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Quantum critical magnetotransport at a continuous metal-insulator transition
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In contrast to the seminal weak localization prediction of a noncritical Hall constant (RH ) at the Anderson
metal-insulator transition (MIT), RH in quite a few real disordered systems exhibits both a strong T dependence
and critical scaling near their MIT. Here we investigate these issues in detail within a nonperturbative
“strong localization” regime using cluster-dynamical mean-field theory (CDMFT). We uncover (i) clear and
unconventional quantum-critical scaling of the Gell-Mann law, or γ function for magnetotransport, finding that
γ (gxy) = d[log(gxy )]

d[log(T )] � log(gxy) over a wide range spanning the continuous MIT, very similar to that seen for the
longitudinal conductivity, and (ii) strongly T dependent and clear quantum critical scaling in both transverse
conductivity and RH at the MIT. We show that these surprising results are in comprehensive and very good
accord with signatures of a novel Mott-like localization in NbN near the MIT, providing substantial support for
our “strong” localization view.
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I. INTRODUCTION

At low temperatures (T ), transport in normal metals arises
as a result of scattering of weakly interacting fermionic
(Landau) quasiparticles amongst themselves, phonons, and
impurities [1]. Remarkably, it seems to hold even for f -
electron systems, which are certainly strongly correlated Fermi
liquids. However, this appealing quasiclassical description
fails near metal-insulator transitions (MITs), where the Landau
quasiparticle description itself breaks down [2]. In fact, in
cuprates [3] and some f -electron systems [4], resistivity and
Hall data can only be reconciled by postulating two distinct
relaxation rates, arising from the breakup of an electron, for
the decay of longitudinal and transverse currents. In many
cases, bad-metallic and linear-in-T resistivities preclude use
of Boltzmann transport views altogether, since the picture of
weakly interacting Landau quasiparticles itself breaks down.

In disorder-driven MITs, resistivity and Hall effect have
long been studied in the context of the seminal weak-
localization (WL) theory [5]. These studies already threw up
interesting hints regarding the inadequacy of WL approach
upon attempts to reconcile criticality in (magneto)transport
[6]. Specifically, while both σxx(n) � (nc − n)ν and σxy(n) �
(nc − n)ν

′
turned out to be critical at the MIT, and the ratio

ν ′/ν � 1 in stark contrast to the value of 2 predicted at
the Anderson MIT [7]. More recent work on intentionally
disordered NbN [8], wherein the system is driven across
kF l � O(1) (here kF is the Fermi wave vector and l is
the mean-free path, and kF l � 1 describes a good metal,
while kF l � 1.0 describes a bad metal without well-defined
electronic quasiparticles), shows clear signatures of an unusual
type of localization at odds with theoretical predictions if one
insists on an Anderson disorder-driven MIT: (i) ρxx(T ) �

*prosenjit@imsc.res.in
†mslaad@imsc.res.in
‡shassan@imsc.res.in
§madhavichand2009@gmail.com
‖pratap@tifr.res.in

C + ARH (T ), both increasing with reduction in T over a
wide range of kF l far before the MIT occurs [in NbN,
this is pre-empted by a superconductor-insulator transition
(SIT) [8] at very low T near the critical (kF l)c], and
(ii) �RH/RH � 0.69[�ρxx(T )/ρxx], widely different from
�RH/RH � 2.0[�ρxx(T )/ρxx] expected to hold in WL theory
[9] (kF l � 1). These anomalies in both ρxx and RH (T ) are
inexplicable within WL views (where RH is T independent
and noncritical at the MIT), and point toward a fundamentally
new mechanism at work. Two possible reasons for this discord
are: (1) electron-electron (e-e) interactions grow [10] near
a disorder-induced MIT and may destroy the one-electron
picture, and/or (2) such experiments maybe probing the
“strong” localization regime of a disorder problem, where
nonperturbative strong scattering effects may also destroy the
one-electron picture. This is because Boltzmann approaches
are untenable at the outset when kF l � 1, when a quasiparticle
view itself breaks down.

Motivated by the above issues, we investigate magneto-
transport near a continuous (at T = 0) MIT. We choose the
Falicov-Kimball model (FKM) because (i) it is the simplest
model of correlated fermions exhibiting a continuous MIT,
(ii) is exactly soluble within (cluster) dynamical mean-field
theory [(C)DMFT] for arbitrarily strong interaction, and
(iii) a two-site cluster DMFT treats the all-important short-
range correlations precisely on the length scale of l � k−1

F .
Moreover, it is isomorphic to the binary-alloy Anderson
disorder model, except that the FKM has annealed instead
of quenched disorder.

