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Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a
three-orbital Hubbard model in the (t2g)4 sector and in one dimension. Fixing the Hund coupling to a robust
value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and
spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently
reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate
many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott
phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find
a nonmagnetic insulator with an effective angular momentum 〈(Jeff )2〉 �= 0 near the excitonic phase, smoothly
connected to the 〈(Jeff )2〉 = 0 regime. We also provide a list of quasi-one-dimensional materials where the physics
discussed in this paper could be realized.
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I. INTRODUCTION

The study of iridates continues attracting considerable
attention. In layered materials such as Sr2IrO4 and Ca2IrO4,
involving 5d electrons, the Hubbard repulsion is moderate as
compared to 3d electrons because the size of the associated
wave functions is larger for the 5d sector [1–8]. In addition,
as we move down in the periodic table the strength of the
spin-orbit coupling (SOC) increases as Z4, with Z as the
atomic number, and it can become of order 0.4 eV for some
4d or 5d materials. As a consequence, iridates provide an
interesting playground where the Hubbard repulsion and SOC
are of similar magnitudes [9]. In these iridates the t2g orbitals
split into a total angular momentum (half-filled) doublet
j = 1/2 and a (fully occupied) quartet j = 3/2 [10].

More recently, interest also developed in other transition-
metal oxides with octahedron or distorted octahedron crystal-
field splittings leading to (t2g)4 ions [10–24]. When the
Hubbard U and Hund JH couplings are large it is expected
that the system develops S = 1 states, while increasing
the SOC λ should lead to states with an effective angular
momentum zero. Thus, the next obvious step is to understand
the phases in these systems in the presence of hopping.
Experiments on these materials have shown contrasting results
thus far. For example, the magnetic properties of Sr2YIrO6

[19] suggest exotic antiferromagnetic (AFM) ordering coming
from excitonic condensation, while other experiments [20]
favor a nonmagnetic ground state. Double perovskites such as
Ba2YIrO6 are also challenging to study [21,22]. This situation
demands a comprehensive and accurate theoretical study of
the combined effects of U and λ in the (t2g)4 sector.

Alongside the iridates, progress has been made on iron-
based superconductors in recent years [25–27]. While initially
the expectation was that weak coupling approximations and
Fermi surface nesting between hole and electron pockets could
be sufficient to understand these compounds, recent efforts

have highlighted the importance of Hubbard interactions of
at least intermediate value between weak and strong coupling
[28]. For example, there are materials that do not have hole
pockets, yet they still superconduct [29]. Moreover, via angle-
resolved photoemission spectroscopy (ARPES) it has been
argued [30] that a SOC of order 20 meV, much smaller than in
iridates, may still influence the features of the Fermi level and
thus affect superconducting properties.

Considering all these challenging fields of research, and
their common focus on intermediate range Hubbard U and
spin-orbit coupling λ interactions, in this publication employ-
ing numerically exact computational techniques we will study
a model of interacting electrons in the simultaneous presence
of nonzero U , λ, and JH . In particular, we will analyze a
multiorbital model defined on a one-dimensional geometry.

Our study is conceptually generic but for simplicity will
focus on a previously used three-orbital Hubbard model with
bands that resemble layered iron superconductors, containing
hole and electron pockets. In the absence of spin-orbit
coupling, this model was studied before via the density matrix
renormalization group (DMRG) technique and a rich phase
diagram was observed, including an orbital-selective Mott
phase (OSMP), where two orbitals are partially filled and
thus they are metallic, while the other orbital is half-filled
and behaves like a Mott insulator [31–34]. Our main focus is
to analyze how this phase diagram is modified after including
atomic spin-orbit effects. The generic analysis reported here
is important for three reasons:

(i) By constructing the phase diagram in one dimension
including the combined effects of the Hubbard interaction U

as well as the spin-orbit coupling λ with a robust computational
technique, we can address the accuracy of previous approx-
imate studies performed in higher dimensions. For example,
recently, dynamical mean-field theory (DMFT) calculations
were performed [35–37] on a three-orbital Hubbard model
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with degenerate t2g orbitals and four electrons per site. Their
analysis showed the presence in the phase diagram of an
interesting excitonic condensate (to be described below) and
a nonmagnetic insulator with zero effective total angular
momentum. Our accurate numerical results on chains using
noncubic t2g bands confirm most of the DMFT predictions,
including the existence of an excitonic condensate, thus
suggesting that studies in different dimensions may lead to
qualitatively similar results.

(ii) There are real materials with quasi-one-dimensional
characteristics where spin-orbit effects are expected to be im-
portant. For example, recently, single crystals of Ba5AlIr2O11

that contain dimer chains were experimentally studied [38].
This is a Mott insulator with a subtle structural transition
at TS = 210 K and a magnetic transition at much lower
temperatures. A novel and intriguing magnetic state was
reported, which is neither S = 3/2 nor J = 1/2, but instead
intermediate between them. Other examples of spin-chain
4d- and 5d-based compounds are Sr5Rh4O12, Ca5Ir3O12, and
Ca4IrO6 [39]. These are insulators characterized by partial
AFM order at low temperatures. Sr3CuIrO6 is also a quasi-
one-dimensional material where IrO6 octahedra are linked by
spin-1/2 Cu ions along one direction [40]. In this compound
intersite hopping is suppressed by the geometry of the system
locating Sr3CuIrO6 in the strongly localized regime, with a
noncubic crystal field comparable in strength to the spin-
orbit coupling. Other examples of interesting one-dimensional
systems where our results may be of relevance are BaIrO3

[41,42], CaIrO3 [43], Sr3MIrO6 (M = Ni, Cu, Zn) [44], lead
iodides [45], and alkaline-earth palladates [46].

