if the Coulomb interaction strength α,
defined by

α = e2

vκ
, (1)

where e is the electric charge, v is the fermion velocity, and κ

is the dielectric constant, is larger than some threshold αc

for a fixed fermion flavor Nf . This interesting result has
stimulated extensive theoretic and numerical studies aimed
at finding the precise value of αc. Calculations performed

2469-9950/2017/96(15)/155114(12) 155114-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.155114


XIAO, WANG, FENG, YIN, AND ZONG PHYSICAL REVIEW B 96, 155114 (2017)

with the Dyson-Schwinger (DS) equation [23–26,28,30], the
Bethe-Salpeter equation [37,38], the RG approach [40,42], and
the Monte Carlo simulation [43,44] found that the critical value
αc falls into the range of 0.79 < αc < 2.16. For suspended
graphene, the interaction strength is α ≈ 2.16, whereas for
graphene placed on a SiO2 substrate, it becomes α ≈ 0.79
[21]. It thus indicates that suspended graphene is an excitonic
insulator at zero T , but graphene placed on SiO2 remains a
semimetal. However, experiments did not find any evidence
for the existence of an excitonic insulating phase in suspended
graphene even at very low temperatures [17,55]. In Ref. [32],
the authors studied the DS equation for an excitonic gap
by incorporating the wave-function renormalization, fermion
velocity renormalization, and dynamical gap generation in an
unbiased way and found that αc ∼ 3.2 [32]. According to this
result, the Coulomb interaction in suspended graphene is too
weak to drive the semimetal-insulator phase transition. This
conclusion is well consistent with experiments [55] and is
confirmed by subsequent more refined DS equation studies
[35,36]. In addition, recent Monte Carlo simulations [49,50]
claimed that, although the Coulomb interaction in suspended
graphene is not strong enough to open an excitonic gap, αc is
close to 2.16.

Although careful experiments and elaborate theoretical
studies already have provided strong evidence for the absence
of an excitonic gap in intrinsic graphene, there have been
several proposals attempting to realize an excitonic insulator
in similar semimetals. For example, it was argued that the
Coulomb interaction in an organic material α-(BEDT-TTF)2I3

might be much stronger than graphene because its fermion
velocity is about one-tenth of the one observed in graphene
[56]. In addition, Triola et al. proposed that the fermion
excitations of the surface states of some topological Kondo
insulators may have extraordinary low fermion velocities,
which would drive the Coulomb interaction to fall into the
strong-coupling regime [57]. Moreover, it seems viable to
strengthen the Coulomb interaction and as such promote the
excitonic insulating transition by exerting certain extrinsic
influences. Through Monte Carlo simulations, Tang et al.
argued that applying a uniform and isotropic strain by about
15% can make the Coulomb interaction strong enough to open
an excitonic gap [58].

Recently, the influence of a uniaxial strain on the properties
of Dirac fermions has been studied. First-principles calcula-
tions [59,60] suggested that the uniaxial strain would cause
the carbon-carbon bond to become longer along the direction
of the applied strain and get shorter along its orthogonal
direction. As a consequence, the originally perfect Dirac cone
is deformed, and the fermion velocity along the direction of
applied uniaxial strain decreases, whereas the other component
of fermion velocity is made larger. Sharma et al. [61]
investigated the possibility of dynamical gap generation in
graphene with an anisotropic dispersion and argued that it is
promoted by the velocity anisotropy induced by the uniaxial
strain.

In this paper, we study the influence of uniaxial strain
on the formation of excitonic pairing. It is important to
emphasize here that applying a uniaxial strain to graphene

has two effects: First, it lowers the mean value of the fermion
velocity; second, it increases the velocity anisotropy, and they
might have different effects on dynamical gap generation.
We will address this issue by solving the self-consistent DS
equation for the excitonic gap. We will show that the two
effects of uniaxial strain are actually competitive since they
have opposite influences on dynamical gap generation. After
carrying out numerical calculations based on three widely
adopted approximations, we obtain the dependence of the ex-
citonic gap on two parameters, namely, the effective Coulomb
interaction strength α = e2/v̄ε, where v̄ = √

vxvy and the
velocity ratio η = vx/vy . We will show that the dynamical gap
generation is enhanced if the mean value of fermion velocity
v̄ is lowered but can strongly be suppressed when the velocity
anisotropy grows. Our conclusion is qualitatively consistent
with Ref. [34]. We will present a comparison between our
results and that reported in Ref. [61].

