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Weyl points in three spatial dimensions are characterized by a Z-valued charge—the Chern number—which
makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if
their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this
sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI
symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying
a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation
and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the
band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy
discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical
framework dubbed the AZ+I classification and show that in three spatial dimensions such robust and multiply
charged nodes appear in four of such centrosymmetric extensions, namely, AZ+I classes CI and AI lead to
doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further
crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description
of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and
superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged
nodes generalizes to other spatial dimensions.
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I. INTRODUCTION

The advent of topological aspects of condensed matter
systems [1], which has been initiated by the discovery of
the quantum Hall effects [2–7] and strongly amplified by
the discovery of topological insulators [8–19], has in recent
years naturally led to extensive research of gapless topological
phases. While electrons in such systems may emulate various
high-energy physics particles like the massless Weyl [20–26]
and Dirac [27–36] fermions, it has been recognized that the
lower degree of symmetry of condensed matter systems also
enables the appearance of gapless spectra that have no analog
in high-energy physics. Examples include multi-Weyl points
[37,38], “tipped” (or type-II) Weyl points [39,40], “hyper-
Dirac” (or double Dirac) points [41], effective spin-1 fermions
[42], nexus fermions [43–47], various Weyl and Dirac loops
[48–61], even Weyl chains and Weyl nets [62,63], and Dirac
chains [64]. All of these are associated with a topological
protection, novel surface spectra, and some were found to
exhibit unusual transport features, notably the chiral anomaly
[65–68]. In the present work we refer to a general touching
of conduction and valence bands as a node, and depending on
its dimension we further specify it as a nodal point, line, or
surface. To avoid confusion, by a nodal loop we mean a nodal
line that does not wind around the Brillouin zone (BZ).

The topological protection of many of the mentioned nodes
requires the presence of certain crystalline symmetries. For
example, Dirac points require a rotational symmetry [69–71],
most nodal line materials need a mirror or a glide symmetry
[62,72], and the hyper-Dirac points [41,42] only arise in
certain nonsymmorphic lattices. Once the relevant crystalline
symmetry is removed (e.g., by applying strain), these nodes
cease to be topologically protected and may be trivially gapped
out. On the other hand, nodes protected solely by global
symmetries are more stable as they are not susceptible to

the removal of crystalline symmetries. By global symmetries
we mean those of the Atland-Zirnbauer (AZ) classification
[73], i.e., time-reversal (T ), particle-hole (P), and chiral (C)
symmetries. Examples of such highly stable nodes include
nodal lines protected by C (in superconductors [74] and in
semimetals with sublattice symmetry [48]) and Weyl points
(in semimetals [21], superfluids [1], and superconductors
[75,76]), which do not require any symmetry (besides the
translational symmetry of a crystalline system or a liquid).

Nodes protected by global symmetries alone are still
characterized by a differing degree of stability. For example, a
Weyl point is characterized by a Z-valued charge—the Chern
number—and a set of Weyl points can mutually annihilate
only if their net charge vanishes. In this manuscript, we refer
to this property as the robustness of the nodes. An analogous
Z charge can also be defined for nodal lines protected by C,
which wind around BZ. However, such a charge is absent for
nodal loops of the same system—these can be shrunk to a point
and then gapped out on their own, hence we do not describe
them as robust. A question therefore arises as whether there
are other species of nodes that reach this high level of stability
we call robustness. The answer is unfavorable—for systems
with three spatial dimensions (D = 3) and global symmetries
only, the two examples above capture all robust nodes.

Interestingly, it was noticed in Ref. [52] that the set of robust
nodes becomes enlarged if one considers centrosymmetric sys-
tems. Since inversion symmetry (I) is typically not removed
by straining (unless we encounter a structural phase transition
[77]), nodes protected jointly by global symmetries and I
are still very stable. In particular, Ref. [52] used homotopy
arguments to show that D = 3 centrosymmetric electron bands
respecting T and SU(2) spin-rotation symmetry (correspond-
ing to AZ class AI) exhibit nodal loops with a Z2 charge
analogous to the Chern number of Weyl points [78]. A nodal
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loop with a nontrivial value of this charge cannot be gapped out
on its own but only by an annihilation with another such a loop.
Furthermore, since this charge is independent of the Berry π

phase flowing along the band degeneracy, such nodal loops
are also doubly charged. All these conclusions remain true in
systems breaking both T and I provided that the composed
T I symmetry is preserved [79]. We refer to both described
situations as belonging to the centrosymmetric extension of the
AI class. Note that “robust” and “multiply charged” describe
different node attributes. We will argue that a single topological
invariant protected by global symmetries and I is always
sufficient to facilitate robust nodes, although they may have to
wind around BZ for this to be the case. Being multiply charged
is therefore a stronger and more peculiar feature.

In this manuscript, we generalize the homotopy arguments
of Ref. [52] to the centrosymmetric extension of all AZ
classes (termed “AZ+I classes” for brevity) of arbitrary
spatial dimension D, and provide an exhaustive list of multiply
charged nodes appearing in them. Specifically, in D = 3, we
identify four nontrivial instances: AZ+I classes CI and AI
support doubly charged nodal loops, while we find doubly
charged nodal surfaces in classes D and BDI. In D = 2, the
only class supporting doubly charged nodes is BDI, and there
are no multiply charged nodes in D = 1. On the other hand,
all AZ+I classes support multiply charged nodes for D � 6.

Focusing further on D = 3, we work out a description of
both topological charges and develop simple tight-binding
(TB) models exhibiting doubly charged nodes for the four
nontrivial instances. The presented TB models do not attempt
to describe any specific material, but rather to supply the reader
with a way of easily checking our claims. We nevertheless
argue that all of these nodes can appear in realistic crystalline
solids. Specifically, the doubly charged nodal loops of class
CI have natural realization in singlet superconducting (SC)
phase of nodal line metals, nodal surfaces of class D have
very recently been discussed in the context of multiorbital
SCs [80,81], the nodal loops of class AI apply to semimetals
respecting T I in the absence of spin-orbit coupling, and
nodal surfaces of class BDI are relevant to AI-like systems
supplemented by the sublattice symmetry. Furthermore, the
results for class AI are naturally applicable to nodes formed by
photonic [82], phononic [83], and magnonic [79] bands, since
for bosonic excitations T naturally squares to +1. We remark
that while providing the complete topological classification of
multiply charged nodes of the AZ+I classes, this manuscript
does not investigate the possible associated surface states and
transport signatures which we leave for a future work.

The manuscript is structured as follows. In Sec. II, we
formalize the notion of AZ+I classes. In Sec. III, we fix a
canonical representation of the relevant symmetries in every
AZ+I class, and use it to determine the dimensionality of
stable nodes supported by the class in any spatial dimensions
D. In Sec. IV, we use homotopy theory to determine the
topological charges of these nodes. We further elaborate here
on the distinction between robust and multiply charged nodes.
Then in Sec. V, we discuss how the individual AZ+I classes
relate to actual physical systems. Although such a discussion
readily exists for AZ classes [84], the Cartan labels of the AZ
and of the AZ+I class of a given centrosymmetric system can
be different, simply because I and P may be noncommuting.

As this is a potentially confusing point, we dedicate significant
space to carefully enumerate all the possibilities.

The sections introduced so far already contain our main
findings, and the remaining pages mostly serve to strengthen
our claims with examples and with derivations of the topo-
logical charges. We sequentially go through all four AZ+I
classes supporting doubly charged nodes in D = 3, and we
develop a simple TB model on a hexagonal SrPtAs-like lattice
[85] for each of them. For each model, we explicitly calculate
both topological charges of the exhibited nodes. We gradually
discuss AZ+I class D exhibiting Z2 ⊕ 2Z nodal surfaces in
Sec. VI, class BDI with Z2 ⊕ Z2 nodal surfaces in Sec. VII,
class CI with Z ⊕ Z2 nodal lines in Sec. VIII, and finally
class AI with Z2 ⊕ Z2 nodal lines in Sec. IX. While most
of the formulated charges appear within the ten-fold way
classification [86], in three cases, we encounter a somewhat
unusual Z2 charge corresponding to a closed path winding
inside Lie group SO(n) [52], which we formalize using Wilson
loops [87,88]. We conclude with some final remarks in Sec. X.