(iii) As already explained, recent ARPES measurements
reported a sizable spin-orbit splitting in all the main members
of the iron-based superconductors family [30]. This spin-orbit
coupling affects the low-energy electronic structure and,
thus, may have implications for superconductivity. While
the magnitude of λ for iron pnictides and chalcogenides
is substantially smaller than for iridates, it is conceptually
interesting to investigate what kind of phases could be found
if members of the iron superconductors family would have a
larger λ.

Spin-orbit effects are often discarded in the literature,
usually by hand-waving arguments, and the models are largely
simplified as a result. However, realistic detailed studies
involving spin-orbit couplings comparable to other small
energies of interest (such as the magnetic superexchange J ) are
lacking. Moreover, it is experimentally challenging to deter-
mine the precise magnitude of spin-orbit contributions. On the
ab initio side of theory, often these spin-orbit contributions are
not considered if expected to be smaller than systematic errors
in the approach, typically of order 0.5 eV. As a consequence,
an evaluation of the effects of spin-orbit corrections on the
results of specific models could determine if refined ab initio
or measurements are required.

The organization of this paper is as follows. In Sec. II, the
model used and the computational methodology are presented.
In Sec. III, the main results, particularly the phase diagram
varying U and λ, are shown. In particular, we address three
regimes: weak, intermediate, and strong Hubbard interaction
U . In Sec. IV, we discuss the results and present our
conclusions.

II. MODEL AND METHOD

In this study we have used a one-dimensional three-orbital
Hubbard model. The Hamiltonian contains a tight-binding
term, an on-site Hubbard interaction, and a spin-orbit cou-
pling: H = HK + Hint + HSOC. The electronic kinetic energy
component is

HK = −
∑

i,σ,γ,γ ′
tγ γ ′(c†iσγ ci+1σγ ′ + H.c.) +

∑
i,σ,γ

�γ niσγ . (1)

The hopping amplitudes tγ γ ′ are defined in orbital space and
they connect the nearest-neighbor lattice sites i and i + 1,
with the specific values (in eV units) t00 = t11 = −0.5, t22 =
−0.15, and tγ γ

′ = 0 if γ �= γ
′
. The total bandwidth is W =

4.33 |t00|. The above-mentioned orbitals zero, one, and two
can be visualized as representing the canonical dyz, dxz, and
dxy orbitals, respectively. The orbital-dependent crystal-field
splitting is denoted by �γ , with �0 = −0.05, �1 = −0.05,
and �2 = 0.8 (also in eV units). In our investigation we will
fix the electronic density to four electrons per site, n = 4/3.
The band structure of this model qualitatively resembles that
of iron-based superconductors, i.e., hole and electron pockets
centered at wave vectors q = 0 and π , respectively. A very
similar band structure was used in our previous studies for
a three-orbital Hubbard model [31–34], where OSMP was
analyzed. This previous work was carried out in the absence
of spin-orbit interactions, and our main focus is to analyze the
effects of this additional term in the model. The Hubbard
portion of the Hamiltonian includes the following on-site
components in the standard notation

Hint = U
∑
i,γ

ni↑γ ni↓γ + (
U ′ − JH/2

) ∑
i,γ<γ ′

niγ niγ ′

− 2JH

∑
i,γ<γ ′

Siγ · Siγ ′ + JH

∑
i,γ<γ ′

(
P

†
iγ Piγ ′ + H.c.

)
.

(2)

In this expression the operator Siγ = 1
2

∑
α,β c

†
iαγ σαβciβγ is the

total spin at orbital γ and lattice site i, and niγ is the electronic
density at each orbital. The first two terms describe the
intraorbital and interorbital electronic repulsion, respectively.
The third term contains the Hund coupling that favors the
ferromagnetic alignment of the spins at different orbitals; the
fourth term is the pair hopping with Piγ = ci↓γ ci↑γ as the pair
operator. We use the standard relation U ′ = U − 2JH based on
rotational invariance, and we fix JH = U/4 because this value
is widely accepted in iron superconductors to be realistic [28].
For these reasons, only U and λ are free parameters in our
study. Future work can analyze in more detail the influence of
varying the Hund coupling as well as other parameters in the
model.

