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Fermion-induced quantum critical points in three-dimensional Weyl semimetals
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Fermion-induced quantum critical points (FIQCPs) were recently discovered at the putatively first-order
transitions between two-dimensional (2D) Dirac semimetals and the Kekule valence bond solids on the
honeycomb lattice by sign-free quantum Monte Carlo simulations [Nat. Commun. 8, 314 (2017)]. Here, we
investigate possible FIQCPs in 3D topological Weyl semimetals at a Z3 symmetry-breaking transition that is
putatively first-order according to the Landau criterion. We construct a lattice model featuring 3D double-Weyl
fermions (monopole charges ±2), and we show that Z3 nodal-nematic transitions occur under finite Hubbard
interaction. Furthermore, using renormalization-group analysis, we identify such a transition as a genuine FIQCP
where the cubic terms are irrelevant and an enlarged U(1) symmetry emerges at low energy. We further discuss
quantum critical behaviors and experimental signatures of such FIQCPs in 3D double-Weyl semimetals.
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I. INTRODUCTION

The nature of a quantum phase transition is strongly dictated
by the symmetry of the order parameters and the spatial di-
mensions of the systems in question [1]. One textbook criterion
according to Landau [2,3] states that if cubic terms of order
parameters form a trivial representation of the symmetry group
of the systems, the phase transition is necessarily first-order.
This is most easily seen from the fact that the order parameter
will develop a finite jump through the phase transition if the
Landau-Ginzburg (LG) free energy includes cubic terms of
order parameters. Previous work showed that this mean-field
criterion works well in three dimensions or higher [4–6].

One may wonder whether and where phase transitions that
violate the cubic-term criterion discussed above can occur,
since deconfined quantum critical points (DQCPs) [7–16] have
provided a novel way of realizing quantum phase transitions
that violate the Landau criterion of first-order transitions
between two symmetry-incompatible phases. One intriguing
scenario violating the cubic-term criterion was provided by
strong fluctuations in low dimensions: the quantum three-state
Potts model in 1+1D (equivalently the classical three-state
Potts model in two dimensions) is an exactly solvable model
being a well-known example that violates Landau’s cubic-term
criterion [17]. Recently, a distinct and higher-dimensional sce-
nario was introduced: quantum phase transitions in fermionic
systems [18].

At zero temperature, gapless fermionic degrees of freedom
must be retained in quantum LG theory, and their presence
at quantum phase transitions may dramatically change the
nature of critical behaviors. Although modifications of critical
behaviors by gapless fermions have been studied extensively
[19–32], it was shown only recently in Ref. [18] by both
large-scale Majorana quantum Monte Carlo (QMC) [33,34]
simulations and large-N renormalization-group (RG) analysis
that gapless Dirac fermions can drive a putatively first-order
quantum phase transition between two-dimensional (2D)
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Dirac semimetals and the Kekule valence bond solids (Kekule-
VBS) into a continuous one, which is called a fermion-induced
quantum critical point (FIQCP). Such an FIQCP was also con-
firmed by a more recent RG analysis using an ε expansion [35].

When symmetry-breaking happens in a system with gapless
fermions, they experience different fates. For instance, the
Kekule-VBS order breaks translation symmetry and gaps out
Dirac fermions in the ordered phase [18,36–41]. A nodal-
nematic order, on the other hand, does not gap out nodal
fermions but shifts the positions of the nodes in k space
[31,32]. Here, we investigate if FIQCP can occur at a Z3

nodal-nematic phase transition in 3D topological double-Weyl
semimetal [42–50], where a Z3 order parameter cannot gap out
the fermions due to nonvanishing monopole charge (±2) of
double-Weyl points. Instead, when nematic orders form, each
double-Weyl point splits into two Weyl points with monopole
charge ±1 [51–57], partially breaking the rotational symmetry
C6 to C2. At such a transition, cubic terms of the order pa-
rameter are allowed in quantum LG free energy; nonetheless,
we show that the putative first-order phase transition can be
driven into a continuous one, i.e., a FIQCP. A schematic phase
diagram for the occurrence of such a FIQCP is shown in Fig. 1.