Apart from strain-induced anisotropy [59,60,62], the
fermion velocity anisotropy can also be induced by introducing
certain periodic potentials [63–65]. Moreover, it is found that
the surface state of some topological insulators, including
β-Ag2Te [66] and β-HgS [67], is a 2D Dirac semimetal with
two unequal components of fermion velocity. Our results of
the impact of velocity anisotropy on dynamical gap generation
are applicable to these systems.

To gain more quantitative knowledge of the effects caused
by uniaxial strain, we extract an approximated expression for
the fermion velocities in the x and y directions from recent
first-principles calculations of uniaxially strained graphene
[60]. For suspended graphene, we find that as the applied
uniaxial strain grows the system undergoes a semimetal-
insulator phase transition when the strain becomes larger than
7.34%. The dependence of the dynamical gap on the magnitude
of the uniaxial strain is obtained from the solution of the gap
equation, which shows that the gap is an increasing function
of the applied strain. We thus see that the enhancement of
dynamical gap generation caused by decreasing the mean
velocity dominates over the suppressing effect produced by
the increasing velocity anisotropy.

In addition to the uniaxial strain, the Dirac cone may
be deformed in other ways. For instance, the Dirac cone is
known to be tilted in an organic material α-(BEDT-TTF)2I3

[68–74], which is regarded as a promising candidate to realize
the quantum phase transition from a 2D Dirac semimetal to an
excitonic insulator [56]. We also study the fate of dynamical
gap generation in such systems and show that it is suppressed
when the Dirac cone is tilted.

The remaining sections of the paper are organized as
follows: In Sec. II, we give the model action for the 2D Dirac
fermions with anisotropic dispersion. In Sec. III, we derive
the DS gap equation and then solve it by employing three
different approximations. The numerical results are presented
and discussed in Sec. IV. In Sec. V, we compare our results
with a recent work. The direct relation between strain and
gap generation is investigated in Sec. VI. The influence of
the tilted Dirac cone on dynamical gap generation is studied
in Sec. VII. We end the paper with a brief summary in
Sec. VIII.
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II. MODEL AND FEYNMAN RULES

The massless Dirac fermions with an anisotropic dispersion
can be described by the action,

S =
∫

dt d2r �̄σ (r)
(
iγ0∂t − ivxγ1∇x − ivyγ2∇y

)
�σ (r)

− 1

2

∫
dt dt ′d2r d2r′�̄σ1(r)γ0�σ1(r)

×U0(t − t ′,|r − r′|)�̄σ2(r′)γ0�σ2(r′). (2)

In this action, �T
σ = (�Kaσ ,�K ′aσ ,�Kbσ ,�K ′bσ ) is a four-

component spinor field, representing the low-energy Dirac
fermion excitations of graphene, where a and b stand for
the two inequivalent sublattices and K and K ′ stand for two
valleys. The fermion flavor σ = 1,2, . . . ,Nf corresponds to
the spin components. Although the physical flavor is Nf = 2,
in the following analysis we will consider a generally large
Nf so as to perform the 1/Nf expansion. The γ matrices are
defined as γ0–2 = (τ3,iτ2, − iτ1) ⊗ τ3, where τ1–3 are the three
Pauli matrices.

If the Coulomb interaction triggers excitonic pairing, the
fermions would acquire a finite mass m. This mass arises
from fermion pairing, namely, m ∝ 〈�̄�〉 and usually is called
a dynamically generated mass [54], which physically differs
from the fermion mass ms that is spontaneously generated
via the Higgs mechanism. In the latter case, the mass ms is
determined by the vacuum expectation value of an elementary
boson field φ, i.e., ms ∝ 〈φ〉.