The SOC term is

HSOC = λ
∑

i,γ,γ
′
,σ,σ

′
〈γ |Li |γ ′ 〉 · 〈σ |Si |σ ′ 〉c†iσγ ciσ

′
γ

′ , (3)

where λ is the SOC coupling strength, as already explained.
Because of the presence of the SOC term the total spin
along the z axis, Sz, is no longer a good quantum number;
hence, we cannot target specific Sz sectors in our numerical
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DMRG calculation. To reduce the computational cost, we
have instead selected the parameters contained in HK such
that [H,J eff

z ] = 0 where Jeff = ∑
i(Si − Li) . Note that for

arbitrary values of the hopping amplitudes and crystal fields,
J eff

z is also not a good quantum number as discussed in the
Appendix A. We then target subspaces with a fixed total
J eff

z = ∑
i(J

eff
z )i for the system. The SOC term is diagonalized

in the j eff basis, where j eff is the quantum number associated
with Jeff (to avoid complications in the notation, as when j eff

should appear as subindex, sometimes this quantum number
will be denoted simply by j ). m is the projection along the
z axis namely the quantum number of J eff

z . The fact that
the good quantum numbers for the SOC term are associated
with the effective angular momentum, instead of the total
angular momentum (J = S + L), is a consequence of the
t2g- p equivalence discussed in Ref. [47]. The t2g subspace
of the d orbitals (l = 2 for a complete d-orbital set) has
〈L2〉 = 2 for a single electron, hence t2g is isomorphic to the
l = 1 space (i.e., the p orbitals) under the following map-
ping: |1〉p ≡ −i| − 1〉d , | − 1〉p ≡ i|1〉d , |0〉p ≡ |xy〉d , and
Ll=1 ≡ −Lt2g .

The transformation between the t2g orbitals and the j eff

basis is given by (dropping site i index)

⎡
⎣

a 3
2 , 3s

2

a 3
2 ,− s

2

a 1
2 ,− s

2

⎤
⎦ =

⎡
⎢⎣

is√
2

1√
2

0
s√
6

i√
6

2√
6−s√

3
−i√

3
1√
3

⎤
⎥⎦

⎡
⎣

cσyz

cσxz

cσ̄xy

⎤
⎦, (4)

where s is 1(−1) when σ is ↑ (↓) and σ̄ = −σ . The HSOC

term in the j eff basis becomes

HSOC =
∑

i

λ

2

( − a
†
i, 3

2 , 3
2
a

i, 3
2 , 3

2
− a

†
i, 3

2 ,− 1
2
a

i, 3
2 ,− 1

2

− a
†
i, 3

2 ,− 3
2
a

i, 3
2 ,− 3

2
− a

†
i, 3

2 , 1
2
a

i, 3
2 , 1

2

+ 2a
†
i, 1

2 , 1
2
a

i, 1
2 , 1

2
+ 2a

†
i, 1

2 ,− 1
2
a

i, 1
2 ,− 1

2

)
. (5)

The SOC component commutes with (Jeff)
2
. As a conse-

quence, in the HSOC term there is fourfold (twofold) degen-
eracy in the j eff = 3/2 (1/2) bands. However, the fourfold
degeneracy of the j eff = 3/2 sector breaks into a pair of
twofold Kramer degeneracies due to the presence of the
noncubic t2g-band structure used in our model. This can be
understood by analyzing the HK term in the (j eff,m) basis.
In Fig. 1 we show explicitly the connections contained in
HK between the t2g states and the corresponding connections
between (j eff,m) states, after imposing the constraints on the
hopping and crystal-field parameters (see Appendix A). We
have noticed that the noncubic nature of the t2g states (i.e., the
nondegeneracy of the dxy with the {dxz, dyz} states, conse-
quence of the tetragonal type t2g bands) leads to hybridization
between (j eff = 1/2,m = ±1/2) and (j eff = 3/2,m = ±1/2)
states. This hybridization breaks the fourfold degeneracy of
the j eff = 3/2 states and also leads to the formation of new
bands in which HK + HSOC is diagonalized.

After using the inverse transformation of Eq. (4) in the
tight-binding term, we diagonalized the HK + HSOC together

FIG. 1. In (a) we show the connections between t2g orbitals using
dashed lines, while in (b) the dashed lines represent the nonzero
connections present in the (j eff,m) basis if we use the proper hopping
and crystal-field parameters satisfying the constraints described in
Appendix A.

to obtain the following bands

HK + HSOC =
∑
k,α,s

Eα(k)ã†
k,α,s ãk,α,s , (6)

where s ∈ {1,−1} and α ∈ {0,1,2}. Here α is the band
index, and the relation between ã

†
k,α,s and ak,j,m is shown

in Appendix B. The dispersion relations for the bands
are E0(k) = ε0(k) − λ

2 , and Eα(k) = 1
2 [ε2(k) + ε1(k) + λ

2 +
(−1)α

√
[ε2(k) − ε1(k) − λ

2 ]2 + 2λ2] for α ∈ {1,2}; where
εα(k) = −2tαα cos(k) + �α for α ∈ {0,1,2}. At λ = 0, the
bands 0, 1, and 2 reduce to the standard bands of the dyz,
dxz, and dxy orbitals, respectively. For λ/W � 0, the bands 1
and 2 reduce to the (j eff = 1/2,m = ±1/2) and (3/2,±1/2)
states, respectively, and n3/2,±3/2 = ñ0±1 for any λ. The above-
described noninteracting portion of the Hamiltonian is useful
to understand the effect of spin-orbit coupling in the small
U/W region of the phase diagram, as discussed below.