II. LATTICE MODEL

We first consider an interacting microscopic model of
double-Weyl fermions featuring Z3 nodal-nematic phase
transitions. Specifically, we construct an interacting spin-1/2
electron model on a 3D hexagonal lattice with lattice vectors
�a1 = (1,0,0), �a2 = (− 1

2 ,
√

3
2 ,0), and �a3 = (0,0,1), where the

lattice constants both in the triangular plane and along the c

axis are set to unity. The Hamiltonian is given by

H =
∑

�k
c
†
�k[dxσ

x + dyσ
y + dzσ

z]c�k + U
∑

i

c
†
i↑ci↑c

†
i↓ci↓,

(1)

where c
†
�k = (c†�k↑,c

†
�k↓) are creation operators of spin-1/2 elec-

trons in momentum space, dx(�k) = −2t1(cos k1 − 1
2 cos k2 −

1
2 cos k3), dy(�k) = −2t1(

√
3

2 cos k2 −
√

3
2 cos k3), and dz(�k) =
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FIG. 1. A schematic phase diagram for a Z3 nodal-nematic
transition from a topological double-Weyl semimetal to a nematic
phase where each double-Weyl point splits into two Weyl points.
A FIQCP emerges at zero temperature, while the transition at finite
temperature is still first-order.

−2t2(cos k1 + cos k2 + cos k3) − 2t3 cos kz + m. Here ki =
�k · �ai , tj are hopping amplitudes, m is a Zeeman coupling,
and σ j are Pauli matrices with spin indices. U is the strength
of the on-site Hubbard interactions.

It is clear that the Hamiltonian on the three-dimensional
hexagonal lattice above is invariant under the C6 rotation
along the z axis. When 6t2 − 2t3 < m < 6t2 + 2t3, there are
two double-Weyl points located at (0,0, ± K) with K =
arccos m−6t2

2t3
. The double-Weyl points at the noninteracting

limit are protected by the C6 symmetry of the hexagonal lattice.
Due to inversion symmetry, these two double-Weyl points are
located at the same energy. For the noninteracting part H0 =∑

�k c
†
�kh(�k)c�k , one obtains the following low-energy continuum

description by expanding h(�k) around two double-Weyl points:

h0(�k) = A
[(

k2
x − k2

y

)
σx + 2kxkyσ

y
] + vf 3kzσ

zτ z, (2)

where A = 3
4 t1,vf 3 = sin K , and τ is a Pauli matrix acting on

a valley basis.
The double-Weyl points are robust against weak interaction

U . However, when the repulsive U is sufficiently strong, the
system could be unstable toward nematic order, which breaks
the C6 symmetry down to C2 and causes each double-Weyl
point to split into two Weyl points. This can be heuristically

understood as the density of states around Weyl points, ρ(ε) ∝
ε2, is smaller than that around double-Weyl points, ρ(ε) ∝ ε.
The Z3 nematic order, φi(x) = 〈c†(x)σ ic(x)〉, i = 1,2, is a
doublet (two-component real boson) in the E2 representation.

To see if Z3 nematic order occurs, we perform mean-field
calculations of the phase diagram as a function of U , using
the parameters t1 = t2 = t3 = 1 (see the Appendix A for
details). For comparison, we study two cases: m = 3.9 and
4.1. Note that for the former choice of m, the spectra of
h(�k) are actually gapped and the system is an insulator, while
for the latter there are two double-Weyl points locating on
the kz axis. The Z3 order parameter as a function of U is
shown in Figs. 2(a) and 2(b), respectively. For the insulator
case (m=3.9) where there are no gapless fermions affecting
the qualitative behavior of the phase transitions, it is clear
that there is a finite jump in the order parameter around
U ≈ 6.14, clearly indicating a first-order transition, which is
expected according to the cubic-term Landau criterion. On
the other hand, for the double-Weyl fermion case (m=4.1),
where gapless fermions may qualitatively alter the nature of
the phase transitions, the Z3 nematic order also appears when
U >6.10; however, it looks dramatically different from the
first-order behavior in Fig. 2(a). Within numerical accuracy, it
looks like a continuous transition from the simple mean-field
analysis, indicating that the presence of gapless fermions
reduces the signature of the first-order transition. Note that
the mean-field analysis of the nature of the phase transition
may not capture the nature of phase transitions at strong U .
For such a Z3 nodal-nematic transition, since the low-energy
physics involves gapless fermions, one should treat quantum
fluctuations of fermions and bosons on an equal footing via
RG calculations.