The free fermion propagator is

G0(iω,k) = 1

−iωγ0 + vxkxγ1 + vykyγ2
. (3)

The bare Coulomb interaction between fermions is

U0(t,r) = e2δ(t)

κ|r| , (4)

where the dielectric constant is κ = εrε0 with ε0 being the
dielectric constant in vacuum and εr being a parameter
determined by the substrate. After performing a Fourier
transformation, we obtain the Coulomb interaction function
expressed in the momentum space,

U0(q) = e2

κ

∫
d2x
2π

exp(−iqr)δ(t)

|r| = 2πe2δ(t)

κ|q| . (5)

The bare Coulomb interaction will always be dynamically
screened by the collective electron-hole pairs, which is

represented by the polarization function. To the leading order
of the 1/Nf expansion, the polarization function is given by

�(i�,q) = −Nf

∫
dω

2π

d2k
(2π )2

Tr[γ0G0(iω,k)γ0

×G0(iω + i�,k + q)]

= Nf

8vxvy

v2
xq

2
x + v2

yq
2
y√

�2 + v2
xq

2
x + v2

yq
2
y

. (6)

After including this polarization, the dressed Coulomb propa-
gator can be written as

D(i�,q) = 1
κ|q|
2πe2 + Nf

8vxvy

v2
xq

2
x+v2

yq
2
y√

�2+v2
xq

2
x+v2

yq
2
y

. (7)

III. DYSON-SCHWINGER EQUATION

In the presence of the Coulomb interaction, the dynamics of
the Dirac fermions will significantly be affected. Generically,
the dressed fermion propagator has the form

G(iω,k) = 1

−iωA0γ0 + vxkxA1γ1 + vykyA2γ2 + m
, (8)

where A0–2 ≡ A0–2(iω,k) are the renormalization functions
and m ≡ m(iω,k) is the dynamical fermion gap. The renor-
malized and free propagators are connected by the DS
equation,

G−1(iε,p) = G−1
0 (iε,p) +

∫
dω

2π

d2k
(2π )2

γ0G(iω,k)

× γ0�(iε,p; iω,k)D[i(ε − ω),p − k], (9)

where �(iε,p; iω,k) is the vertex correction. As demonstrated
in Refs. [32,35,36], the functions A0–2(iω,k) and the vertex
�(iε,p; iω,k) play an important role in the determination of
the precise value of αc. The purpose of the present paper is
to examine whether dynamical gap generation is enhanced or
suppressed by the velocity anisotropy. The qualitative impact
of anisotropy actually does not rely on the precise value of
αc. For our purpose, we will retain only the leading-order
contribution of the 1/Nf expansion to the DS equation
[20,22–24] and set A0 = A1 = A2 = 1. Under this approxi-
mation, the Ward identity requires � = 1. Now it is easy to
find that the dynamical fermion gap m(iε,px,py) satisfies the
following nonlinear integral equation:

m(iε,px,py) =
∫

dω

2π

∫
dkx

2π

∫
dky

2π

m(iω,kx,ky)

ω2 + v2
xk

2
x + v2

yk
2
y + m2(iω,kx,ky)

1
|q|

(2πe2)/κ + Nf

8vxvy

v2
xq

2
x+v2

yq
2
y√

�2+v2
xq

2
x+v2

yq
2
y

, (10)

where

� = ε − ω, qx = px − kx, qy = py − ky.

An apparent fact is that the gap equations are symmetric under the transformation: vx ↔ vy . In this paper, we define the effective
strength of the Coulomb interaction by α = e2/v̄κ , where v̄ = √

vxvy and the velocity anisotropy as η = vx

vy
so that these two

parameters, the interaction strength, and the velocity anisotropy can be adjusted separately. Now the two velocities vx and vy can
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be reexpressed by v̄ and η as follows:

vx = √
ηv̄, vy = v̄/

√
η. (11)

The above DS gap equation becomes

m(iε,px,py) =
∫

dω

2π

∫
dkx

2π

∫
dky

2π

m(iω,ky,ky)

ω2 + ηv̄2k2
x + v̄2k2

y

η
+ m2(iω,kx,ky)

1
|q|

2παv̄
+ Nf

8v̄2

ηv̄2q2
x+1/ηv̄2q2

y√
�2+ηv̄2q2

x+1/ηv̄2q2
y

. (12)

Due to the separate dependence of m on the energy and two components of momenta, it is still very difficult to solve this nonlinear
integral equation numerically. In order to simplify numerical work, we will employ three widely used approximations.