Our many-body calculations are performed using the
DMRG technique [48–50] applied to one-dimensional chains
of various system lengths, such as L = 8, 16, 24, and 32 sites.
We have used up to 600 states for the DMRG process and
have maintained a truncation error below 10−14 throughout
the finite algorithm sweeps. In the latter, we performed 10–15
full sweeps to gain convergence depending on the system
size. We studied the presence of various phases by calculating
expectation values of niα , nijm, S2

i , L2
i , (Jeff)2

i , the canonical
spin structure factor S(q), and the exciton pair-pair correlation

〈�†j̃m

jm (i)�j̃m

jm(i
′
)〉 (defined in Sec. III B).
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III. RESULTS

The main result of this paper, presented in Fig. 2, is the
phase diagram of the three-orbital Hubbard model analyzed
here, varying U and λ in units of the bandwidth W at a
fixed electronic density of four electrons per site on average.
In the following sections, details are provided for the three
special cases of weak, intermediate, and strong Hubbard U

coupling. Also note that our study is in one dimension and
for this reason when we write that at some values of U and λ

we are at a phase with some particular characteristics, this
has to be interpreted in the sense of dominant power-law
decaying correlations as opposed to true long-range order.

A. Paramagnetic metal and relativistic
band insulator (weak coupling)

First, we will briefly discuss the small U region, i.e.,
the weak coupling limit. This regime can be understood by
analyzing the noninteracting limit using Eq. (6). Varying the
strength of the spin-orbit coupling λ at U/W = 0 the exact
band structure is shown in Figs. 3(a)–3(c). From this analysis
we expect the presence of a trivial paramagnetic metal (PM-M)
at small λ, which transforms into the relativistic band insulator
(RBI) regime by increasing λ. At U = 0, for four electrons per
site, we can use the condition E2(k = π ) = E1(0) to calculate
analytically the critical spin-orbit coupling strength λc for
which a gap opens:

λc(U = 0) = 2t11t22(�2 − �1) + 2(t11 + t22)
√

t11t22[4t11t22 + 8(t11 + t22)2 − 2(�2 − �1)2]

2(t11 + t22)2 + t11t22
. (7)

The value of λc/W for our specific hopping parameters and
crystal-field splittings is � 0.33. The state (j eff = 3/2,m =
±3/2) moves below the Fermi level before λ approaches
λc as (j eff = 3/2,m = ±3/2) does not hybridize with any
other state. For the U �= 0 case, but still small, λc can be
different from λc(U = 0). We suspect λc decreases mono-
tonically as U increases because at intermediate U the
excitonic insulator regime develops (see Sec. III B) for λ lower
than λc(U = 0), and this Bardeen-Cooper-Schrieffer (BCS)
limit of the excitonic insulator (EXI) regime (discussed in
next section) at intermediate U should be present near the
semimetal-semiconductor transition as discussed before [51].
The decrease in λc is a result of renormalization of bands due
to correlation effects, which enhances the effect of spin-orbit
coupling, as discussed in Ref. [52]. In Fig. 3(d), we show
the occupation of the (j eff,m) bands (njm are the respective
densities) varying λ/W at a fixed U/W = 0.02, displaying a
smooth crossover from paramagnetic metal to band insulator.
At large λ the j eff = 3/2 bands are completely filled, while
the j eff = 1/2 band is nearly empty at λ/W = 1.0 and its
population continues decreasing as λ is further increased.

In contrast to previous DMFT studies performed for three
degenerate bands [35,36], the fourfold degeneracy of the j eff =
3/2 bands is here explicitly broken due to the hybridization
between the (3/2,±1/2) and (1/2,±1/2) states. This is a
consequence of a noncubic crystal-field splitting and specific
hopping parameters to resemble iron-based superconductors,
as explained before. We also observed the above-mentioned
splitting in the intermediate and strong Hubbard coupling
limits, thus, this effect propagates into the interacting region.
It is important to mention here that due to the hybridization
of our model, in the RBI regime the j eff = 1/2 state can have
a nonzero occupation because it can have nonzero weight in
the band below the Fermi surface. In other words, due to the
hybridization between the (3/2,±1/2) and (1/2,±1/2) states,
the basis where HK + HSOC is diagonalized corresponds to
ãk,α,s , not ak,j,m. As a consequence, in the lower portion of the
RBI region in the phase diagram we have a finite occupation of
the (1/2,±1/2) states coexisting with a sharp band insulator
gap at the Fermi level. Only as the spin-orbit coupling

continues increasing is that ãk,α,s reduces asymptotically to
ak,j,m, and we reach zero occupation of the (1/2,±1/2) states.

Note that a similar splitting between the j eff = 3/2, m =
±1/2 and j eff = 3/2, m = ±3/2 bands of nearly 0.7 eV has
also been observed in the (t2g)5 perovskite CaIrO3 [43] as a
result of the presence of a noncubic crystal field, although our
study is not directly related to this material.