III. EFFECTIVE THEORY

The effective Lagrangian near the Z3 nodal-nematic tran-
sition point consists of gapless double-Weyl fermions ψ , a
fluctuating Z3 order parameter φ, and the coupling terms
between them, i.e., L = Lψ + Lφ + Lψφ . The double-Weyl
fermion action is given by

Lψ = ψ†[−iω + h0(�k)]ψ, (3)
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FIG. 2. The Z3 nematic order is analyzed through mean-field calculations setting t1 = t2 = t3 = 1. (a) The order parameter as a function
of U for the case of m = 3.9 whose dispersion is fully gapped describing an insulator. The Z3 quantum phase transition is clearly first-order.
Part (b) shows that in a gapless system, m = 4.1.
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where ψ = (ψ+,ψ−)T , ψ± are two-component double-Weyl
fermions at the ±K valley, respectively, and ω is the Mat-
subara frequency. The dispersion of double-Weyl fermions is
anisotropic and gives rise to monopole charge ±2 in k space.
The Z3 nematic order (φ1,φ2) can be described by a complex
boson φ ≡ φ1 − iφ2. A C6 rotation simply takes φ to e−i 2π

3 φ

such that its cubic term is allowed in the effective theory. The
effective Lagrangian for the Z3 order-parameter fields is given
by

Lφ = |∂τφ|2 + v2
b⊥

2∑
i=1

|∂iφ|2 + v2
b3|∂zφ|2

+r|φ|2 + b(φ3 + φ∗3) + u|φ|4, (4)

where vb⊥ and vb3 denote the boson velocity in the xy

plane and along the z axis, respectively. r is a boson mass
that tunes the phase transition, and b,u is the strength of
the cubic and quartic terms, respectively. Nonvanishing b is
allowed in Eq. (4), putatively rendering a first-order transition
according to the Landau criterion. [Note that a Z3 phase
transition out of a topologically ordered phase [58] can
be driven by condensing fractionalized anyons whose LG
theory is qualitatively different from Eq. (4).] Moreover, the
double-Weyl fermions and the order parameter fluctuations are
coupled. The effective coupling is dictated by symmetries, and
it is given by

Lψφ = g(φψ†σ+ψ + φ∗ψ†σ−ψ), (5)

where g is a real Yukawa coupling constant and σ±
= 1

2 (σx ± iσ y).
Due to the nonvanishing monopole charge of a double-

Weyl point, breaking rotational symmetry does not gap out the
fermions. For instance, assuming 〈φ〉 = m

gA
> 0 in the ordered

phase, the dispersion of fermions is then given by

Ek = ±
√

A2
[(

k2
x − k2

y + m
)2 + 4k2

xk
2
y

] + v2
f 3k

2
z , (6)

from which one can deduce that the double-Weyl point at
(0,0,K) is split into two Weyl points located at �k = (0, ±√

m,K) and similarly for the other double-Weyl point at
(0,0, − K).

IV. RENORMALIZATION-GROUP ANALYSIS

We now present strong evidence of a FIQCP at the Z3 nodal-
nematic transition in double-Weyl semimetals by performing
standard RG analysis in which fermions and bosons are treated
on an equal footing. The RG procedure is to integrate out fast
modes to generate RG equations [1,59]. In calculating the RG
equation, we generalize the fermion to N flavors (N denotes
the number of the four-component double-Weyl fermions).

A subtlety arises due to anisotropic dispersion of double-
Weyl fermions, i.e., the scaling properties of orthogonal spatial
directions are different [44,45,60,61]. Here, we assume the
scaling dimension for the three momenta and the frequency to
be [kz] = 1, [kx,y] = z1, and [ω] = z without loss of generality,
where [· · · ] denotes the scaling dimension. The values of
z, z1, as well as anomalous dimensions are determined by

renormalization of the kinetic part of the action, i.e.,

δS(1) =
∫

d4p

(2π )4
[ψ†(p)
(p)ψ(p) + φ∗(p)�(p)φ(p)],

(7)

where 
 and � are fermion and boson self-energies resulting
from integrating out the fast modes in the momentum shells
(the momentum shell is chosen to be an “infinite cylinder”
with radius �⊥; see the Appendix C for details).

From Eq. (7), we can obtain the RG equations of velocities.
To simplify the analysis, we assume the velocity difference
between vb3 and vf 3 is small, and we let vb3

vf 3
= 1 + λ, with

|λ| 
 1. The RG equation for λ is given by dλ
dl

= −�λλ, where
l > 0 is the flow parameter, and �λ is a positive constant
independent of λ (see the Appendix C for details). As a result,
λ = 0 is a stable fixed point. In other words, the boson and
fermion velocity along the z axis, vb3 and vf 3, will flow to the
same value in low energy for small λ. Thus in the following we
set vf 3 = vb3 = v for simplicity. And the RG flow of velocity v

is controlled by the dynamical critical exponent z, i.e., d log v

dl
=

z − 1. Since velocities are physical observables, they must stay
finite, and this requires z = 1 at the fixed point.