II. CALCULATION OF DC CONDUCTIVITY TENSOR
WITHIN CLUSTER DMFT

The Hamiltonian of the spinless FKM is

HFKM = −t
∑
〈i,j〉

(c†i cj + H.c.) + U
∑

i

ni,dni,c + μ
∑

i

ni,c

(1)

on a Bethe lattice with a semicircular band density of states
(DOS) as an approximation to a D = 3 lattice. ci(c

†
i ),di(d

†
i ) are
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fermion operators in dispersive band (c) and dispersionless (d)
states, t is the one-electron hopping integral, and U is the on-
site repulsion for a site-local doubly occupied configuration.
Since ni,d = 0,1, vi = Uni,d is also viewed as a static but
annealed “disorder” potential for the c fermions. We take
noninteracting c fermions half-bandwidth as unity, i.e., 2t = 1.

As studied earlier for the dc resistivity [11], we now use
the exact-to-O(1/D) cluster propagators GK(ω) for each of
the two-site cluster momenta K = (0,0),(π,π ) to compute the
full conductivity tensor σab(T ), with a,b = x,y. We neglect
the vertex corrections to the Bethe-Salpeter equation (BSE)
for all the intracluster momenta since they are negligible
even within CDMFT, as can be seen, for example, within
a cluster-to-orbital mapping [12,13]. Thus, this constitutes
an excellent approximation for computation of transport
coefficients. Explicitly, the dc conductivity reads

σxx(T ) = σ0

∑
K

∫ +∞

−∞
dεv2(ε)ρK

0 (ε)

×
∫ +∞

−∞
dωA2

K(ε,ω)

(−df

dω

)
, (2)

where σ0 = πe2

h̄Da
� (10−3–10−2)(2/D) (μ
) cm−1, ρK

0 (E) is
the “partial” unperturbed DOS used in earlier work [14],
and AK(E) is the intracluster CDMFT one-fermion spectral
function. The Hall conductivity is a more delicate quantity
to compute [15]. Fortunately, absence of vertex corrections
comes to the rescue and we find

σxy(T ) = σxy,0B
∑

K

∫
dεv2(ε)ρK

0 (ε)ε

×
∫

dωA3
K(ε,ω)

(
df

dω

)
, (3)

with σxy,0 = − 2π2|e|3a
3h̄2 (1/2D2), and B is the magnetic field.

Now, the Hall constant is simply RH (T ) = σxy

Bσ 2
xx

and the Hall
angle is cotθH = σxx

σxy
. We show the off-diagonal conductivity

σxy(U,T ) as a function of U from small to large U across the
continuous MIT occurring at Uc = 1.8 [14]. First, we show re-
sults for the temperature-dependent off-diagonal conductivity
σxy(T ) as a function of U across the continuous Mott transition.

III. RESULTS AND DISCUSSIONS

We use Eq. (3) to compute σxy(T ,U ). In Fig. 1 we show
σxy(T ,U ) as a function of temperature (T ) for different
disorder values (U ). A clear change of slope at low T < 0.05t

occurs around U � 1.3, which seems to correlate with the
bad-metal-to-bad-insulator crossover in the dc resistivity in
our earlier study [11]. Close to the MIT, ρdc(T ) diverges
approximately like exp(Eg/kBT ) as T → 0 in this regime,
RH (T → 0) diverges as it must, since the MIT is accompanied
by loss of carriers due to gap opening. A clear change of slope
(for T < 0.05t) occurs around U = 1.3, and σxy(T ) � T 1.2

around Uc. The dc resistivity ρxx(T ) shows extremely bad-
metallic behavior at lowest T , beautiful mirror symmetry, and
novel “Mott-like” scaling [11] precisely in this regime. It is
obviously of interest to inquire whether the novel features
seen in ρxx(U,T ) are also reflected in magnetotransport

FIG. 1. Hall conductivity (σxy) as a function of temperature (T )
for different U .

near the “Mott” QCP. To facilitate this possibility, we show
log10( σ

xy
c

σ xy (T ) ) versus T in the left panel of Fig. 2, finding
that the family of 1/σ xy(U,T ) curves also exhibit a near-
perfect “mirror” symmetry over an extended region around
1/σ

xy

(c) (U,T ), strongly presaging quantum critical behavior.