Figure 3(e) shows the local moments 〈(Jeff)2〉, 〈L2〉, and
〈S2〉, as well as 〈S · L〉. Similarly to the noninteracting
case, at U/W = 0.02, the moments 〈L2〉, 〈S2〉, and 〈S · L〉
converge to 4/3 while 〈(Jeff)2〉 tends to 0 for large spin-orbit
coupling (this can be checked by using the atomic state
a
†
3
2 , 3

2
a
†
3
2 ,− 3

2
a
†
3
2 , 1

2
a
†
3
2 ,− 1

2
|0〉, which is the ground state of the HSOC

term).

0.0

0.1

0.2

0.3

0.5

1.4

0.1 1 10

λ
/
W

U/W

PM-M

RBI

NMI

EXI
+AFM

B FM
+

OOI

jeff = 0

jeff = 0

−−→IC

FIG. 2. λ-U phase diagram (note the log scale in U/W axis). RBI,
PM-M, B, FM, OO, IC, EXI, AFM, and NMI stands for relativistic
band insulator, paramagnetic metal, block phase, ferromagnetic,
orbital ordering, incommensurate, excitonic insulator, antiferromag-
netic, and nonmagnetic insulator, respectively. Lines separating
phases are guides to the eyes. The actual small circles indicate specific
values of data points that were investigated with DMRG. Their high
density indicates that this effort has been computationally demanding.
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M
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FIG. 3. (a) shows the noninteracting bands of our model at
λ/W = 0.0. As explained in the text, the almost fully populated
bands are degenerate and superimposed. In (b) and (c), we show
the bands at λ/W = 0.2 and 1.0, respectively. (c) displays a clear
opening of a gap, i.e., the system becomes a band insulator. Colors
are decided depending on the relative contributions from the three
(j eff,m) bands, with the pure cases shown in the legend of (b).
(d) contains the occupation numbers in the (j eff,m) basis, while (e) has
the local magnetic moments strengths (see legend) as well as 〈S · L〉,
all at U/W = 0.02. Calculations for (d) and (e) were performed with
DMRG using a L = 16 chain, while (a)–(c) are from exact analytical
formulas.

B. Excitonic insulator and orbital selective
Mott phase (intermediate coupling)

In this section we will discuss the results obtained at
intermediate Hubbard interaction. This region is difficult and it
cannot be treated perturbatively, thus numerical exact studies
via the DMRG method are important. In this regime we have
found several interesting phases such as the OSMP, EXI,
incommensurate phase, and at large λ/W we again found
the RBI of weak coupling. In Fig. 4, we present results
obtained at U/W = 1.0. At small λ, we reproduced the OSMP
regime with a magnetic block arrangement of the spins, i.e.,
two–site ferromagnetic clusters coupled antiferromagnetically
(↑↑↓↓↑↑) [31–34]. The presence of OSMP features is
confirmed by measuring the occupation of the t2g states: in
this regime the dxy orbital has occupation very close to 1,
while dxz(yz) has occupation nearly 1.5 (see Appendix C).
The spin structure factor S(q) and the real-space spin-spin
correlations are shown in Figs. 5(a), 5(c) at λ/W = 0.046
providing evidence for the block magnetic order.

Figure 4(a) shows the occupation number in the (j eff,m)
states corresponding to U/W = 1.0 at different λ’s. As in the
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FIG. 4. DMRG results obtained at U/W = 1 (intermediate cou-
pling) and using a L = 16 system. (a) shows occupation number in the
(j eff,m) bands while (b) shows the excitonic parameter �m defined
in Eq. (8) varying λ/W . (c) shows the three local moment strengths
as well as 〈S.L〉.

case of weak coupling, here the system also converges to a
band insulator at sufficiently large spin-orbit coupling as the
j eff = 3/2 state is completely filled and j eff = 1/2 becomes
empty. In the strength of the magnetic moments we have
noticed a clear difference between the intermediate and weak
coupling regimes, as shown Fig. 4(c). We found 〈S2〉 = 2 in
the OSMP and in the incommensurate phase. However, this
quantity is reduced after entering in the EXI phase, and at the
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FIG. 5. DMRG resuls obtained at U/W = 1. (a) and (b) contain
the spin structure factor in the block phase and in the EXI phase,
respectively, for various number of sites L = 8 (black), 16 (red),
24 (green), and 32 (blue). (c) and (d) display the real-space spin
correlations at L = 32 corresponding to the block and EXI phases,
respectively, for the λ/W ’s indicated.
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same time 〈L2〉 increases. We also noticed that for any Hubbard
interaction in the limit of sufficiently large λ, 〈S2〉 = 〈L2〉 =
〈S · L〉, which means S and L become parallel to each other. As
a consequence, 〈(Jeff)2〉 = 〈S2〉 + 〈L2〉 − 2〈S · L〉 converges
to 0.