For later simplicity in expressing the RG equations, we
introduce four dimensionless coupling constants (not to be
confused with critical exponents):

β = b2

π2v4
b⊥v�2

⊥
, γ = g2

24π2A2v�2
⊥

, δ = u

π2v2
b⊥v

, (8)

corresponding to three running coupling constants, i.e., b, g,
and u in the interacting Lagrangian, respectively, and α =
A�⊥
vb⊥

. Then the RG equation for boson velocity in the xy plane
vb⊥ reads (see the Appendix C for details)

d log vb⊥
dl

= 1 − z1 − 3

8
β + N (2α2 − 1)γ. (9)

In a similar way, z1 can also be determined at the fixed point
from the RG equation for boson velocity in the xy plane,
z1 = 1 − 3

8β + N (2α2 − 1)γ . Moreover, the anomalous di-
mensions for fermions and bosons are also obtained from
Eq. (7): ηψ = 3(1−α2+α2log α2)

2(1−α2)2 α2γ and ηφ = Nγ + 3
16β.

After getting the expressions of dynamical exponents z’s
and anomalous dimensions η’s near a physical fixed point, we
are now in a position to analyze the RG equations of dimen-
sionless coupling constants resulting from renormalization of
the interaction part in the action, i.e.,

δS(2) =
∫

d4x[�φ3φ3 + �φ∗3φ∗3 + �|φ|4 |φ|4]. (10)

These vertices �’s are evaluated in the Appendix C. Note
that the vertex between the fermion and the boson is not
renormalized. After obtaining the RG equations for various
coupling constants, such as g, b, and u, we convert the RG
equations to that of dimensionless coupling constants.

We state the main results here; those readers who want to
know the full RG equations should refer to the Appendix C
for details. There are two fixed points with both γ � 0 and
δ � 0: one is the usual Gaussian fixed point and the other is
a nontrivial fixed point given by (α∗,β∗,γ ∗,δ∗) = (0,0, 1

2N
,0),

as shown in Fig. 3, where the RG flows in the (β,γ ) plane
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FIG. 3. The flow diagram β-γ for the Z3 transition in double-
Weyl semimetals for the N = 1 case. The arrowed curves indicate
the running coupling constants as a function of energy. The red and
black circles located at (0,1/2) and (0,0) indicate a stable fixed point
and a Gaussian fixed point, respectively. The red one is identified as
a fermion-induced quantum critical point. At these fixed point, one
gets α∗ = δ∗ = 0.

are drawn. N is the number of four-component double-Weyl
fermions, and N = 1 corresponds to the lattice system we
introduced before. As indicated in Fig. 3, the Gaussian fixed
point at the origin is unstable, while the fixed point at
(β∗,γ ∗) = (0, 1

2N
) is stable.

Note that α approximately captures the ratio of kinetic
energy between fermions and bosons in the xy plane. When
the system approaches the nematic transition from the disor-
dered phase, fermion dispersion along the splitting direction
becomes soft, and one can approximate the RG equations to
the lowest order of α [31,32]. To further justify this, the RG
equations near α = 0 at the stable fixed point read

dα

dl
= −

(
2 + 3

2N

)
α3, (11)

which shows that α is irrelevant at this fixed point. Under this
approximation, one gets simplified RG equations to the lowest
order of α near the fixed point,

dβ

dl
= (2 − 4Nγ )β − 3

8
β2, (12)

dγ

dl
= (2 − 4Nγ )γ, (13)

dδ

dl
= −

(
2Nγ + 5

4
δ

)
δ. (14)

Apparently, a Gaussian fixed point is one solution of the
RG equations shown above. However, it is unstable against
the perturbations along the β and γ directions. There is a
stable fixed point, as already indicated in the flow diagram
in Fig. 3, at (γ ∗,β∗,δ∗) = ( 1

2N
,0,0). The eigenvalues of the

stability matrix are (0, − 2, − 1), where the zero eigenvalue
indicates a marginal direction. Indeed, one finds that the
deviation �β along the β direction is marginally irrelevant,
i.e., d�β

dl
= − 3

8 (�β)2. Note that β � 0 by definition. Thus,
the nontrivial fixed point is irrelevant under perturbations
along the γ and α directions and marginally irrelevant under

perturbations along β direction. A stable fixed point at the
critical surface corresponds to a genuine continuous critical
point. At this nontrivial stable fixed point, one finds that
b2 ∝ β = 0, i.e., the cubic terms of the Z3 order parameter
are irrelevant. Consequently, this fixed point corresponds to a
continuous phase transition, namely a FIQCP. Moreover, the
system has an emergent U (1) symmetry (the rotation of the
system along the z axis) at the FIQCP.