To unearth this feature, we also show log10( σ
xy
c

σ xy (T ) ) versus

T/T
xy

0 in the right panel of Fig. 2, where we have repeated the
unbiased method of introducing a T

xy

0 (U ) to rescale all metallic
and insulating curves on to two universal curves. Remarkably,
as for the ρxx scaling, we find, as shown in the left panel of
Fig. 3, that T

xy

0 vanishes precisely at the MIT. Clear scaling
behavior we find testifies to a remarkable fact: the novel scaling
features found earlier in dc resistivity are also clearly manifest
in the off-diagonal resistivity.

Even clearer characterization of the quantum critical fea-
tures is obtained when we compute the γ function [7] (this is

FIG. 2. (a) In the left panel, log10( σ
xy
c

σxy (T ) ) as a function of
temperature T for δU = ±0.025, 0.05, 0.1, 0.15, 0.2; σxy

c is the
“separatrix.” (b) In the right panel, scaling the data along T axis by
scaled temperature T

xy

0 .
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FIG. 3. (a) In the left panel, scaling parameter T
xy

0 as a function
of control parameter δU = U − Uc; the inset illustrates power-law
dependence of scaling parameter T

xy

0 = c | δU |μ. (b) In the right
panel, σxy(T → 0) as a function of control parameter δU = U −
Uc; the inset illustrates power-law dependence of σxy(T → 0) = c |
δU |μ′

.

the analog of the well-known β function for the longitudinal
conductivity) for σxy(U,T ), defined by γ (gxy) = d[ln(gxy )]

d[ln(T )] , with

gxy = σxy(T )/σ xy
c . As shown in Fig. 4, it is indeed remarkable

that it clearly varies as ln(gxy), and is continuous through
δU = 0. This shows that it has precisely the same form on
both sides of the MIT, which is exactly the feature needed
for genuine quantum criticality. These features resemble those
found for QC scaling in ρxx [11], showing that, like β(g),
γ (gxy) � ln(gxy) deep into the metallic phase. Thus, we have
found that the full dc conductivity tensor reflects the strong

FIG. 4. (a) In the left panel, γ function shows linear ln(gxy)
behavior close to the transition. Squares are for the metallic branch
(δU < 0) and circles are for the insulating branch (δU > 0); vertical
dashed lines indicate the region where mirror symmetry of curves is
found. (b) In the right panel, reflection symmetry of scaled curved
close to the transition.

FIG. 5. log10( σ
xy
c

σxy (T ) ) vs (δU )/T
1
μ , where δU = U − Uc.

coupling nature of the Mott QCP, attesting to its underlying
nonperturbative origin in Mott-like (strong scattering) physics.

That γ (gxy) � lngxy holds on both sides of the MIT implies
that its two branches must display “mirror symmetry” over
an extended range of gxy . In Fig. 4, left panel, we indeed
see that magnetotransport around the QCP exhibits well-
developed reflection symmetry (bounded by dashed vertical
lines), It is also manifest in the right panel of Fig. 4, where
σ

xy
c /σ xy(δU ) = σxy(−δU )/σ xy

c ; i.e., they are mapped onto
each other under reflection around Uc, precisely as found
earlier for the dc resistivity. As a final check, we also show
(see Fig. 5) that log[σxy

c /σ xy(T )] is a universal function of
the “scaling variable” δU/T 1/μ. Thus, our study explicitly
shows the novel quantum criticality in magnetotransport at the
Mott QCP (associated with a continuous Mott transition) in
the FKM at strong coupling.