II. SYMMETRY CLASSIFICATION

A classification of Hamiltonians according to their global
symmetries was developed in Ref. [73]. By these we mean
time-reversal (T ), particle-hole (P), and chiral (C) symmetries.
In momentum (k) space, they fulfill

T H(k)T −1 = H(−k), T 2 = ±1 (AU), (1a)

PH(k)P−1 = −H(−k), P2 = ±1 (AU), (1b)

CH(k)C−1 = −H(k), C2 = 1 (U), (1c)

where (AU) indicates antiunitarity and (U) unitarity. There are
ten possibilities, which are listed alongside their Cartan label
(CL) in the first four columns of Table I.

Apart from the discrete set of 2D time-reversal invariant
momenta (TRIMs), T and P relate Hamiltonians at two
different k points. These nonlocal constraints have to be
incorporated when developing the tenfold way classification of
gapped topological insulators and superconductors [86,89,91–
93]. However, when characterizing nodes of a gapless system,
one only needs to know the Hamiltonian in the vicinity of
the node, which is typically not constrained by conditions
(1a) and (1b). Consequently, a D = 3 system exhibits nodal
points (lines) in the absence (presence) of C, as is shown using
homotopy theory in the subsequent sections. Additional nodal
points imposed by conditions (1a) and (1b) may be fixed at
TRIMs, but these are unremovable and thus not of relevance
to us.

The conclusion that T and P don’t affect the classification
of nodes is changed in the presence of crystalline symmetries
[72]. In the present work, we consider the presence of
inversion symmetry (I), which is typically robust against
simple straining. It fulfils

IH(k)I−1 = H(−k) I2 = 1 (U) (2)

such that compositions

T I = T and PI = P (3a)
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TABLE I. Summary of the main findings of the manuscript. The first four columns list the ten possible symmetry classes together with
their Cartan label (CL). The headers T ,P,C (in parentheses) correspond to the AZ classification [73], while the headers T,P,C correspond to
the AZ+I classification which we introduce in Sec. II and consider throughout the manuscript. The rest of the table applies to the AZ+I case
only. The fifth column lists the classifying spaces MCL [89] relevant for each symmetry class as explained in Sec. III. Here, n,� > 0 indicate the
number of occupied and unoccupied bands (n = � whenever P or C is present). The next block of the table lists the large n,� limit homotopy
groups of MCL, which exhibit the Bott periodicity πd+8(MCL) = πd (MCL) [90] with the exception of π0(MCL), which counts the number of
connected components of MCL. Note that in some cases, we write 2Z instead of Z as the naturally formulated topological invariant takes even
values, and we type 0 for a trivial (one-element) group. As discussed in Sec. IV, the homotopy groups πp(MCL) that determine the charges
of a node are those with δCL − 1 � p � D − 1 where δCL is the node codimension determined in Sec. III and listed for all AZ+I classes in
Table II. The homotopy groups relevant in D = 3 are typesetted in bold. We observe that AZ+I classes AI, BDI, D and CI support doubly
charged nodes in this spatial dimension. The last three columns indicate the corresponding topological charges, namely

∫
F is the (first) Chern

number,
∫

q−1dq is the winding of the off-diagonal block of Q(k),
∫
A is the Berry phase, sign Pf is the sign of the Pfaffian of the Hamiltonian,

and π1[SO(n)] is the homotopy class of a closed path inside the orthogonal group. For the four classes with doubly charged nodes in D = 3
we list in Tables III and IV the relevant homotopy groups for systems not reaching the large n,� limit, which come to play in the simple models
presented in Secs. VI to IX.

T P C homotopy group πp(MCL) for p = . . . topological charge cCL(Sp)

CL (T P C) classifying space MCL 0 1 2 3 4 5 6 7 8 p = 0 p = 1 p = 2

A × × × U(n + �)/U(n) × U(�) 0 0 ZZZ 0 Z 0 Z 0 Z − − ∫
F

AIII × × 1 U(n) 0 ZZZ 000 Z 0 Z 0 Z 0 − ∫
q−1dq −

AI +1 × × O(n + �)/O(n) × O(�) 0 Z2Z2Z2 Z2Z2Z2 0 2Z 0 0 0 Z − ∫
A π1[SO(n)]

BDI +1 +1 1 O(n) Z2Z2Z2 Z2Z2Z2 000 2Z 0 0 0 Z Z2 sign Pf π1[SO(n)] −
D × +1 × O(2n)/U(n) Z2Z2Z2 000 2Z2Z2Z 0 0 0 Z Z2 Z2 sign Pf − ∫

F
DIII −1 +1 1 U(2n)/Sp(n) 0 2Z2Z2Z 000 0 0 Z Z2 Z2 0 − ∫

q−1dq −
AII −1 × × Sp(n + �)/Sp(n) × Sp(�) 0 0 0 0 Z Z2 Z2 0 2Z − − −
CII −1 −1 1 Sp(n) 0 0 0 Z Z2 Z2 0 2Z 0 − − −
C × −1 × Sp(n)/U(n) 0 0 ZZZ Z2 Z2 0 2Z 0 0 − − ∫

F
CI +1 −1 1 U(n)/O(n) 0 ZZZ Z2Z2Z2 Z2 0 2Z 0 0 0 − ∫

q−1dq π1[SO(n)]

impose local antiunitary constraints in k space [52,94] and
become relevant for the characterization of nodes. Apart from
the (non-) locality in k space, the set of operators T,P,C is
mathematically equivalent to the set T ,P,C. It is therefore
possible to define ten symmetry classes based on the presence
of operators fulfilling

TH(k)T−1 = H(k), T2 = ±1 (AU), (3b)

PH(k)P−1 = −H(k), P2 = ±1 (AU), (3c)

CH(k)C−1 = −H(k), C2 = 1 (U). (3d)

We call such symmetry classes as the centrosymmetric exten-
sions of AZ classes (or “AZ+I classes” for brevity) and list
them together with their CL in the first four columns of Table I.

We remark that CLs of the AZ class and of the AZ+I
class corresponding to a given centrosymmetric system may
be different—a subtlety that is further detailed in Sec. V. Fur-
thermore, classification (3) also applies to noncentrosymmetric
systems. Especially, symmetries (3a) can be present even when
T ,P,I themselves are absent.

III. NODE DIMENSIONALITY

In this section, we systematically determine the dimension
of nodes supported by the individual AZ+I classes for
arbitrary D. To achieve this, we fix canonical representations
of operators (3) and use them to determine the codimension
δCL of the node, i.e., the number of conditions to be fulfilled

to make two bands touch. Provided that D � δCL, nodes of
dimension D − δCL occur.

Our choice of representing operators T,P,C is shown in
Table II where K indicates complex conjugation, and σi and
τi are Pauli matrices corresponding to two different degrees
of freedom. The choice is rather arbitrary, but this freedom
does not influence the analysis of the node codimension
and of the node charges in the subsequent text. Specifically,
we apply the following rules: (i) set C = σz to enforce a
block-off-diagonal form (6) of the Hamiltonian. (ii) Represent
antiunitary operators squaring to +1 by K, and those squaring
to −1 by iσyK. These requirements are incompatible if all
T, P, and C are present, hence classes BDI, DIII, CII, and
CI contain certain exceptions to rules (i) and (ii). Finally, we
always apply the rule: (iii) set TP = C if all three symmetries
are present.