To identify the EXI phase, we calculated a pair-pair
correlation function (note, here “pair” denotes an electron-hole

pair), i.e., 〈�†j̃m

jm (i)�j̃m

jm(i
′
)〉, where �

j̃m

jm(i) = a
†
ij̃m

aijm (here

we fixed j = 1/2 and j̃ = 3/2). This operator was already
introduced in previous literature [35,36]. In our DMRG
calculations, and in agreement with Ref. [35], we noticed that

in the EXI phase the correlation 〈�†j̃m

jm (i)�j̃m

jm(i
′
)〉 develops

staggered ordering, justifying the staggered sign used below.
In Fig. 4(b), we show the associated correlations summed over
all distances (with j = 1/2 and j̃ = 3/2),

�m = 1

L2

∑

|i−i
′ |>0

(−1)|i−i
′ |〈�†j̃m

jm (i)�j̃m

jm(i
′
)
〉
. (8)

Then �m is a measure of the staggered pair-pair correlations
associated with the EXI state.

Intuitively, in the EXI phase we have hole-electron pairs
involving the (j eff = 3/2,±1/2) and (1/2,±1/2) manifolds.
In the absence of direct hopping between the bands, there
is a conservation of the number of electrons in each band. A
nonzero expectation value for �

j̃m

jm(i) (which becomes an order
parameter for this case) amounts to a spontaneous symmetry
breaking of the U (1) symmetry that corresponds to the relative
phase of the bands in which the electron-hole pair forms
[53]. However, because we are using noncubic bands with a
crystal-field splitting, this symmetry is explicitly broken in our
Hamiltonian, namely in the tight-binding term transformed to
the “a” basis there is a direct hopping between the (3/2,±1/2)
and (1/2,±1/2) bands. Thus, it is somewhat surprising that
the expectation values used in our work (such as �m) still
behave in practice similarly as the true order parameter used
in Refs. [35,36], namely it is robust in the EXI phase and very
small in other phases [see Fig. 4(b)].

We also found that the staggered excitonic condensate is
always present in combination with AFM spin ordering, as
deduced from the spin structure factor S(q) and the real-
space spin-spin correlations presented in Figs. 5(b), 5(d) at
λ/W = 0.23. We also carried out finite-size scaling of S(q)
for system sizes L = 8, 16, 24, and 32 at λ/W = 0.046 and
0.23. We noticed a fast growth in the peak value at q = π

for λ/W = 0.23, indicating that spin antiferromagnetism and
excitonic order are linked together. This aspect of stabilizing
antiferromagnetism in an EXI phase due to robust Hund’s
coupling, as used by us, was discussed before in Ref. [54].
Exploring the effects of varying the Hund’s coupling in our
model can be carried out in future work.

C. Strong coupling

Consider now the large U/W limit. In Figs. 6(a)–6(e) we
present some results obtained at U/W = 10. At small λ/W ,
we found a robust ferromagnetic (FM) spin order as shown in
Fig. 6(d) via the spin structure factor. We also noticed that this
FM spin ordering is always accompanied by orbital ordering,
as discussed in previous investigations in the absence of spin-
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FIG. 6. DMRG results obtained at U/W = 10 (strong coupling
regime). (a) shows the occupation number in the (j eff,m) bands,
while (b) displays the excitonic order parameter dependence on λ/W .
(c) displays the local moment strengths and also 〈S.L〉. (d) contains
the spin structure factor for a number of sites L equal to 8 (black),
16 (red), 24 (green), and 32 (blue). (e) shows 〈τz(i)τz(j )〉 for L = 32.
Both (d) and (e) are in the ferromagnetic and orbitally ordered phase
at λ/W = 0.046.

orbit coupling [34]. To clarify the nature of the orbital order,
we show 〈τz(i)τz(j )〉 in Fig. 6(e), where τz(i) = niyz − nixz is
the z component of the pseudospin operator in orbital space.
This orbital ordering leads to the opening of a gap in the
system rendering the state an orbital-ordered insulator (OOI),
as discussed in Ref. [34] via determinant quantum Monte Carlo
and DMRG calculations without spin-orbit coupling.

By increasing λ/W , we have observed a transition from
FM to the AFM spin ordering shown in Figs. 7(a), 7(b).
As in Sec. III B, this AFM ordering is accompanied by
staggering in the exciton pair-pair correlation as shown in
Figs. 7(c), 7(d). Similar phases were noticed in a study of
the low-energy effective Hamiltonian for the (t2g)4 sector in
Ref. [24]. Note that at U/W = 10 the excitonic condensate
starts at smaller λ/W than those needed at intermediate value
of U/W [Fig. 6(b)]. Interestingly, in the EXI phase we have
noticed that 〈n3/2,±3/2〉 converges to ≈ 1 (to be precise 0.98)
and then reverses the trend and starts decreasing in the region
identified as a nonmagnetic insulator (see below). This is
different from the properties of the EXI phase observed at
intermediate U/W where 〈n3/2,±3/2〉 < 1 and then slowly
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FIG. 7. DMRG results obtained at U/W = 10. (a) depicts the
spin structure factor in the EXI phase at λ/W = 0.115, for a
number of sites L equal to 8 (black), 16 (red), 24 (green), and 32
(blue). (b) shows the real-space averaged spin-spin correlations for
λ/W = 0.115. In (c) and (d), we present the pair-pair correlation
in momentum and real space, respectively, for a L = 16 system. In
(d) j = 1/2, j̃ = 3/2, and m = ±1/2 were used.

converged to 1 as the system evolves to become a band
insulator increasing λ/W further.