The anomalous dimensions for fermions and bosons at the
nontrivial fixed point are given by ηψ = 0 and ηφ = 1

2 , yielding
the critical exponent η = 2ηφ = 1. Though the FIQCP is dis-
tinguished with the Gaussian fixed point, the vanishing fermion
anomalous dimension implies that the quasiparticle picture
is still valid, in contrast to the FIQCP in two-dimensional
Dirac fermions [18]. Due to the validation of the quasiparticle,
one expects that the critical exponent ν is given by the
naive scaling argument ν−1 = 2 + 2z1 − 2[φ] = 1, where
z1 = 1 − 3

8β∗ + N (2α∗2 − 1)γ ∗ = 1
2 , and [φ] = 1

2 + ηφ = 1
is the scaling dimension of a boson field at this fixed point.

We would like to emphasize that it is the presence of
gapless fermions that dramatically changes the nature of the Z3

nematic phase transition. If we naively turn off fermions, i.e.,
set N = 0, then γ disappears from the RG equations of β and
γ . Now the fixed point with β = 0 is strongly relevant along
β, which would render a first-order transition, as expected
from the Landau criterion. Consequently, we expect that there
should exist a critical value Nc such that a FIQCP occurs for
N > Nc and a first-order transition for N < Nc. The current
one-loop RG calculation shows that FIQCP occurs for any
finite value of N , and a more accurate value of Nc may be
obtained from higher loop RG analysis in the future.

There is a heuristic argument for the occurrence of such
FIQCP at large N . Integrating out gapless fermions can result
in a nonanalytic term, e.g., |φ|3, of the order parameter,
and this term may overwhelm the original cubic terms at
the phase transition and drive the first-order transition into
a continuous one. To show this explicitly, we implement a
simplified method by integrating out fermions all at once and
then expanding the effective free energy as a function of the
order parameter. We find that the effective free energy includes
a nonanalytic term [62] (see the Appendix B for details):
Fnon[φ] = Nb′|φ|3, where N is the flavor of four-component
double-Weyl fermions and b′ is a positive constant depending
on the momentum cutoff. If N >

2|b|
b′ , the cubic term in the free

energy has a bound Nb′|φ|3 + b(φ3 + φ∗3) � (Nb′ + 2b)|φ|3,
and the minimal energy is achieved from φ = 0 to nonzero
continuously through phase transition. A continuous phase
transition can occur at a putative first-order transition as long as
the flavors of fermions N is sufficiently large, consistent with
RG calculations. Note that the mean-field analysis predicted a
wrong critical exponent ν = 1/2, which is quite different from
the RG result of ν = 1 because the former cannot fully capture
quantum fluctuations.

V. CONCLUSIONS AND DISCUSSIONS

It is worth pointing out again that the fluctuations of
fermions at zero temperature play an essential role in a FIQCP.
The three-state Potts model is a neat example featuring a Z3

transition without gapless fermion modes, where the transition
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is shown to be first-order in 2+1D and higher dimensions
[5,63]. However, if the transition involves large enough gapless
fermions, a FIQCP may occur. The scaling dimension of the
order-parameter field is often enhanced by fermions. Indeed,
[φ] = 1 at the stable fixed point corresponding to the Z3

nodal-nematic transition in double-Weyl semimetals is larger
than the nominal scaling dimension of the order-parameter
assigned for the first-order Z3 transitions [64]. Moreover, it is
consistent with the rigorous lower bound of scaling dimension
of order-parameter fields, [φ] > 0.565, required to induce an
emergent U (1) symmetry from the Z3 symmetry based on
recent conformal bootstrap calculations [65]. Large anomalous
dimension is also a typical feature of DQCP [7,8,66], where
the deconfined spinons play a similar role to that of gapless
electrons here.

In conclusion, we construct a 3D lattice model hosting
topological double-Weyl semimetal. By tuning on-site Hub-
bard interactions, the system undergoes a quantum phase
transition into a Z3 nodal nematic phase. The phase transition
is analyzed through a mean-field calculation: it is first-order
without gapless fermions in the system, while weakly first-
order or continuous with the presence of gapless fermions.
To distinguish the nature of the transition in the presence of
gapless fermions, we further present a RG study of the Z3

nodal-nematic transition, where the low-energy effective-field
theory contains cubic terms of order parameters. A marginal
stable nontrivial fixed point is identified as a FIQCP, at which
a marginal Fermi liquid theory is expected. This novel FIQCP
may be observed in the future in candidate double-Weyl
materials such as the one synthesized by stacking Chern
insulators [67], and it could lead to a united understanding
of quantum critical phenomena.
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APPENDIX A: THE MEAN-FIELD ANALYSIS