Under the Hartree-Fock (HF) approximation, the polarization function in the dressed Coulomb interaction is discarded
completely [38,61]. Namely, the bare Coulomb interaction actually is used. Under the HF approximation, the gap equation
becomes

m(px,py) = 1

2

∫
dkx

2π

∫
dky

2π

m(kx,ky)√
ηv̄2k2

x + v̄2k2
y

η
+ m2(kx,ky)

1
|q|

2παv̄

. (13)

Under the instantaneous approximation, the dressed Coulomb interaction takes the form [20,22]

D(i�,q) → D(0,q). (14)

Accordingly, the gap loses the energy dependence and depends only on the momentum. After carrying out the integration over
ω, the gap equation in an instantaneous approximation is given by

m(px,py) = 1

2

∫
dkx

2π

∫
dky

2π

m(kx,ky)√
ηv̄2k2

x + v̄2k2
y

η
+ m2(kx,ky)

1

|q|
(2πe2)/κ + Nf

8v̄

√
ηq2

x + q2
y

η

. (15)

It is well known that dynamical screening of the polarization function plays a crucial role in the determination of the effective
strength of the Coulomb interaction [26]. In an approximation proposed by Gamayun, Gorbar, and Gusynin (GGG) [26], the
dynamical screening of the Coulomb interaction is partially considered. In the GGG approximation, the gap m(iε,p) is supposed
to be energy independent, i.e.,

m(iε,px,py) → m(px,py),

but the energy dependence of the polarization is retained explicitly. Applying this approximation leads to

m(px,py) =
∫

dω

2π

∫
dkx

2π

∫
dky

2π

m(kx,ky)

ω2 + ηv̄2k2
x + v̄2k2

y

η
+ m2(kx,ky)

1
|q|

2παv̄
+ Nf

8v̄2

ηv̄2q2
x+(v̄2q2

y )/η√
ω2+ηv̄2q2

x+(v̄2q2
y )/η

. (16)

Performing the integration of ω, the gap equation can be written further as

m(p′
x,p

′
y) = α

∫
dkx

2π

∫
dk′

y

2π

m(k′
x,k

′
y)√

ηk′2
x + k′2

y

η
+ m2(k′

x,k
′
y)

J (d,g)√
(p′

x − k′
x)2 + (p′

y − k′
y)2

, (17)

where we have employed the transformations,

v̄px → p′
x, v̄py → p′

y,

v̄kx → k′
x, v̄ky → k′

y. (18)

The function J (d,g) is given by

J (d,g) = (d2 − 1)π − gc(d)] + dg2c(g)

d2 + g2 − 1
, (19)

where

c(x) =

⎧⎪⎪⎨
⎪⎪⎩

2√
1−x2 cos−1(x), x < 1,

2√
x2−1

cosh−1(x), x > 1,

2, x = 1,

(20)

and

d =

√√√√√ ηk′2
x + k′2

y

η
+ m2(k′

x,k
′
y)

η(p′
x − k′

x)′2 + (p′
y−k′

y )2

η

(21)

g =
Nf πα

√
η(p′

x − k′
x)2 + (p′

y−k′
y )2

η

4
√

(p′
x − k′

x)2 + (p′
y − k′

y)2
. (22)

IV. NUMERICAL RESULTS

We utilize the iteration method to solve the DS gap equation
numerically. To ensure the reliability of the numerical results,
we have chosen a series of different initial iteration values. As
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FIG. 1. (a) α dependence of m0 for different η’s; (b) η dependence
of m0 for different α’s. The HF approximation is taken.

the gap equation is symmetric under η → 1
η
, we only consider

the case of η > 1. The energy scale we adopt here and in the
following without special mention is v̄�, and here � is the
momentum cutoff.

A. Hartree-Fock approximation

We first consider the HF approximation. The relation
between m0 ≡ m(0,0) and α obtained at a series of different
values of η is displayed in Fig. 1(a). In the isotropic case
with η = 1, we find that the critical value for dynamical
gap generation is roughly αc ≈ 0.5, which is consistent with
Ref. [38]. According to Fig. 1(b), m0 decreases with an
increase in the fermion velocity anisotropy. As displayed in
Fig. 2, in the parameter space of α and η, the semimetal phase is
enlarged, but the excitonic insulating phase is compressed with
the increase in the fermion velocity anisotropy. This results
shows that the velocity anisotropy suppresses dynamical gap
generation, which is in contrast to the conclusion reported
in Ref. [61].