Having fixed the representations of T, P and C, the node
codimension δCL is determined by considering the minimal
model capturing degeneracies between the valence and the
conduction bands. This is either a two-band Hamiltonian

H2×2(k) =
3∑

i=0

fi(k)σi, (4a)

where σi are Pauli matrices, or a four-band model

H4×4(k) =
3∑

i,j=0

gij (k) σi ⊗ τj (4b)
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TABLE II. Determining the node codimension δCL. The first four columns indicate for every AZ+I class our representation of T, P and
C, if present. The fifth column lists the basis matrices σi of a two-band Hamiltonian H2×2 that are compatible with the listed operators, and the
sixth column achieves the same for basis matrices σi ⊗ τj of a four-band Hamiltonian H4×4. For classes DIII and CII, Kramer’s degeneracy
associated with T2 = −1 together with the presence of P necessitates a minimum of four bands, such that H2×2 is nonexistent (∅). Similarly,
T2 = −1 of class AII implies a double degeneracy of bands for all k, meaning that a minimum of four bands is necessary to obtain a node
formed by touching valence and conduction bands. The column δCL indicates the node codimension for each AZ+I class. It is obtained by
counting the number of traceless basis elements of the minimal model (typesetted in bold). As explained in Sec. III, stable nodes are permitted
when D � δCL and their dimension is given by the difference D − δCL. We list the node type appearing in D = 3 explicitly in the last column.

CL T P C basis of H2×2 basis of H4×4 δCL nodes in D = 3

A × × × {1,σx,σ y,σz} {1,σx,σy,σz} ⊗ {1,τx,τy,τz} 3 point

AIII × × σz {σx,σ y} {σx,σy} ⊗ {1,τx,τy,τz} 2 line

AI K × × {1,σx,σz} {1,σx,σz} ⊗ {1,τx,τz} ∪ {σy ⊗ τy} 2 line [52]

BDI K σzK σz {σx} σx ⊗ {1,τx,τz} ∪ {σy ⊗ τy} 1 surface

D × K × {σ y} σy ⊗ {1,τx,τz} ∪ {1,σx,σz} ⊗ τy 1 surface [80]

DIII iσyK σxK σz ∅ {σx,σ y} ⊗ τ y 2 line

AII iσyK × × {1} 1 ⊗ {1,τx,τz} ∪ {σx,σ y,σz} ⊗ τ y 5 (none)

CII iτyK −iσz ⊗ τyK σz ∅ {σx ⊗ 1} ∪ σ y ⊗ {τx,τ y,τz} 4 (none)

C × iσyK × {σx,σ y,σz} {σx,σy,σz} ⊗ {1,τx,τz} ∪ {1 ⊗ τy} 3 point

CI K iσyK iσy {σx,σz} {σx,σz} ⊗ {1,τx,τz} 2 line

expanded using a product of pairs of Pauli matrices (i.e. Dirac
matrices) σi ⊗ τj , and fi and gij are real-valued functions.
Model (4) can be always locally obtained by projecting out
bands not forming the node. By Kramer’s theorem, the minimal
model is (4b) whenever the symmetry class contains T2 = −1,
and (4a) otherwise.

Local constraints (3) forbid the presence of some of
the basis matrices in expansions (4). For the representation
of operators given in Table II, we systematically analyze
these constraints, and we list the symmetry-compatible basis
matrices and their number δCL further in Table II. The unit
matrix is not relevant for the node dimension (although it
may be relevant for its experimental signatures [40]) and is
therefore not counted in δCL. We observe that the remaining
basis matrices of the minimal model are always anticom-
muting, which implies that a node occurs at k0 whenever
the δCL function values fi(k0) [or gij (k0)] vanish. Solutions
to δCL equations in D dimensions generically occur on a
(D − δLC)-dimensional manifold—the node dimension of the
corresponding AZ+I class. We provide the explicit outcome
of the analysis for D = 3 in the last column of Table II.

We remark that for classes with P or C the presented
arguments only work for nodes located at zero energy (i.e.,
at the Fermi level). For nodes at a nonzero energy (i.e., ones
formed entirely within the valence or within the conduction
bands), symmetries P and C do not restrict the effective model
(4) and can be dropped from the AZ+I description. This a
rather trivial observation and we do not return to it again in the
following sections.

IV. TOPOLOGICAL CHARGES

Knowing the dimensionality of the nodes for all the AZ+I
classes, we now determine the corresponding topological
charges. We generalize the method explained in Sec. II.B
of Ref. [95], and consider p-spheres Sp wrapping around

the nodes. The largest sphere fitting into the Brillouin zone
(BZ) is SD−1. By the smallest sphere S0, we mean a pair of
points (rather than just a single point). However, not all of
these come into play. For example, all circles S1 ⊂ BZ in a
class supporting nodal points are continuously contractible to a
single point without encountering a gap closing, and therefore
cannot host any topological obstruction. The same is true
for S0 in such a system, and a few more similar examples
are illustrated in Fig. 1. Simple counting reveals that only
p-spheres with δCL − 1 � p � D − 1 can be noncontractible
and may therefore accommodate a topological charge.

To identify the topological charge supported by Sp, we first
perform spectral flattening [86]. For a system with n occupied
and � unoccupied bands, we decompose the Hamiltonian H(k)
on Sp using the eigensystem {εa(k),|ua(k)〉}n+�

a=1 as

H(k) =
n+�∑
a=1

|ua(k)〉εa(k)〈ua(k)|, (5a)

which can be continuously deformed without closing the gap
on Sp into a flat-band Hamiltonian

Q(k) =
n+�∑
a=1

|ua(k)〉 sign[εa(k)]〈ua(k)|. (5b)

Note that the description using {|ua(k)〉}n+�
a=1 ∈ U(n + �) is re-

dundant because rotating the occupied (unoccupied) states by a
U(n) [U(�)] matrix leavesQ(k) invariant, meaning thatQ(k) ∈
U(n + �)/U(n) × U(�) ≡ MA, which is the classifying space
in the absence of AZ+I symmetries. The decompositions (5)
may not be achieved with a smooth gauge in the case of Chern
bands, nevertheless, the flat-band Hamiltonian Q(k) ∈ MA is
smooth.

Conditions (3) of a given symmetry class CL constrainQ(k)
to be an element of a smaller classifying space MCL ⊆ MA.
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(a)

(d) (e)

(b) (c)

FIG. 1. Enclosing nodes (red) by p-spheres Sp (blue) for D = 3.
(a) The only noncontractible Sp wrapping around a nodal point is
S2. Any S1 would be trivially shrinkable to a point as indicated, and
similarly for a pair of points S0. (b) A nodal line can be wrapped by
both S1 and S2, but not by S0. It follows that nodal lines may be doubly
charged. (c) A spherical nodal surface can be clearly encased by S2

(shown), as well as by a pair of points S0 located on the opposite sides
of the surface. (d) If the nodal surface takes the form of a cylinder
winding around BZ (black frame) or of a torus, it can be wrapped by
S1 too. If the nodal cylinder is characterized by a nontrivial charge
on S1, it becomes robust and a Nielsen-Ninomiya type of argument
[65] implies the presence of another such a cylinder. The same is not
true for torical nodal surface which can be gapped out by itself. The
pair of points indicated by arrows is an example of S0 “enclosing” the
cylinder. (e) Two kinds of nodal lines. The dashed ones wind around
BZ, while the solid one does not and is hence called a nodal loop.
Similar to the previous case, a nontrivial charge on S1 makes only the
winding loops robust.

For example, C = σz leads to

Q(k) =
(

0 q(k)
q†(k) 0

)
(6)

with q(k) ∈ U(n) ≡ MAIII. All relevant classifying spaces are
listed in Ref. [89] and we reproduce them in Table I.