In an Anderson model framework, scaling of σxy is long
known [7]. Our findings are very distinct from expectations for
an Anderson-like transition: observe that we find T

xy

0 (δU ) �
cxy |δU |μ (in the left panel of Fig. 3) with μ � 0.75 = 3/4
(in the inset) on both sides of Uc, as required for genuinely
quantum critical behavior. This strongly contrasts with the
T xx

0 (δU ) � c|δU |zν with zν = 1.32 � 4/3 found for the dc
resistivity [11]. Furthermore, in the right panel of Fig. 3 we
also show that σxy = σ0,xy(Uc − U )μ

′
with μ′ = 1.8 (in the

inset), quite distinct from ν � 4/3 found earlier for σxx(U ).
Along with our finding of σxx(T ) � T and σxy(T ) � T 1.2

at the MIT, these findings have very interesting consequences:
(i) the Hall constant is critical at the MIT. We find R−1

H �
σ 2

xx/σxy � (Uc − U )0.8, whereas RH is noncritical [7] at the
Anderson MIT. (ii) RH is also strongly T dependent and diver-
gent at the MIT, varying like RH (T ) � T −0.8, whereas RH �
(nec)−1 in an Anderson disorder model. Concomitantly, the
Hall angle also exhibits anomalous behavior: (iii) tanθH (T ) �
T 0.2 and tanθH (U ) � (Uc − U )1/2 in the quantum critical
region. Our results are distinct from expectations from a
Landau FL and Anderson-MIT views. At an Anderson MIT
[7], RH = (nec)−1 is T independent and noncritical at the
MIT. In the metallic phase, use of semiclassical ideas dictates
that both β(g) and γ (gxy) scale like (d − 2) − A/g, and the
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FIG. 6. Hall coefficient RH as a function of temperature T for
different U .

quantum correction to the Hall conductance is twice as big as
for the Ohmic conductance. The stringent assumption under
which this holds is that the inverse Hall constant [related
to h(L) = Ld−2/RH B in Abrahams et al.] scales classically
like h(L) � Ld−2 for small B (large h). It is precisely this
assumption that breaks down when one considers the Mott
MIT, where RH is critical at the MIT (see above). They
are also different from expectations in a correlated LFL: a
strongly T -dependent RH close to a Mott MIT in a Hubbard
model framework is long known [16]. However, in a DMFT
framework, RH (T ) exhibits a recovery of correlated Landau-
Fermi liquid behavior below a low-T lattice coherence scale.
Moreover, in the MIT there is a first-order transition. In the
FKM, the metallic state remains bad metallic and incoherent
down to lowest T , and the MIT is continuous. The Mott-like
character of the associated QCP is revealed by the observation
of β(g) � log(g) and γ (gxy) � log(gxy).

In Fig. 6 we show RH (U,T ) versus temperature (T ).
Both are indeed markedly T dependent. For an Anderson
MIT, RH would be noncritical. In a LFL metal, one expects
σxx(T ) = 1/ρdc(T ) = AT 2, while σxy(T ) � T −4 at low T .
In that case, we end up with a T -independent RH and
cotθH (T ) = cT 2. This is the expected behavior for a LFL,
where a single relaxation rate governs the T -dependent
relaxation of longitudinal and Hall currents. The very different
T dependencies we find here testify to the breakdown of this
intimate link between LFL quasiparticles and this conventional
behavior, and that the results we find are direct consequences of
the destruction of LFL quasiparticles at strong coupling. They
render semiclassical Boltzmann arguments (based on validity
of kF l � 1) inapplicable at the outset.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

We now turn to experiments to investigate how our theory
stands this stringent test. Recent work on NbN [8] most clearly
reveals ill-understood signatures of localization incompatible
with weak localization predictions. In NbN, the effect of
intentional charge disorder is to cause a random variation in

FIG. 7. (a) Resistivity data from Chand et al. [8], replotted as
log[ρxx(T )/ρc] versus T/T0 with T0(δkF l) � |δkF l|1.3 in (b), in
excellent accord with theory [11]. In (c) we show that the theoretical
ratio �RH /RH

�ρ/ρ
is in the range of 0.5–0.7 near the Mott QCP, again

in good qualitative accord with the value of 0.69 from Hall data
[8]. In (d) we show clear scaling of the experimentally extracted
log[σ (c)

xy /σxy(T )] in very good accord with theory for the same sample
set used for (a). The σxy(T ) is constructed from the experimental
dc resistivity and Hall constant (RH ). The RH at the critical kF l is
calculated from extrapolation of the experimental Hall constant (RH )
down to (kF l)c = 0.82, as shown in Fig. 8.