The order parameters for a nematic phase are given by
φi(x) = 〈c†(x)σ ic(x)〉. To explore the phase diagram, we
set t1 = t2 = t3 = 1 for m = 3.9 and 4.1. To check that the
two-dimensional order parameter serves as an E2 represen-
tation, (φ1,φ2) = (|φ| cos θ,|φ| sin θ ), we fix the magnitude
of nematic order φ and plot the ground-state energy as a
function of θ , as shown in Fig. 4 . There are three degenerate
ground states consistent with the transformation law of the E2

representation, φ → ei2π/3φ.
We also plot the ground-state energy as a function of order

parameter across the transition. For the insulating system m =
3.9, the transition from an insulator, in which two double-Weyl
points were annihilated, to a nematic insulator is first-order.
As shown in Figs. 5(a) and 5(b), the ground-state energy as a
function of the order parameter shows a typical feature, i.e.,
the presence of cubic terms in free energy, consistent with
the Landau criterion. For a semimetallic system m = 4.1, the

1 2 3 4 5 6

−0.0039

−0.0038

−0.0037

−0.0036

FIG. 4. The ground-state energy in an ordered phase for m =
6 and U = 7.8 as a function of θ , where the magnitude is fixed,
|φ| = 0.2.

signature of the first-order transition is strongly reduced by
gapless fermions, as shown in Figs. 5(c) and 5(d). Note that the
energy plotted in Figs. 5(c) and 5(d) is one order of magnitude
smaller than that of Figs. 5(a) and 5(b). Though it looks like
a first-order transition, we show via RG calculations that is
should be continuous.

APPENDIX B: NONANALYTIC TERMS OF ORDER
PARAMETER IN DOUBLE-WEYL SEMIMETALS

Here we show the nonanalytic terms arising by integrating
out fermions explicitly. The zero temperature free energy in
the presence of a nonzero order parameter reads

F [φ] ∝ −2N

∫
d3p

√(
p2

x − p2
y + φ

)2 + 4p2
xp

2
y + p2

z .

(B1)

First we make a coordinate transformation, px =√
q sin θ cos ϕ, py = √

q sin θ sin ϕ, and pz = q cos θ , where
q is a positive variable. This transformation results in a
nontrivial Jacobian, | ∂p

∂q
| = q

2 . After that, we get

F [φ] = − 1

(2π )3

∫ π

0
dθ

∫ 2π

0
dϕ

×
∫ π

0
dq

q

2

√
q2 + 2qφ sin θ cos 2ϕ + φ2.

(B2)

The integration over q is evaluated first, and this results in a
complicated integral. By expanding in the order of φ, we get
the nonanalytic terms

F [φ] = 1

(2π )3

∫
dθ dϕ

[
5 + 3 cos 2θ − 6 cos 4ϕ sin2 θ

48
|φ|3

−cos 2ϕ(3 + cos 2θ − 2 cos 4ϕ sin2 θ )

16

× log(|φ| + cos 2ϕ sin θφ)φ3

]
. (B3)

The integration can be evaluated directly, F [φ] = 1
18π2 |φ|3.
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FIG. 5. Parts (a)–(c) show the ground-state energy as a function of order parameter in a transition from an insulator (m = 3.9) to a nematic
insulator. Parts (d)–(f) show the ground-state energy as a function of order parameter across the transition from a double-Weyl semimetal
(m = 4.1) to a nematic Weyl semimetal.

APPENDIX C: DETAILS FOR THE RENORMALIZATION
EQUATIONS AT THE Z3 NODAL NEMATIC TRANSITION

OF DOUBLE-WEYL SEMIMETALS

The Feynman diagram Fig. 6(c) gives the fermion self-
energy,


(p) = −1

2
× 2g2

∫
k

[�+S(k)�− + �−S(k)�+]D(p − k)

= g2l

v2
b⊥vf 3

[Fω(−iωp) + Fzvf 3pz�
3], (C1)

where �± = σ±, �3 = σ zτ z, k⊥ =
√

k2
x + k2

y ,∫
k

≡ ∫ ∞
−∞

dωk

2π

∫
d3k

(2π)3 , and S(k) and D(k) are fermion
and boson propagators, respectively. Note that in the
calculation, integrations of ωk and kz are not constrained,
while those of momentum kx,y are constrained in the
momentum shell, i.e., �⊥e−l < k⊥ < �⊥, where �⊥ is a
momentum cutoff in the kxky plane and l > 0 is the flow
parameter. During the evaluation of Feynman diagrams, we
have made a variable transformation, i.e., kx,y = vb⊥