Every Sp ⊂ BZ with a gapped spectrum is associated with
a continuous map F : Sp → MCL. Continuous deformations
of Sp as well as of H(k) (such that the spectrum on Sp

is kept gapped) lead to continuous changes of F . One may
thus consider the equivalence class [F] of maps continuously
reachable from F . Especially, if a constant map Fm : Sp → m

with a fixed element m ∈ MCL cannot be reached from F , then
Sp cannot be shrunk to a single point k0 ∈ BZ. This implies
that Sp accommodates a topological obstruction, i.e. it contains
an unremovable node. We therefore deduce a connection
between the equivalence class [F] and the charge cCL(Sp)
accommodated by the p-sphere. The order of the charge
for p � 1 corresponds to the number of distinct equivalence
classes [F], which is captured by the homotopy group πp(MCL)

TABLE III. The relevant homotopy groups πp(MCL) for AZ+I
symmetry classes supporting doubly charged nodes in D = 3 for
few-band models. Class AI contains more special cases and is treated
separately in Table IV. The exceptional values are typesetted in a
bold font. Note that in all cases a minimum of four bands (n = 2)
is necessary to realize a node with a pair of nontrivial topological
charges.

BDI D CI

π0 π1 π2 π0 π1 π2 π1 π2

n = 1 (two bands) Z2 000 0 Z2 0 000 Z 000

n = 2 (four bands) Z2 ZZZ 0 Z2 0 2Z Z ZZZ

n � 3 Z2 Z2 0 Z2 0 2Z Z Z2

[96]. The charge on Sp is then some element

cCL(Sp) ∈ πp(MCL). (7a)

Homotopy groups of spaces MCL in the large n,� limit are
listed in Ref. [90], and we reproduce them in Table I. The
special p = 0 case π0(MCL) counts the number of connected
components of MCL and also happens to have a group structure
(although this is not true about π0(X) for a general manifold
X) [97].

Collecting the charges supported by all p-spheres enclosing
a node of a given AZ+I class, the complete topological charge
of the node becomes

c
(D)
CL ∈

D−1⊕
p=δCL−1

πp(MCL). (7b)

A node may become multiply charged whenever more than one
of the groups in direct sum (7b) are nontrivial. We read from
Tables I and II that for D = 3 in the large n,� limit, doubly
charged nodal lines appear in AZ+I classes AI and CI, and
doubly charged nodal surfaces exist in classes BDI and D.

More care is required if one studies few-band models not
reaching the large n,� limit of Ref. [90]. In that case, the
homotopy groups may differ from those listed in Table I. If
MCL is a Lie group (classes AIII, BDI and CII), the homotopy
groups can be readily found in various sources (e.g., Ref. [98]),
while if MCL is a fiber bundle B = E/F (all other classes),
one can determine πp(B) from the long exact sequence of
homomorphisms [99]

. . .→πp(E)→πp(B)→πp−1(F )→πp−1(E)→ . . . . (8)

We carried out the analysis for the classes supporting doubly
charged nodes in D = 3, and we list the results in Tables III
and IV. In particular, we find that in all four instances the
minimal half-filled models exhibiting doubly charged nodes
contain four bands.

Let us briefly discuss the concept of node robustness, which
is characterized by the presence of such a charge that a set of
nodes can mutually annihilate only if their net charge vanishes.
Clearly, the nodal loop in Fig. 1(e) with a nontrivial c(S1)
and trivial c(S2) is not robust: it can be shrunk to a single
point, and since at that stage c(S1) ceases to be defined (there
is no “loop interior”), nothing prevents us from gapping out
the spectrum entirely. The result would be different if c(S2)
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TABLE IV. The relevant homotopy groups πp(MAI) for few-band
models contain multiple exceptions (displayed in bold) differing from
the large n,� limit of Table I. We briefly tackle these exceptions in
Sec. IX.

π1(MAI) n = 1 n � 2

� = 1 ZZZ Z2

� � 2 Z2 Z2

π2(MAI) n = 1 n = 2 n � 3
� = 1 000 2Z2Z2Z 000

� = 2 2Z2Z2Z Z ⊕ ZZ ⊕ ZZ ⊕ Z ZZZ

� � 3 000 ZZZ Z2

were nontrivial, because then the nodal point (corresponding
now to the shrunk nodal loop) would be enclosed by a sphere
carrying a topological obstruction [52]. This dichotomy should
be contrasted with the case of winding nodal lines in Fig. 1(e),
which cannot be shrunk to a point, such that c(S1) never
ceases to be meaningful. Such winding nodal lines are robust
regardless of the higher homotopy charge.

An analogous dichotomy exists for the nodal torus and the
nodal cylinder with nontrivial c(S1) and a trivial higher charge
that are illustrated in Fig. 1(d): the cylinder is robust while
the torus is not. In the same spirit, a nodal surface with a
nontrivial c(S0) also becomes robust if both of its dimensions
wind around BZ. Generally, if the highest nontrivial charge in
expansion (7b) corresponds to p̃-sphere, the nodal object has
to possess D − p̃ − 1 winding coordinates to become robust.

V. REALIZATIONS OF AZ + I CLASSES

We have already warned the reader that the Cartan labels
of the AZ and of the AZ+I class corresponding to a given
centrosymmetric system may be different. In this section we
explain that this disagreement occurs when IP �= PI, and we
further discuss how the individual AZ+I classes are realized
as various semimetallic and superconducting phases. Our
discussion is focused on centrosymmetric systems only. The
generalization to noncentrosymetric cases is straightforward,
and we include it in the scheme of Fig. 3.

Before delving into the scrutiny of operators P and P,
let us show that time-reversal behaves “nicely” in the sense
that always T 2 = T2, thus not leading to a Cartan label
difference. The reason is that T and I act on different degrees
of freedom (flipping the sign of time vs. position), therefore
the commutator [T ,I] = 0 and

T2 = T IT I = T 2I2 = T 2, (9)

where I2 = 1 is true for any system. This implies that in
the absence of symmetries P and C, the AZ label and the
AZ+I label of a given centrosymmetric material do coincide,
and are either A, AI or AII. Class A exhibits nodal points,
and corresponds to Weyl semimetals [21] as well as to their
photonic analog [82]. Similarly, class AI corresponds to nodal
line semimetals in the absence of spin-orbit coupling (SOC)
(including both “Type A” and “Type B” nodal line materials
of Table 1 in Ref. [95]) as well as their bosonic counterparts
[79,82,83]. Finally, class AII does not exhibit any stable nodes

(a) (b)

FIG. 2. Two bipartite lattices with a different representation of the
inversion operator I. The red (light) and blue (dark) discs represent
atoms on the two sublattices—each unit cell contains one atom of
every color. The black dots in example (b) indicate atoms that do
not enter the effective TB model, but that nevertheless influence
the hopping amplitudes by distorting the crystal field. The atoms of
both colors are identical in all respects, such that the Hamiltonian is
block-off-diagonal in the sublattice basis, leading to C = τz. While
in (a) the inversion symmetry I(a) = τx anticommutes with C (I-odd
SLS), in (b) the inversion operatorI(b) = 1τ commutes with it (I-even
SLS). In case (a), the Cartan labels of the relevant AZ and AZ+I
classes are different.

in the absence of additional crystalline symmetries. These
three scenarios correspond to Fig. 3(a).

In the following two sections, we show that always
P2 = ±P2, where the sign depends on the specific system
realization. The discussion is split into Sec. V A dealing with
nonsuperconducting systems with sublattice symmetry (SLS),
which is summarized in Fig. 3(b), and Sec. V B dealing with
superconducting (SC), which is captured by Fig. 3(c).

A. P from sublattice symmetry

The sublattice realization of C corresponds to acting on two
sets of sites (i.e., “sublattices”) with opposite sign, therefore
C2 = 1. Furthermore, this operation is insensitive to spin,
meaning that C and T commute. The composition P = T C
fulfills

P2 = T CT C = T 2C2 = T 2. (10)

This subsection is thus relevant only to AZ classes BDI and CII,
which are themselves distinguished by the presence or absence
of SOC. We want to find the associated AZ + I classes.