the local atomic potential, which increases as kF l is reduced
by increasing the disorder level. Following Freericks et al.
[17], we posit that the FKM is a suitable effective model
for materials like TaxN and NbxN, where carriers interact
locally with randomly distributed charge disorder. We have
reanalyzed Chand et al.’s data on NbN in light of the above
results to test how our strong coupling view performs relative
to data. To make meaningful contact with data on NbN, we
make a reasonable assumption that increasing U/t in the FKM
corresponds to decreasing kF l, since the scattering strength
should increase with U/t , reducing kF l to O(1) [8] near the
MIT. We find, as shown in Fig. 7(a), that (i) log[ρxx(T )/ρc] on
the (bad) metallic side scales with T/T0(kF l) exactly as pre-
dicted by our theory [11]. Furthermore, the data analysis shows
[Fig. 7(b)] that T0(kF l) � [kf l − (kf l)c]zν with zν � 1.3,
again in excellent accord with theory if we identify decreasing
kF l with increasing U in our model. (ii) Interestingly, our
ρxx(T ),RH (T ) results reproduce the detailed T dependence
seen in data [8] with only one adjustable parameter (U ). (iii)
Even more remarkably, we find that (�RH/RH )/(�ρxx/ρxx),
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FIG. 8. (a) In the top-left panel, Hall constant RH as a function
of kF l for various temperature T , black circles are the values of
RH after extrapolating the curves up to critical kF l = 0.82. (b) In
the top-right panel, Hall conductivity σxy calculated from the Hall
constant (RH ) and dc resistivity (ρxx) as a function of kF l for various
temperature T . (c) In the bottom-left panel, Hall constant RH as a
function temperature (T ) at the critical kF l = 0.82 calculated from
the extrapolation. (d) In the bottom-right panel, Hall conductivity σxy

as a function temperature (T ) at the critical kF l = 0.82.

shown in Fig. 7(c), achieves values between 0.5 and 0.7 close
to the MIT (between 1.5 � U � 1.9) in our model, in very
good accord with 0.69 extracted in experiment. Finally, in
Fig. 7(d), we uncover quantum critical scaling in 1/σxy(T ) as
a function of kF l from data on NbN, which is expected in our
model, since both σxx,σxy exhibit such novel scaling behavior.
Since RH is difficult to extract reliably in very bad-metallic
samples (with kF l < 3.0) close to the MIT, we resorted to a
careful extrapolation of the Hall conductivity (σxy) and Hall
constant (RH ) to smaller values of kF l.

In Fig. 8 we show the results of a careful fitting of the
experimental data down to kF l � O(1) [in fact, the critical

(kF l)c is now consistent with 0.82, which is the critical value
for the longitudinal dc conductivity]. Using these extrapolated
fits to the dc conductivity tensor as a function of kF l, we
constructed Fig. 7(d) in the main text. This makes our analysis
consistent with a single (kF l)c � 0.82 for both σxx(kF l,T ) and
σxy(kF l,T ).

Taken together, earlier results of Chand et al. [8], now
suitably reanalyzed in light of our CDMFT results, receive
comprehensive explication within a strong localization view
adopted here, lending substantial support to the view that the
novel findings in NbN are representative of strong scattering
effects near a continuous MIT, and involve microscopic
processes beyond perturbative-in-(1/kF l) approaches.

IV. SUMMARY AND OUTLOOK

Thus, to conclude, we have presented clear evidence of
novel quantum critical behavior in magnetotransport near a
continuous MIT by a careful scaling analysis of CDMFT
results for the off-diagonal conductivity for the FKM in the
strong localization limit. We find that the loss of the quasi-
particle pole structure at strong coupling (kF l � 1) leads to a
rather distinct Mott-like quantum criticality, necessitating sub-
stantial modification of the quasiclassical Drude-Boltzmann
transport schemes to study (magneto)transport. The resulting
quantum criticality we find is closer to that expected from
the opposite limit of strong localization based on a real-space
locator expansion [18,19], as manifested in γ (gxy) � ln(gxy).
Comprehensive and very good explication of recent data on
NbN lend substantial experimental support to this Mott-like
view. We suggest that strongly disordered electronic systems
that show a bad-metallic resistivity and sizable T -dependent
Hall constant would be promising candidates to unearth such
novel quantum-critical magnetotransport at a continuous MIT.
Finally, the similarity of QC scaling in resistivity in earlier
work [11] to the Mott QC scaling in the Hubbard model
[20] above the finite-T critical endpoint suggests that related
features discussed above may also manifest in wider classes
of strongly correlated Mott materials.
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