FIG. 2. Phase diagram on the α-η plane under the HF
approximation.

B. Instantaneous approximation

The dependence of zero-energy gap m0 on α is shown in
Fig. 3(a) where several values of η are assumed. For η = 1,
we find that αc ≈ 2.33, which is in good agreement with
previous results obtained under the instantaneous approxi-
mation [20,22]. The critical value of αc under instantaneous
approximation is obviously larger than the one under the HF
approximation, which indicates that the screening from polar-
ization suppresses the dynamical gap generation obviously. As
can be observed from Fig. 3(a), m0 increases monotonously as
α grows. As η becomes larger, m0 reduces, and αc increases.

Then we set the value of α to study the anisotropy
dependence of the excitonic mass gap. The results are shown
in Fig. 3(b). As we can see, for different values of interaction
strength, the increase in velocity anisotropy suppresses the
formation of the dynamical generated gap. Also there is a
critical velocity anisotropy ηc above which the excitonic gap
dismisses.

A schematic phase diagram is depicted on the α-η plane,
shown in Fig. 4. There is a critical line between the semimetal
phase with vanishing m0 and the excitonic insulating phase
where m0 �= 0. This phase diagram tells us that the dynamical
gap can be generated more easily by stronger Coulomb
interaction and smaller velocity anisotropy.

The dependence of dynamical gap m(px,py) on the mo-
mentum components |px | and |py | is displayed in Fig. 5. The
results obtained at η = 1 and α = 2.7 are shown in Fig. 5(a),
the results obtained at η = 2.5 and α = 2.7 are shown in
Fig. 5(b), and the results obtained at η = 1 and α = 3.3 are
shown in Fig. 5(c). In the isotropic case, the gap m(px,py) is
symmetric under the exchange px ↔ py . However, as shown
in Fig. 5(b), the anisotropy in fermion velocities breaks this
exchange symmetry.

The momentum dependence of m(px,py) exhibits the
following features. In the region v̄|p| > m0, m(px,py) grows
with decreasing |p|. In the region v̄|p| < m0, m(px,py) ap-
proaches m0 quickly with decreasing |p|, looking nearly flat
for small values of |p|. The nearly flat region shrinks as m0

takes a smaller value. As shown in Fig. 3(b), m0 is suppressed
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FIG. 3. (a) Dependence of m0 on α with different η’s; (b) depen-
dence of m0 on η with different α’s. An instantaneous approximation
is taken. Nf = 2 is taken in this figure and Figs. 4–12.

if the fermion velocity anisotropy becomes stronger, which in
turn shortens the nearly flat region. Comparing Fig. 5(a) with
Fig. 5(c), we see that the nearly flat region is broadened when
m0 grows as a result of the enhanced interaction strength.

In Figs. 6(a) and 6(b), we present the momentum de-
pendences of m(px = p,0) and m(0,py = p) for the cases
of vx = vy and vx > vy , respectively. Comparing these two
figures, we observe that the gap obtained in the anisotropic case
is suppressed along both the x and the y directions comparing
to the isotropic case. According to Fig. 6(b), it is easy to see
that, at a given p, m(p,0) is obviously smaller than m(0,p)
within a broad range of p.

C. GGG approximation

For several different values of η, the curves for the
dependence of m0 on the Coulomb strength α within the
GGG approximation are depicted in Fig. 7(a). We can see that
there is a critical interaction strength αc above which a finite
excitonic gap can dynamically be generated, the magnitude
of the dynamically generated gap increases with the increase

FIG. 4. Phase diagram on the α-η plane under an instantaneous
approximation.

in interaction strength. It indicates dynamical gap generation
appears only if the Coulomb interaction is strong enough.
For the isotropic case, we get a critical interaction strength
αc = 0.92, which is in accordance with Ref. [26]. This critical
Coulomb strength is much lower than the one obtained within
the instantaneous approximation αc ≈ 2.33, which reflects
that energy dependence of the dressed Coulomb interaction
promotes the dynamical gap generation. As the velocity
anisotropy increases, the magnitude of the dynamical gap de-
creases, and the critical interaction strength increases, which is
consistent with the results of the instantaneous approximation.