We begin with the example of the graphene lattice which
contains two sublattices [light red and dark blue in Fig. 2(a)].
Within the nearest-neighbor (NN) TB description, electrons
only hop between the two sublattices (i.e., not within them),
meaning that the Hamiltonian is off-diagonal in the sublattice
(orbital) basis captured by Pauli matrices τi . Therefore the
Hamiltonian anticommutes with C = τz. On the other hand,
inversion symmetry switches the two sublattices, such that
I(a) = τx and I(a)C = −CI(a). It follows that P = PI(a) obeys

P2
(a) = T CI(a)T CI(a) = −(T C)2I2

(a) = −P2 (11a)

meaning that the AZ + I class relevant for graphene differs
from the underlying AZ class. We refer to this situation as
having I-odd SLS. The Cartan labels are changed to CI in the
absence and to DIII in the presence of SOC.
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On the other hand, the lattice in Fig. 2(b) has C = τz and
I(b) = 1τ , which commute (I-even SLS). In this case,

P2
(b) = T CI(b)T CI(b) = (T C)2I2

(b) = P2, (11b)

meaning that the AZ and AZ + I Cartan labels coincide. Such
a situation arises in various nonsymmorphic lattices including
various distorted perovskites with doubled unit cells [100,101].

B. P from superconductivity

The commutation relation of P and I in SC systems
depends on the parity of the gap function �k. Furthermore,
the relevant AZ and AZ+I classes finely depend on the
presence of time-reversal symmetry (TRS) and on the degree
of spin-rotation symmetry (SRS). To systematically tackle all
the possibilities, we largely follow Sec. II.C of Ref. [84], which
similarly treats the case of AZ classification. For simplicity,
we only consider SC with zero momentum and even frequency
pairing.

The most general SC Hamiltonian takes the form [73]

H (k) = 1

2

(
c
a†
k c

a

−k

)
Hab

BdG(k)

(
c
b

k

c
b†
−k

)
, (12a)

where indices a and b encode both the spin and the orbital
degree of freedom, and

Hab
BdG(k) =

(
	ab

k �ab
k

−�ab∗
−k −	ba

−k

)
(12b)

is the Bololyubov-de Gennes (BdG) Hamiltonian, in which
	k = 	

†
k describes the underlying normal metal band struc-

ture, which may or may not contain SOC, and the gap
function obeys �k = −��

−k due to the fermionic statistics.
Hamiltonian (12b) is automatically furnished with particle-
hole operator

Pt = sxK, (13)

where Pauli matrices si act on the particle-hole degree of
freedom. Operator (13) squares to P2

t = +1.
The system described by (12) is assumed to be centrosym-

metric. We can decompose the inversion operator of the
normal metal state as I0 = Iτ ⊗ 1σ , where Iτ is the orbital
component, Pauli matrices σi represent the spin degree of
freedom, and the 1σ part follows because spin is an axial
vector. The symmetry relates I0	kI−1

0 = 	−k. Operator I0

is real because it only permutes the orbitals. Furthermore,
inversion symmetry does not mix electrons and holes, hence
the inversion operator of (12b) is diagonal in s, leaving only
two options:

IBdG = I0 ⊕ (±I0) ∈ {I0 ⊗ 1s ,I0 ⊗ sz}. (14)

These translate to a constraint on the gap function

±I0�kI−1
0 = �−k = −��

k , (15a)

where in the second step we used the fermionic statistics.
In single-orbital SCs, Eq. (15a) contains 2 × 2 matrices

in the spin-degree of freedom with I0 = 1σ . Equation (15a)
therefore simplifies to

±�k = −��
k , (15b)

where the ± sign is inherited from Eq. (15a). We see that
single-orbital SCs have to follow one of two scenarios. Either
“+” is realized in Eq. (15b) (singlet, I-even �k), such that
�k = ψk(iσy) with a complex-valued scalar function ψk even
in k. In this case, IBdG = I0 ⊗ 1s commutes with Pt, such
that P2 = P2

t = +1. Alternatively, the “−” sign in Eq. (15b) is
realized (triplet,I-odd �k), and the gap function takes the form
�k = (dk · σ )(iσy) with a complex-valued vector function
dk odd in k. In this case, IBdG = I0 ⊗ sz anticommutes
with Pt, such that P2 = −P2

t = −1. However, as explained
in Ref. [84], the presence of SRS renders description (12)
redundant and a finer examination is necessary. We do so
below after first commenting on the multiorbital case.

In multiorbital SCs, the presence of inversion symmetry
may be insufficient to enforce the singlet/triplet separation.
The gap function can be a mixture of both, provided that the
parity in the spin degree of freedom is compensated by the
parity in the orbital one. Let us illustrate this on the graphene
lattice of Fig. 2(a) with I0 = τx ⊗ 1σ . The symmetry group
permits two mixed representations. First, the even one (I-even
�k) with

�+
k =

∑
j=0,x,y

ψ
j

k (iσy) ⊗ τj +
∑

i=x,y,z

diz
k σi(iσy) ⊗ τz, (16a)

where ψ0
k ,ψx

k are even and ψ
y

k ,diz
k are odd functions of k. In

this case, IBdG = I0 ⊗ 1s commutes with Pt such that P2 =
P2

t = +1. The second options is the odd representation (I-odd
�k)

�−
k = ψz

k(iσy) ⊗ τz +
∑

i = x,y,z

j = 0,x,y

d
ij

k σi(iσy) ⊗ τj , (16b)

where ψz
k,d

iy

k are even and di0
k ,dix

k are odd in k. In this
case IBdG = I0 ⊗ sz anticommutes with Pt such that P2 =
−P2

t = −1. Contrastingly, the lattice of Fig. 2(b) has a
trivial I0 = 1τ ⊗ 1σ , such that the simplification to Eq. (15b)
becomes valid, and the singlet/triplet separation of the previous
paragraph applies again.

We now combine the obtained information with the
arguments of Ref. [84]. We begin with systems without
a continuous SRS, meaning that there is no normalized
combination of Pauli matrices n · σ ≡ σn such that

	kσn − σn	k = 0, (17a)

�kσ
�
n + σn�k = 0 (17b)

simultaneously for all momenta in BZ. Note that SRS can
be removed either by the presence of SOC in 	k or by the
electron pairing encoded in �k. If such a system breaks TRS,
the only AZ symmetry is P2

t = +1 which corresponds to AZ
class D. Depending on the inversion-parity of �k in Eq. (15a),
we obtain P2 = ±P2

t = ±1. The positive sign (I-even �k)
leads to AZ + I class D, while the negative sign (I-odd �k)
moves us to AZ + I class C. On the other hand, a system
respecting TRS has additional

T = iσyK (18)

squaring to −1, and belongs to AZ class DIII. The correspond-
ing AZ + I class for I-even �k remains DIII, while I-odd �k
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leads to AZ + I class CII. Note that in the absence of SOC such
realizations of AZ + I classes D and DIII are only possible
in multiorbital SCs, because I-even �k in single-orbital case
indicates a pure singlet state having the full SU(2) SRS, which
contradicts the original assumption.