At U/W = 10, and at any λ/W , we also noticed that
〈S2〉 = 2 and 〈L2〉 = 2 [Fig. 6(c)]. These vector operators
become parallel only for large λ/W , namely where 〈S · L〉 = 2
and 〈(Jeff)2〉 = 0. In Fig. 7(d) we show the pair-pair excitonic
correlation as a function of distance, involving the operator

�
j̃,m

j,m(i) = a
†
ij̃m

aijm . In all points studied inside the EXI
phase we observed a staggering in the pair-pair correlation. In

Fig. 7(c), we show �m(q) = 1
L

∑
i,j eq(i−j )〈�†j̃m

jm (i)�j̃m

jm(j )〉
for various λ’s at strong U , where q is the momentum.

In Fig. 8 we present (〈n2
l 〉 − 〈nl〉2) = 1

L

∑
i〈n2

i,l〉 − 〈ni,l〉2,
where the index l takes the values indicated in the leg-
end of Fig. 8(a), namely j eff = 1/2, (j eff,|m|) = (3/2,1/2),
(j eff,|m|) = (3/2,3/2), and Total (nTotal = ∑

i,j,m nijm). Inter-
estingly, we noticed that in the EXI phase the charge fluctua-
tions increase for j eff = 1/2 and (j eff,|m|) = (3/2,1/2): these
are the bands where excitons are located, and this feature
is common for both intermediate and strong coupling EXI
regimes. However, we have identified some differences within
the EXI region between the intermediate and strong Hubbard
coupling regions. In strong coupling [Fig. 8(c)] we noticed
that in the EXI regime the local charge fluctuations per site
are nearly zero, suggesting that electrons are almost localized.
However, at intermediate coupling [U/W = 1, Fig. 8(b)] and
still within the EXI regime, the total charge fluctuations are
nonzero. Nonzero local charge fluctuations in the EXI phase
hints towards exciton pairs that are extended in size, namely
the BCS-type limit of excitonic phases. In the other extreme,
namely the Bose-Einstein condensation (BEC) limit, the
excitonic phase should have small charge fluctuations because
the exciton pairs are considerably smaller and of atomic-scale
size. A more detailed study of the BCS-BEC crossover within
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FIG. 8. Averaged local charge fluctuations of the (j eff,m) states
(as indicated in the top panel legend) corresponding to (a) U/W =
0.02 (weak coupling), (b) U/W = 1 (intermediate coupling), and
(c) U/W = 10 (strong coupling).

the excitonic phase when moving from intermediate to strong
coupling U/W is a subject for future work.

In the strong coupling region of focus here and in the
neighborhood of the EXI phase we have found a nonmagnetic
insulator (NMI) with 〈(Jeff)2〉 �= 0. Let us contrast the NMI and
RBI regions. To identify the NMI regime we focused on two
aspects: (i) the system should have localized electrons due to
strong correlations; (ii) there is no magnetic ordering. The first
condition was checked by calculating local charge fluctuations,
as shown in Fig. 8, where we observed that the local charge
fluctuations are zero throughout this region [Fig. 8(c)]. This
is merely a strong correlation effect different from the case of
the small U/W and large λ/W regime (RBI) where electrons
are primarily in extended states but still having zero local
charge fluctuations because of having nearly full and empty
bands. As depicted in Figs. 8(a), 8(b) in the RBI region the
local charge fluctuations separately in each (j eff,m) state as
well as Total are small or nearly zero. On the other hand,
in the NMI region only Total is zero but charge fluctuations
separately for each (j eff,m) are large [shown in Fig. 8(c)].
This suggests that in the case of NMI the electrons are not
locked just as the consequence of having a fully filled band
or an empty band like in RBI, but as a consequence of strong
correlations.

In recent work using DMFT [36] for a cubic (t2g)4 system,
a 〈(Jeff)2〉 = 0 NMI state was also found in the vicinity of the
excitonic condensate and it was identified as a Van-Vleck-type
Mott insulator, as discussed earlier in Ref. [55]. Our finding of
a NMI state with 〈(Jeff)2〉 �= 0 near the excitonic condensate
seems in contrast with those previous studies, but it is merely a
consequence of using a noncubic band structure. Interestingly,
this breakdown of the 〈(Jeff)2〉 = 0 state was also recently
noticed in first-principles calculations [18,56] applied to the
(t2g)4 iridate Sr2YIrO6. In our results, and to the best of our
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accuracy, the 〈(Jeff)2〉 �= 0 NMI region is smoothly connected
to the 〈(Jeff)2〉 = 0 region.

IV. CONCLUSIONS

In this paper, using an accurate computational technique
we have studied the phase diagram of an electronic model
simultaneously with Hubbard, Hund, and spin-orbit couplings.
The hopping amplitudes were fixed to those used in a previous
study at λ = 0, since that effort already unveiled a variety of
interesting phases such as the OSMP regime. In the present
analysis our main result is shown in Fig. 2. The previously
identified block and FM-OO phases were followed increasing
λ. Eventually, over a broad range of U/W an excitonic
condensate phase was identified, in qualitative agreement with
previous DMFT studies. The large λ regime is also interesting,
with a variety of insulating regions.