Dependence of m0 on the fermion velocity anisotropy η

with three different values of α is presented in Fig. 7(b). It is
easy to find that m0 decreases monotonously with growing η

and is suppressed completely when η is larger than a critical
value.

Finally, we give the phase diagram on the α-η plane in
Fig. 8. The qualitative characteristic of Fig. 8 is nearly the
same as in Figs. 2 and 4. All three phase diagrams show that
increasing the velocity anisotropy leads to a suppression of the
dynamical gap generation.

V. COMPARISON WITH RECENT WORK

In ideal graphene, the fermions have a universal velocity
v0. Under certain circumstances, there might be an anisotropy,
and the fermion velocity takes different values in different
directions. For isotropic graphene, the velocity anisotropy can
be induced by applying uniaxial strain or other manipulations
[59,60].

In a recent work, Sharma et al. [61] studied the dynamical
gap generation in a uniaxially strained graphene. They have
introduced two parameters, namely,

αx = e2

κvx

, (23)

and

η′ = 1

η
= vy

vx

, (24)
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FIG. 5. Momentum dependence of the mass gap for (a) η = 1,

α = 2.7; (b) η = 2.5, α = 2.7; (c) η = 1, α = 3.3.

to characterize the interaction strength and velocity anisotropy.
After solving the DS gap equation under the HF and
instantaneous approximations, they concluded that, at a fixed
αx , the magnitude of the excitonic gap increases monotonously
as the parameter η′ decreases from the isotropic case of η′ = 1.
They also claimed that the critical value αc

x for the dynamical
gap generation decreases with deceasing η′. Based on these
results, Sharma et al. argued that velocity anisotropy is able to
promote dynamical gap generation.

We would point out that the analysis performed by Sharma
et al. is problematic. When the parameter αx is fixed at a
certain value, the velocity component vx also is fixed. In this
case, there are actually two physical effects when lowering
η′ = vy/vx : First, the velocity component vy decreases;
second, the fermion velocity anisotropy increases. Thus the
conclusion that velocity anisotropy supports the formation of
excitonic mass actually is a combining effect of lowering the
fermion velocity of vy and increasing the fermion velocity
anisotropy. In this sense, such a conclusion is misleading.
According to our calculations, the dynamical gap generation

FIG. 6. Momentum dependence of m(p) along the x and y

directions at (a) η = 1.0 and α = 2.7; (b) η = 2.5. α = 2.7. Here,
m(p) stands for either m(px,0) or m(0,py).

is promoted when the mean value of the fermion velocity
decreases but is suppressed as the anisotropy is enhanced.
Therefore, the correct interpretation of the results obtained by
Sharma et al. [61] should be as follows: For a fixed αx , the
promotion of the dynamical gap generation in the y direction
caused by decreasing velocity is more important than the
suppression caused by the growth of velocity anisotropy.

VI. EFFECTS OF UNIAXIAL STRAIN
ON THE EXCITONIC GAP

The fermion velocities of uniaxially strained graphene can
be obtained by performing first-principles calculations [60]. It
was found [60] that the velocities in the x and y directions vary
approximately linearly under uniaxial strain if the magnitude
of the strain is lower than 24%. This result is valid when the
strain is applied in both armchair and zigzag directions [60].
For strain ε% in the zigzag direction, we can approximate the
fermion velocities with the following expressions:

vx = v0

(
1 + 1

120
ε

)
, (25)

vy = v0

(
1 − 7

240
ε

)
. (26)
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FIG. 7. (a) α dependence of m0 for different η’s. (b) η dependence
of m0 for different α’s. The GGG approximation is taken.

Accordingly, the velocity anisotropy parameter η and the
interaction strength α are re-written as

η = 1 + 1
120ε

1 − 7
240ε

, (27)

FIG. 8. Phase diagram on the α-η plane obtained under the GGG
approximation.

FIG. 9. Effects of uniaxial strain on interaction strength and
velocity anisotropy, combined with the phase diagram on the α-η
plane, obtained under the instantaneous approximation. The red line
represents the trajectory of the interaction strength and velocity
anisotropy of suspended graphene under uniaxial strain, and the black
line stands for the critical lines of the phase transition on the α-η plane.