We further consider SCs with U(1) SRS which means
that there is (up to the overall sign) a single matrix σn
fulfilling Eqs. (17) for all k ∈ BZ. As shown in Ref. [84],
their Hamiltonians (12b) canonically decouple into two blocks,
rendering the original description redundant. If we rotate the
coordinates such that the conserved spin component is σz, then
one of the blocks becomes

H1/2(k) = 1

2

(
c
α†
k↑ c

α

−k↓
)
Hαβ

1/2(k)

(
c
β

k↑
c
β†
−k↓

)
, (19a)

where α,β stand for the orbital degree of freedom, and

Hαβ

1/2(k) =
(

	
αβ

k,↑↑ �
αβ

k↑↓
−�

αβ∗
−k↓↑ −	

βα

−k↓↓

)
(19b)

is the reduced BdG Hamiltonian. Operator Pt of Eq. (13)
relates the two blocks, and in the absence of TRS the single
block (19b) contains none of symmetries (1). We thus end up in
AZ class A, which corresponds to the same AZ+I class. The
additional presence of TRS manifests within a single block as
chiral symmetry C = ςy where Pauli matrices ςi correspond
to the particle-hole degree of freedom of Eqs. (19). Such SCs
correspond to AZ and AZ + I class AIII, regardless of the
parity of �k.

Finally, we tackle SCs with the complete SU(2) SRS,
meaning that Eqs. (17) are fulfilled for every n and k. These
are automatically pure singlet SCs with no SOC. In this case,
the block (19b) develops particle-hole symmetry [84]

Ps = iςyK (20)

squaring to −1. In the absence of TRS, this corresponds to AZ
class C. Depending on the inversion parity of �k in Eq. (15a),
the inversion operator induced into the block (19b) fromIBdG is

I1/2 = Iτ ⊕ (±Iτ ) ∈ {Iτ ⊗ 1ς ,Iτ ⊗ ςz}. (21)

The “+” sign of Eq. (21) corresponds to I-even �k, when Ps

and I1/2 commute and the AZ + I class remains C. This is
the case of single-orbital singlet SCs, and of multiorbital SC
in which the three diz

k terms in Eq. (16a) vanish. On the other
hand, the “−” sign relates to the I-odd case �k with P2 =
−P2

s = +1 such that the AZ + I class switches to D. This
situation corresponds to a very fine-tuned multiorbital case
when the nine d

ij

k of Eq. (16b) vanish, and as such may be rele-
vant only to certain artificially engineered systems. Ultimately,
if the singlet SC preserves TRS, the block (19b) develops
Ts = K squaring to +1 leading to AZ class CI. Under such
circumstances, the I-even �k case belongs to AZ+I class CI,
while the I-odd �k case corresponds to AZ+I class BDI.

We remark that the relevant AZ+I class of single-orbital
singlet SCs is susceptible to the inclusion of SOC in 	k. In
the presence of TRS, the gradual decrease of SRS due to
the presence of SOC corresponds to AZ+I class evolution
CI → AIII → DIII. While all three classes in 3D exhibit nodal
lines, only class CI nodal lines (corresponding to no SOC) are

D 

 

D

D

(a)

(b)

(c)

FIG. 3. A schematic summary of Sec. V. Here, T , P , C are the
usual AZ symmetries, while the assigned Cartan labels correspond to
the AZ+I classes characterized by symmetries T, P, C. The even/odd
sublattice parity corresponds to IC = ±CI (where I is the inversion
operator), and the even/odd gap function corresponds to I0�k =
±�−kI0 (where I0 is the normal state inversion operator). With gray
font we indicate the relevant AZ+I class for noncentrosymmetric
systems (assuming for simplicity that T and P are also absent),
which are not discussed explicitly in the text. The cells with green
background indicate the example models discussed explicitly in
Secs. VI–IX.

according to Table I characterized by a pair of charges. On the
other hand, in the absence of TRS the inclusion of SOC leads
to AZ+I class evolution C → A → D. In 3D, this implies
that the removal of a continuous SOC inflates the Weyl points
into doubly charged nodal surfaces [80].

As a guide for the reader, we provide in Table V a list of
some well-known examples of exotic superconductors with
their relevant AZ+I classes. In several cases, there is no
consensus on the symmetry of the SC order parameter, hence
in the table we explicitly assume an order parameter suggested
by the provided references. The focus of this manuscript,
however, is not the classification of existing materials, but
a study of doubly charged nodes permitted in 3D. To meet
this goal, the subsequent sections focus on the realizations of
AZ+I classes indicated with green background in Fig. 3.

VI. Z2 ⊕ 2Z NODAL SURFACES IN CLASS D

In the remainder of the manuscript, we individually discuss
each of the four AZ+I symmetry classes supporting doubly
charged nodes in D = 3. As shown in Tables III and IV, the
minimal half-filled model capable to realize doubly charged
nodes always contains four bands, hence we begin each
section by introducing the most general four-band Hamiltonian
compatible with the AZ+I symmetries (3). We continue with
an explanation of the two topological charges, and conclude
by constructing a concrete TB model on a SrPtAs-like lattice.
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TABLE V. List of selected unconventional superconducting (SC) and superfluid materials and their location within Fig. 3(c), assuming the
order parameters considered in the cited references. For certain entries, label (m) indicates the explicit presence and (s) the explicit absence
of multiorbital pairing, and for all materials we neglect the possible presence of SOC in 	k. The symmetry analysis of Sec. V B predicts the
dimensionality of stable nodes indicated in the last column. In some of the cases, further point group symmetries may impose additional nodes
of a different dimension (e.g., the line node at kz = 0 of URu2Si2 (s) [104] protected by a horizontal mirror symmetry). On the other hand, the
vertical mirror symmetries of d-wave cuprates only serve to locate the nodal lines within high-symmetry planes, but are not essential for the
stability of the NLs.

Pair condensate material �k parity SRS T present AZ+I class nodes

SrPtAs (m) [85], URu2Si2 (m) [80] even (none) × D surfaces

cuprates (d-wave) [102], CeCoIn5 [103] even SU(2) � CI lines

SrPtAs (s) [76], URu2Si2 (s) [104] even SU(2) × C points
3He-B [105] odd (none) � CII (none)

PrOs4Sb12 [106] odd (none) or U(1) × C or A points
3He-A [105] odd U(1) × A points

CePt3Si [74], Li2Pt3B [107] (no I) (none) � AIII lines

LaNiC2 [108] (no I) (none) × A points

The present section focuses on AZ+I class D. According to
Tables I and II, its zero-energy nodes take the form of surfaces
characterized by a pair of topological charges

c
(3)
D ∈ π0(MD) ⊕ π2(MD) = Z2 ⊕ 2Z. (22)

We show that the π0 charge can be understood as the sign
of the Pfaffian of the Hamiltonian and the π2 charge as
the (first) Chern number, as is indicated in the rightmost
block of Table I. In the last section, we discuss how such
nodal surfaces naturally appear in TRS breaking multiorbital
superconductors.

A. General four-band Hamiltonian

The six 4 × 4 matrices compatible with P = K, which
appear in Table II can be arranged into a pair of vectors

v = (σx ⊗ τy,σy ⊗ 1,σz ⊗ τy), (23a)

w = (σy ⊗ τx,1 ⊗ τy,σy ⊗ τz), (23b)

such that {vi,vj } = {wi,wj } = 2δij and [vi,wj ] = 0. The most
general four-band Hamiltonian of this class is

H(k) = a(k) · v + b(k) · w, (24a)

where a(k) and b(k) are real-valued vector functions. The
spectrum of (24a) is easily found to be

ε(k) = ±‖a(k)‖ ± ‖b(k)‖. (24b)

The gap closes whenever ‖a(k)‖ = ‖b(k)‖. This is a single
condition, manifesting the codimension δD = 1 listed in
Table II.

Although the 4 × 4 matrices vi (as well as wi) are anticom-
muting, they do not form a Dirac basis because their algebra
is closed under commutator, [vi,vj ] = 2iεijkvk . Following
Ref. [94], we refer to it as a double Weyl basis. An important
characteristic is that a double Weyl Hamiltonian Hd.W. ∝ k · v

describes two superimposed Weyl points of the same chirality
(which can be split using terms ∝ wi) [109]. This is to
be contrasted with a Dirac Hamiltonian HD. ∝ k · �, which
creates two superimposed Weyl points of opposite chirality

(which can be split using a term ∝ �45). Consequently, a
double Weyl point is a source of two Berry phase quanta,
while the Chern number of a Dirac point vanishes.