A
qx,y ,

kz = v2
b⊥

Avf 3
qz, and ωk = v2

b⊥
A

ωq , and it is easy to check that

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. One-loop Feynman diagrams. The arrowed solid line indicates the fermion propagator, and the dashed line indicates the boson
propagator.
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(ωq,�q) are dimensionless variables. Fω and Fz are given by

Fω =
∫

q

2ω2
q

l
(
ω2

q + q4
⊥ + q2

z

)(
ω2

q + q2
⊥ + v2

b3

v2
f 3

q2
z

)2
= 1 − α2 + α2 log α2

8π2(1 − α2)2
+ O(λ), (C2)

Fz = v2
b3

v2
f 3

∫
q

2q2
z

l
(
ω2

q + q4
⊥ + q2

z

)(
ω2

q + q2
⊥ + v2

b3

v2
f 3

q2
z

)2
= 1 − α2 + α2 log α2

8π2(1 − α2)2
+ O(λ), (C3)

where q⊥ =
√

q2
x + q2

y and
∫
q

= ∫ ∞
−∞

dωq

2π

∫ ∞
−∞

dqz

2π

∫ α

αe−l

d2q

(2π)2 , α = A�⊥
vb⊥

is the cutoff in momentum q⊥, and λ is a function of vb3
vf 3

,
which will be defined below.

The boson self-energy is given by the Feynman diagrams in Figs. 6(a) and 6(b). Evaluation of the Feynman diagram in
Fig. 6(a) gives

�(1)(p) = g2

2

∫
k

Tr[�+S(k + p)�−S(k) + �−S(k + p)�+S(k)]

= 4Ng2l

v2
b⊥vf 3

[
G(1)

ω ω2
p + G

(1)
⊥ v2

b⊥p2
⊥ + G(1)

z v2
b3p

2
z

]
, (C4)

where Tr is the trace in � matrices and flavor space, and Tr1 = 4N , where we have also promoted the flavors of four-component
double-Weyl fermions to be N . Evaluation of the Feynman diagram Fig. 6(b) gives

�(2)(p) = −1

2
× 36b2

∫
k

D(k)D(k + p) = b2A2l

v6
b⊥vf 3

[
G(2)

ω ω2
p+G

(2)
⊥ v2

b⊥p2
⊥+G(2)

z v2
b3p

2
z

]
. (C5)

The boson self-energy is �(p) = �(1)(p) + �(2)(p). Those G
(1)
i are given by

G(1)
ω = 1

4l

∫
q

[
6ω2

q + 2q2
z(

ω2
q + q4

⊥ + q2
z

)3 − 8ω2
q

(
q2

z + ω2
q

)
(
ω2

q + q4
⊥ + q2

z

)4

]
= 1

48π2α2
, (C6)

G
(1)
⊥ = 1

4l

∫
q

[
8q2

⊥
(
ω2

q + q2
z

)
(
ω2

q + q4
⊥ + q2

z

)3 − 16q6
⊥
(
q2

z + ω2
q

)
(
ω2

q + q4
⊥ + q2

z

)4

]
= 1

24π2
, (C7)

G(1)
z = 1

4l

∫
q

[
6q2

z + 2ω2
q(

ω2
q + q4

⊥ + q2
z

)3 − 8q2
z

(
q2

z + ω2
q

)
(
ω2

q + q4
⊥ + q2

z

)4

]
= 1

48π2α2
, (C8)

and G
(2)
i are given by

G(2)
ω = −9

l

∫
q

[
8ω2

q(
ω2

q + q2
⊥ + v2

b3

v2
f 3

q2
z

)4
− 2(

ω2
q + q2

⊥ + v2
b3

v2
f 3

q2
z

)3

]
= 3

8π2α2
+ O(λ), (C9)

G
(2)
⊥ = −9

l

∫
q

[
4q2

⊥(
ω2

q + q2
⊥ + v2

b3

v2
f 3

q2
z

)4
− 2(

ω2
q + q2

⊥ + v2
b3

v2
f 3

q2
z

)3

]
= − 3

8π2α2
+ O(λ), (C10)

G(2)
z = −9

l

∫
q

[ 8 v2
b3

v2
f 3

q2
z(

ω2
q + q2

⊥ + v2
b3

v2
f 3

q2
z

)4
− 2(

ω2
q + q2

⊥ + v2
b3

v2
f 3

q2
z

)3

]
= 3

8π2α2
+ O(λ). (C11)