α = e2

κv0

√
1 − 5ε

240 − 7ε2

28 800

= α0
1√

1 − 5ε
240 − 7ε2

28 800

, (28)

where v0 and α0 are the values for graphene without strain.
We suppose α0 ≈ 2.2 for suspended graphene. It is easy to
verify that both α and η increase as the strain grows. Taking
advantage of these two relations and the phase diagram on the
α-η plane, we obtain Fig. 9 where the red line represents the
trajectory of the interaction strength and velocity anisotropy
of suspended graphene under uniaxial strain, and the black
line stands for the critical lines on the α-η plane within the
instantaneous approximation, respectively. Here, the increase
in uniaxial strain is characterized by the increase in η. It is
obvious that, as the uniaxial strain increases, an excitonic gap
can dynamically be generated.

FIG. 10. Relation between the zero-energy gap m0 and the strain
parameter ε.
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The relation between the dynamical gap and the strain
parameter ε is presented in Fig. 10. The instantaneous
approximation is employed in the calculation. In order to
compare m0 for different interaction strengths, we adopt an
energy scale of the isotropic case, namely, v0� as a unit of m0.

As we can see, the system is gapless when the uniaxial
strain is smaller than 7.34%, and a finite dynamical gap is
generated as ε exceeds this critical value. The zero-energy gap
m0 increases as ε grows. This implies that applying a uniaxial
strain to graphene is in favor of excitonic gap generation and
that the enhancement effect caused by the decreasing mean
velocity dominates over the suppression effect caused by the
increasing velocity anisotropy. We notice that the magnitude
of dynamical gap m0 induced by uniaxial strain is very low as
clearly shown in Fig. 10. Therefore, it would be very difficult
to observe such a gap in realistic materials.

VII. A 2D DIRAC SEMIMETAL WITH A TILTED CONE

It recently was argued [56] that the organic material
α-(BEDT-TTF)2I3 might be close to a quantum phase tran-
sition between semimetallic and excitonic insulating phases
due to the low fermion velocity. In the semimetallic phase of
α-(BEDT-TTF)2I3, the Dirac cone is tilted [68–77], which can
be considered a deformation of the perfect Dirac cone realized
in intrinsic graphene. In this section, we examine whether the
tilt of the Dirac cone favors dynamical gap generation.

The propagator of fermion excitations around a tilted Dirac
cone has the form [69–74]

G(iω,k) = 1

−iωγ0 + vtkxγ0 + vk · γ
. (29)

We only consider the case of vt < v so that the Fermi surface
still consists of discrete points. For simplicity, we assume that
vx = vy = v and focus on the influence of the tilt of the Dirac
cone. The polarization is defined as

�(i�,q) = −Nf

∫
dω

2π

d2k
(2π )2

Tr[γ0G0(iω,k)γ0

×G0(iω + i�,k + q)]. (30)

According to Ref. [70], under the instantaneous approxima-
tion, the polarization is given by

�(0,q) = Nf

8

|q|
v

√
1 − (

vt

v

)2
cos2 θq

= Nf

8

|q|
v

√
1 − (

vt

v

)2 q2
x

q2
x+q2

y

, (31)

here Nf = 2. It is then easy to get a dressed Coulomb function,

V (q) = 1
κ|q|
2πe2 + �(q)

= 1
|q|

2παv
+ Nf

8
|q|

v

√
1−

(
vt
v

)2
q2
x

q2
x +q2

y

, (32)

where

α = e2

vκ
. (33)

To the leading order, the gap equation is

m(px,py) =
∫

dω

2π

∫
dkx

2π

∫
dky

2π

m(ky,ky)

(ω + ivtkx)2 + v2k2
x + v2k2

y + m2(kx,ky)

1
|q|

2παv
+ Nf

8
|q|

v

√
1−( vt

v
)2 q2

x

q2
x +q2

y

, (34)

where

qx = px − kx, qy = py − ky. (35)

Performing the integration of ω by using the contour integral and residue theorem, we obtain

m(px,py) = 1

2

∫
dkx

2π

∫
dky

2π

m(ky,ky)√
v2k2

x + v2k2
y + m2(kx,ky)

1
|q|

2παv
+ Nf

8
|q|

v

√
1−ξ 2 q2

x

q2
x +q2

y

, (36)

with

ξ = vt

v
. (37)