B. Interpretation of π0(MD) = Z2

The six matrices (23) are antisymmetric and imaginary. The
hermiticity of H(k) along with P = K entail

H�(k) = H∗(k) = PH(k)P−1 = −H(k). (25)

As a consequence, iH(k) is a skew-symmetric and even-
dimensional matrix with real entries. One can therefore
construct a nonvanishing Pfaffian Pf[iH(k)], which is a real-
valued function of k. For (24a), specifically,

Pf[iH(k)] = b2(k) − a2(k), (26)

which changes sign at the nodal surface.
This observation generalizes to an arbitrary class D model:

the presence of a node at k0 is revealed by a pair of zero energy
states. This enforces det[H(k)] = ∏

a εa(k) to vanish at k0 and
to depend quadratically on (k − k0). By the identity

det[H(k)] = Pf[H(k)]2 = (−1)n Pf[iH(k)]2, (27)

the Pfaffian also vanishes at k0, but it varies linearly with
(k − k0). This implies that Pf[iH(k)] has a different sign at
two points {k1,k2} ∼= S0 located on the opposite sides of the
nodal surface. We can therefore formulate the zeroth homotopy
charge as

cD(S0) = sign

{ ∏
k∈S0

Pf[iH(k)]

}
∈ {+1, − 1}. (28)

This charge has been recently discussed in work [80].

C. Interpretation of π2(MD) = 2Z

A natural candidate for an integer topological charge on a
2-sphere is the (first) Chern number. We show below that this
is indeed the case here, and we explain why the particle-hole
symmetry enforces it to be even.
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The Chern number is formulated as [86]

cD(S2) = i

2π

∮
S2

d2k · tr F (k) ∈ Z, (29)

where F (k) is the Berry curvature determined from

F = ∇k × A + A × A, (30a)

Aab
i (k) = 〈ua(k)|∂i |ub(k)〉, (30b)

where A(k) is the Berry-Wilczek-Zee (BWZ) connection
[110,111], a,b label the occupied bands, and ∂i ≡ ∂/∂ki

. For
nondegenerate bands, the second term in Eq. (30a) vanishes
after taking the trace such that we can decompose the integrand
of Eq. (29) into the contributions of individual bands,

tr F (k) =
∑

a

〈∇ku
a(k)| × |∇ku

a(k)〉 ≡
∑

a

Fa(k). (31)

One can similarly determine the Berry curvature and the Chern
number of the unoccupied bands.

The curvature of an occupied band |ua(k)〉 and the cur-
vature of a particle-hole related unoccupied band |̃ua(k)〉 =
P|ua(k)〉= |̃ua(k)〉∗ differ only in the overall sign. To see this,
first note that A(k) is skew-Hermitian,

0 = ∇kδ
ab = ∇k〈ua(k)|ub(k)〉 = Aab + (Aba)∗, (32)

such that its diagonal terms are imaginary. Taking the curl in
Eq. (30a) preserves this property, hence the band curvatures in
Eq. (31) are imaginary too. It follows that

F̃a(k) = 〈∇kũ
a(k)| × |∇kũ

a(k)〉
= [〈∇ku

a(k)| × |∇ku
a(k)〉]∗ = −Fa(k) (33)

as we wanted to show.
Relation (33) readily explains why the Chern number (29)

takes even values: consider a nodal surface S2
node along with a

surface S2
in inside of it and a surface S2

out enclosing it. Since
S2

in can be trivially shrunk to a point without encountering
a node, cD(S2

in) = 0. The node S2
node is created by switching

one occupied and one empty band, which by Eq. (33) carry
opposite Berry curvatures, which integrate to opposite Chern
numbers c and −c. Consequently, the charge cD(S2

out) =
cD(S2

in) + c − (−c) = 2c is indeed even. These considerations
give the nodal surface a peculiar interpretation as an inflated
double Weyl point [80]. The reason is that S2

node is a source of
an even number of Berry phase quanta, reminiscent of double
Weyl points. This is consistent with our discussion of the
double Weyl basis in Sec. VI A. Work [80] also dubbed these
objects in the context of SC as Bogolyubov Fermi surfaces.

We demonstrate these observations by setting a(k) =
(0,m,0) and b(k) = k in the general four-band model (24a).
This produces a nodal sphere with radius |m|. We further rotate
the basis as σx �→ σy �→ σz �→ σx using Uσ , where

U = 1√
2

(
1 −i
1 i

)
. (34)

This is accompanied by a transformation P = K �→ σxK.
Then the Hamiltonian decouples into two blocks, H(k) =

FIG. 4. Spectrum of Hamiltonian (35) consists of two Weyl points
(black dots) of the same chirality with energy offset ±m, crossing on
a nodal sphere with radius |m|. The two species of lines indicate
Berry curvatures of opposite signs, which integrate to opposite Chern
numbers ±1. The total Chern number over the occupied states is zero
inside and equals ±2 outside the nodal sphere, meaning that the nodal
surface is a source of a pair of Berry phase quanta.

H1(k) ⊕ H2(k), with

H1(k) = +m1τ + kxτx + kyτy + kzτz, (35a)

H2(k) = −m1τ − kxτx + kyτy − kzτz. (35b)

Clearly, this is a pair of Weyl points of the same chirality with
energy offset ±m, as illustrated in Fig. 4. We observe that
indeed cD(S2

in) = 0 and |cD(S2
out)| = 2.

D. Example class D model

We provide the reader with a simple way of testing the
presented ideas by introducing a TB model on a SrPtAs-like
lattice adapted from Ref. [85]. This reference observed the
formation of nodal surfaces in a multiorbital d ± id SC phase
[76] with an admixed p-wave component, corresponding to
AZ+I class D. As illustrated in Fig. 5(a), the centrosymmetric
structure of SrPtAs consists of graphenelike layers with

(a) (b)

FIG. 5. (a) Crystalline structure of SrPtAs consists of three
elements: strontium (Sr: large, bright gray), platinum (Pt: large,
light red), and arsenic (As: small, dark blue). The TB model of the
present Sec. VI considers s-like orbitals located at the Pt sites, while
the TB models of the subsequent Secs. VII to IX capture s-like
orbitals at both the Pt and the As sites. The thick green arrows R1,2,3

indicate Bravais vectors (36a), while the thin arrows a,c indicate unit
cell dimensions. Six atoms (2 × Sr,2 × Pt,2 × As) belonging to a
single Bravais vector are highlighted with black thick circles in the
bottom left part of the panel. (b) Top view of a single hexagonal
layer of SrPtAs. The triplets of vectors t = {tn}3

n=1 (solid purple)
and T = {T n}3

n=1 (dashed orange) are used to achieve a compact
formulation of the TB Hamiltonians.
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TABLE VI. Overview of the sets of Pauli matrices used in the
manuscript. The last two rows are only relevant for Secs. VII to IX
when developing example TB models on a SrPtAs-like lattice. We use
the words “orbital” and “sublattice” interchangeably if the orbitals
reside at different lattice sites.

Symbol Corresponding two-level degree of freedom

σ spin (↑↔↓)

s particle-hole (p ↑ ↔ h ↑)

ς reduced particle-hole (p ↑ ↔ h ↓)

τ orbital [same color interlayer (A ↔ B) in Fig. 5]

r orbital (intralayer red ↔ blue in Fig. 5)

ρ orbital (interlayer red ↔ blue in Fig. 5)

platinum (Pt) and arsenic (As) atoms on the two sublattices,
and of intercalated strontium (Sr) atoms. Our goal here is not
to provide a realistic description of SrPtAs, but to demonstrate
the possible appearance of the doubly charged nodal surfaces
in this lattice for the properly set values of the TB parameters.