The full set of RG equations for the various constants appearing in the kinetic energy part are given by

d log A

dl
= z − 2z1 − g2

v2
b⊥vf 3

Fω, (C12)

d log vb⊥
dl

= z − z1 + Tr1g2

2v2
b⊥vf 3

(
G

(1)
⊥ − G(1)

ω

) + b2A2

2v6
b⊥vf 3

(
G

(2)
⊥ − G(2)

ω

)
, (C13)

d log vf 3

dl
= z − 1 + g2

v2
b⊥vf 3

(Fz − Fω), (C14)

d log vb3

dl
= z − 1 + Tr1g2

2v2
b⊥vf 3

(
G(1)

z − G(1)
ω

) + b2A2

2v6
b⊥vf 3

(
G(2)

z − G(2)
ω

)
. (C15)
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From the above RG equations, we have

d log(vb3/vf 3)

dl
= − g2

v2
b⊥vf 3

(Fz − Fω) + b2A2

2v6
b⊥vf 3

(
G(2)

z − G(2)
ω

)
. (C16)

Setting vb3
vf 3

= 1 + λ, and assuming λ 
 1, a simple manipulation leads to dλ
dl

= −�λλ, where �λ ≡ g2

2v2
b⊥vf 3

H1 + b2A2

2v6
b⊥vf 3

H2, with

H1 = 1

l

∫
q

4q2
z

(
q2

⊥ + 3ω2
q − q2

z

)
(
ω2

q + q2
z + q2

⊥
)3(

ω2
q + q2

z + q4
⊥
) = 1

l

∫
dqxdqy

(2π )2

∫ ∞

0

q0dq0

2π

2q2
0

(
q2

⊥ + q2
0

)
(
q2

0 + q2
⊥
)3(

q2
0 + q4

⊥
) , (C17)

H2 = 1

l

∫
q

144q2
z

(
q2

⊥ + 5ω2
q − 3q2

z

)
(
ω2

q + q2
z + q2

⊥
)5

= 1

l

∫
dqxdqy

(2π )2

∫ ∞

0

q0dq0

2π

72q2
0

(
q2

⊥ + q2
0

)
(
q2

0 + q2
⊥
)5

, (C18)

where we use the rotational symmetry between ωq and qz in the above integration to deduce that both H1 and H2 are positive. As
a consequence, λ = 0 is a stable fixed point. The RG equation for boson velocity in the xy plane vb⊥ reads

d log vb⊥
dl

= 1 − z1 − 3

8
β + N (2α2 − 1)γ, (C19)

where α = A�⊥
vb⊥

is also a dimensionless constant. To maintain the velocity, one gets z1 = 1 − 3
8β + N (2α2 − 1)γ at the fixed

point.
Next, we calculate the remaining Feynman diagrams corresponding to coupling constant renormalizations. The Feynman

diagram in Fig. 6(d) gives

�φ3 = �φ∗3 = − 3l

4π2

bu

v2
b⊥v

. (C20)

The Feynman diagrams in Figs. 6(e)–6(h) give

�|φ|4 = − 5l

4π2

u2

v2
b⊥v

+ 9l

π2

ub2

v4
b⊥v�2

⊥
+ Nl

96π2

g4

A2v�2
⊥

− 27l

2π2

b4

v6
b⊥v�4

⊥
. (C21)

Introducing the dimensionless coupling constants, namely β = b2

π2v4
b⊥v�2

⊥
, γ = g2

24π2A2v�2
⊥

, and δ = u

π2v2
b⊥v

, the RG equations read

dα

dl
=

(
−1 + 3

4
β + 2Nγ

)
α − 4Nγα3 + 3γ (α2 − 1 − α2 log α2)α3

(α2 − 1)2
, (C22)

dβ

dl
=

(
2 − 4Nγ − 3

2
δ

)
β − 3

8
β2 − 4Nα2γ, (C23)

dγ

dl
= 2γ − 4Nγ − 9

8
βγ + 4Nα2γ 2, (C24)

dδ

dl
= (9β − 2Nγ )δ − 5

4
δ2 − 27

2
β2 − 4Nα2γ δ + 6Nα2γ 2. (C25)

This RG equations can be solved by a stable fixed point (α∗,β∗,γ ∗,δ∗) = (0,0, 1
2N

,0). By expanding the RG equations near
α = 0, one gets

dα

dl
= −

(
2 + 3

2N

)
α3. (C26)

The above RG equation shows that α = 0 is marginally stable at this fixed point, and as a result we expand the RG equations in
the order of α, as shown in the main text.
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