Here, we use ξ to measure to what extent the Dirac cone is
tilted. ξ = 0 represents the perfect Dirac cone of graphene, and
the increase in ξ stands for the increase in the tilted degree of
the Dirac cone. In Refs. [69,76], an isotropic circular cutoff �

is adopted, i.e., |p| < �. Here, we take the momentum cutoff
�x = �y = �, which means that |px | < � and |py | < �.
Moreover, we will take v� as a unit of the fermion gap.
Here, we would emphasize that dynamical gap generation
is a genuine low-energy phenomenon and that the dominant

contribution comes from small energy momenta. Although
the precise value of the gap m depends on the UV cutoff, the
qualitative behaviors of m and the critical coupling αc are not
sensitive to the different choices of UV cutoff.

The numerical solutions of Eq. (36) are depicted in Fig. 11,
which clearly informs us that m0 decreases with growing ξ .
Therefore, the tilt of the Dirac cone reduces the possibility
of dynamical gap generation. The phase diagram on the α-η
plane is presented in Fig. 12.
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FIG. 11. (a) α dependence of m0 for different ξ ’s. (b) ξ depen-
dence of m0 for different α’s. Here, ξ is the parameter for the tilted
Dirac cone.

VIII. SUMMARY AND DISCUSSION

In this paper, we have studied dynamical excitonic gap
generation in a 2D Dirac semimetal with a deformed Dirac

FIG. 12. Phase diagram on the α-η plane obtained under the
instantaneous approximation for a 2D Dirac semimetal with a tilted
cone.

cone caused by anisotropy and a tilt of the Dirac cone. First,
we studied dynamical gap generation with anisotropy, which
likely is caused by uniaxial strain or periodic potentials.
After solving the DS gap equation under three different
approximations, we find that the decrease in fermion velocities
supports dynamical gap generation but the velocity anisotropy
tends to suppress dynamical gap generation. Subsequently,
we have considered the organic material α-(BEDT-TTF)2I3,
which is also a 2D Dirac semimetal, and found that dynamical
gap generation is suppressed by the tilt of the Dirac cone. This
shows that the shape and geometry of the Dirac cone is related
closely to the formation of excitonic mass gap generation,
which might help to explore concrete materials that potentially
can exhibit an excitonic insulating transition.

In uniaxially strained graphene, the fermion dispersion
becomes anisotropic. However, it is necessary to emphasize
that uniaxial strain leads to not only velocity anisotropy,
but also enhancement of an effective Coulomb interaction
strength due to the decrease in the mean value of the fermion
velocity. Dynamical gap generation is suppressed by the
former effect but promoted by the latter one. Therefore,
the ultimate influence of uniaxial strain on dynamical gap
generation can only be determined by considering these two
competitive effects simultaneously. The fate of dynamical
gap generation depends on the actual values of α and η. By
adopting the uniaxial strain dependence of fermion velocities
in Ref. [60], we show that the overall effects of uniaxial strain
can induce an excitonic gap in graphene once the strength of
uniaxial strain is over a certain value (namely, 7.34%). This is
in accordance with the results of Sharma et al. [61], although
they have a misinterpretation of the results. It is the decrease
in the fermion velocity in the direction the uniaxial strain is
applied that dominates over the suppression effect caused by
the growing velocity anisotropy and thus induces an excitonic
gap not the velocity anisotropy contributing to the formation
of excitonic gap generation.

Our analysis suggests that a more efficient way to realize
the excitonic insulating transition is to merely increase the
interaction strength by reducing the fermion velocity without
introducing any anisotropy. For instance, one could apply
a uniform and isotropic strain on graphene as suggested in
Ref. [58].

Similar to other related studies [34,61,62], in this paper
we assume that all the valleys have the same shape. This
is a valid assumption for the usual 2D Dirac semimetals
[1,2,6], including strained graphene. Of course, one cannot
preclude the existence of a 2D Dirac semimetal which contains
inequivalent valleys. In principle, it is possible that some Dirac
cones are isotropic but other Dirac cones are anisotropic. It
is also possible that the Dirac cones in a given 2D Dirac
semimetal are deformed differently. A particularly interesting
possibility is that a finite gap is opened only at some of the
Dirac points, whereas the other Dirac points are still strictly
gapless. This issue deserves further investigation.
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