Conceptually, our analysis provides an avenue to study
quasi-one-dimensional materials with robust spin-orbit cou-
pling. We provide a tentative partial list of materials of
this class in the introduction and throughout the text. In
combination with ab initio techniques, needed for the hopping
amplitudes, our many-body procedure can unveil properties
of these systems in reduced dimensionality with good pre-
cision to guide experiments. We hope our work triggers the
cross fertilization between theory and experiments needed to
develop the novel field of quasi-one-dimensional iridates, or

other related low-dimensional materials with robust spin-orbit
coupling.
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APPENDIX A: THEOREM FOR CONSERVATION OF J eff
z

As discussed in Sec. II, to reduce the computational cost of
our numerical calculations we target specific J eff

z sectors. In
order for J eff

z to become a good quantum number, namely
to achieve [H,J eff

z ] = 0, we need to choose carefully the
parameters contained in HK (both the crystal-field splittings
and hopping parameters) so that they satisfy the constraints
discussed in this Appendix.

Below in Eq. (A1) we show HK explicitly written in the
ajm basis. This is calculated simply by using the inverse
transformation of Eq. (4).

H =
∑
〈u′〉

[
a
†
l, 3

2 , 3
2

a
†
l, 3

2 ,− 1
2

a
†
l, 1

2 ,− 1
2

a
†
l, 3

2 ,− 3
2

a
†
l, 3

2 , 1
2

a
†
l, 1

2 , 1
2

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t00+t11
2

it00−it11+2t01
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√
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6
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2
√

3
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√

2
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3
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2
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6
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3
√
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. (A1)

The J eff
z operator can also be written in the same basis as

J eff
z =

∑
ijm

(m)ni,j,m. (A2)
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Below are the constraints on the HK parameters (assuming that
the tγ γ

′ and �γ are real), which are obtained after imposing
explicitly the condition [HK,J eff

z ] = 0:
(i) tγ γ

′ = 0 ∀ γ �= γ
′
, i.e., no interorbital hopping;

(ii) t00 = t11, namely the hopping amplitudes of the dxz and
dyz orbitals must be equal;

(iii) �0 = �1, namely the crystal-field splittings for the
dxz and dyz orbitals must be equal.

We have selected the parameters in HK such that the
above constraints are satisfied. These constraints forbid all
scattering processes of electrons under which J eff

z changes, but
the hybridization between the states (j eff = 3/2,m = ±1/2)
and (j eff = 1/2,m = ±1/2) is still allowed and our choice
of parameters hybridize the above-mentioned bands. For this
reason [(Jeff)2,HK ] �= 0.

APPENDIX B: GOOD BASIS FOR HK + HSOC

In principle we can write the basis in which HK + HSOC

are diagonalized simultaneously. We name these new basis
operators as ãk,α,s ; where k is the momentum, α is the band
index, and s is the flavor of the particle, i.e., ±1. Below is the
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FIG. 9. Occupations of the t2g orbital states corresponding to
(a) U/W = 1 (intermediate coupling) and (b) U/W = 10 (strong
coupling). To a good approximation, the excitonic condensate phase
behaves similarly as the block (OSMP) phase, namely with one orbital
having occupation of approximately one electron.

relation between these new bases and ak,j,m, where ak,j,m =
(1/

√
L)

∑
l e

ilkal,j,m:

ã
†
k,0,s = a

†
k, 3

2 , 3s
2
, (B1)

ã
†
k,1,s = 1

N2(k)
a
†
k, 3

2 , s
2
+ 1

N1(k)
a
†
k, 1

2 , s
2
, (B2)

ã
†
k,2,s = (ε21(k) − 9λ/2) + 3

√
(ε21 − λ/2)2 + 2λ2

2
√

2ε21(k)N2(k)
a
†
k, 3

2 , s
2
+ (ε21(k) − 9λ/2) − 3

√
(ε21 − λ/2)2 + 2λ2

2
√

2ε21(k)N1(k)
a
†
k, 1

2 , s
2
,

Nα(k) = 3((ε21(k) − λ/2)2 + 2λ2)1/4(
√

(ε21(k) − λ/2)2 + 2λ2 + (−1)α(ε21(k)/3 − 3λ/2))1/2

2ε21(k)
, (B3)

where in the equations above, ε21(k) = ε2(k) − ε1(k).
Using these relations, we calculated the bands for the noninteracting case and the λc(U = 0) for metal-insulator transition, as

discussed in Sec. III A.

APPENDIX C: OSMP IN THE INTERMEDIATE AND STRONG U COUPLING LIMIT

As discussed earlier we found the OSMP in the intermediate and strong coupling regions at small λ, by calculating occupation
densities in the t2g basis. In the OSMP region the dxy orbital is filled with nearly one electron per site while dxz(yz) have nearly
1.5 filling. As shown in Fig. 9, we noticed that the EXI regime starts appearing at relatively lower values of λ in the strong U

coupling region.
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