We assume that s-like orbitals located at the Pt sites enter
the TB model. The primitive Bravais vectors are

R1,2 = 3a

2

(
1, ∓ 1√

3
,0

)
and R3 = (0,0,2c) (36a)

and the positions of the two orbitals corresponding to a given
Bravais vectors are

rA = (0,0,0) and rB =
(

a

2
, − a

√
3

2
,c

)
. (36b)

To write the Hamiltonian compactly, we use vectors

t1,2 = a

(
−1

2
, ∓

√
3

2
,0

)
and t3 = a(1,0,0) (36c)

of Fig. 5(b), and their differences T i = 1
2

∑
jk εijk(tk − tj ).

We further define ωn = ei2πn/3 ∈ C, and functionals

Sp,v
f (k) =

3∑
n=1

(ωn)pf (k · vn), (36d)

where f denotes a function on R, the first superscript p ∈ Z,
and the second superscript indicates a set of three vectors,
v = {vn}3

n=1.
The NN intralayer hopping with amplitude t0/2 and the

intraorbital hopping across two layers with amplitude t ′z/2
produce

H1(k) = [
t0S0,T

cos (k) + t ′z cos(2kzc)
]
1σ ⊗ 1τ , (37a)

while the interlayer hopping with amplitude tz/2 gives

H2(k) = tz cos(kzc)1σ ⊗ [
S0,t

cos(k)τx + S0,t
sin (k)τy

]
. (37b)

We further include the intralayer SOC term

H3(k) = αsoS0,T
sin (k)σz ⊗ τz, (37c)

which reduces the SRS of H(k)= ∑
i Hi(k) (which corre-

sponds to 	k in the notation of Sec. V B) to U(1). The meaning
of Pauli matrices σi,τi follows Table VI.

(a) (b)

(c) (d)

FIG. 6. Doubly charged nodal surfaces of AZ+I class D.
(a) Fermi surface of TB model (37) with parameters (38) consists of
a pair of pockets centered on the corners of BZ. (b) The d + id order
parameter (39a) creates double Weyl points where the vertical BZ
edges cross the Fermi pockets. Admixing a p-wave order parameter
(39b) inflates them into tiny nodal surfaces. (c) Plot of sign Pf [iH(k)]
for a horizontal slice through the nodal surface at the indicated value
of kzc. (d) Flow of the Berry curvature across an ellipsoid described
in the text, which encloses the nodal surface. Integration reveals that
the nodal surface is a source of two Berry phase quanta.

We set the parameters of TB model (37) to

t = 1, tz = −1, t ′z = 1, αso = −1, and μ = −3.5,

(38)

where μ is the chemical potential. Then the Fermi surface
consists of a pair of pockets centered on the corners of BZ as
shown in Fig. 6(a). We further let the system develop a SC
d + id order parameter

�d
k = ψ0S1,T

cos (k)(iσy) ⊗ 1τ , (39a)

which is I-even (more exactly, it belongs to the E2g repre-
sentation of the D6h point group [85]). Order parameter (39a)
vanishes along the vertical edges of the BZ, meaning that
nodal points are formed where these edges cross the Fermi
pockets. This is compatible with the scheme in Fig. 3(c):
the complexity of the order parameter breaks TRS, and the
combined Eqs. (37) and (39a) preserve U(1) SRS. This locates
the system in AZ+I class A, which according to Table II in
D = 3 indeed exhibits nodal points. In fact, because of the
underlying spin degeneracy of the bands [i.e. due to the block
reduction (19) of the BdG Hamiltonian], these are precisely
the previously discussed double Weyl points.

However, the multiorbital character of the SrPtAs lattice
allows us to admix a p-wave order parameter [85]

�
p

k = d−z sin(2kzc)(σx − iσy)(iσy) ⊗ τz, (39b)

which preserves the even parity of �k (as well as the E2g

representation) and that does not vanish along the vertical BZ
edges. Importantly, (39b) breaks SRS altogether, such that the
system is shifted to AZ+I class D exhibiting doubly charged
nodal surfaces. To check this, we set

ψz = 0.2 and d−z = 0.2 (40)
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and find tiny nodal surfaces at the expected position, plotted
in Fig. 6(b). Rotating the basis by U†

s ⊗ 1σ ⊗ U†
τ with matrix

U from Eq. (34) leads to P = K, such that we can check
the sign of Pf [iH(k)] on a plane crossing the nodal surface,
plotted in Fig. 6(c). Finally, we calculate the Berry curvature
over the occupied states on an ellipsoid with radii 1

10 ( 1
a
, 1
a
, 1
c
)

centered on the nodal surface, plotted in Fig. 6(d). Numerical
integration of (29) reveals that indeed |cD(S2

out)| = 2.

VII. Z2 ⊕Z2 NODAL SURFACES IN CLASS BDI

The AZ+I class BDI is the only one that supports doubly
charged nodes already in D = 2, explicitly

c
(2,3)
BDI ∈ π0(MBDI) ⊕ π1(MBDI) = Z2 ⊕ Z2. (41)

Most of our discussion applies equally well to both cases,
although all the explicit examples are provided for D = 3.
In the following sections, we first construct the most general
four-band Hamiltonian of this symmetry class and determine
its spectrum. We show that the π0 charge is again the Pfaffian
invariant (28), although an alternative determinant formulation
becomes possible too. On the other hand, the π1 charge is
new and corresponds to the winding of a closed path inside
SO(n). We develop a way to determine this charge by plotting
the matrix spectrum along the path. In the last section, we
develop a non-SC model on a lattice consisting of dimerized
AAA-stacked graphene layers, which belongs to symmetry
class BDI and that exhibits doubly charged nodal cylinders.
Nodal surfaces belonging to this symmetry class have been
previously predicted in certain three-dimensional graphene
networks [112], although these didn’t carry a nontrivial value
of the higher π1 charge.

A. General four-band Hamiltonian

We order the four basis matrices of Table II into a pair of
two-component vectors:

v = (σx ⊗ 1, − σy ⊗ τy), (42a)

w = (σx ⊗ τz, − σx ⊗ τx) (42b)

fulfilling {vi,vj } = {wi,wj } = 2δij and [vi,wj ] = 0. We en-
code the general four-band Hamiltonian using a pair of
real-valued vector functions p = (p1,p2),r = (r1,r2) as

H(k) = p(k) · v + r(k) · w. (43a)

Diagonalizing the Hamiltonian reveals the spectrum,

ε(k) = ±‖ p(k)‖ ± ‖r(k)‖. (43b)

The gap closes whenever ‖ p(k)‖ = ‖r(k)‖. Since this is a
single scalar constraint, we deduce the codimension δBDI = 1,
thus confirming again that AZ+I class BDI in D = 3 supports
nodal surfaces.

B. Interpretation of π0(MBDI) = Z2

The presence of C = σz guarantees a block-off-diagonal
form of H(k), while T = K makes it real. Consequently,

H(k) =
(

0 A(k)
A�(k) 0

)
with A(k) ∈ GL(n,R). (44)

For the n = 2 model (43a) explicitly,

A(k) = p1(k)1τ − r2(k)τx + p2(k)iτy + r1(k)τz. (45)

Since P fixes nodes to zero energy, they are exposed by

0 = detH(k) = i2n[det A(k)]2. (46)

Nodal surfaces separate regions with opposite sign of det A(k).
This implies that for S0 = {k1,k2} there is

cBDI(S
0) = sign

[∏
k∈S0

det A(k)

]
∈ {+1, − 1}. (47)

In fact, this is just the Pfaffian invariant (28) in disguise.
Rotating the basis by Uσ leads to T = σxK, P = K, and C =
σx , such that the transformed Hamiltonian UσH(k)U†

σ ≡ H̃(k)
is antisymmetric and has a well-defined Pfaffian. It follows
that

[det A(k)]2 = Pf[iH̃(k)]2 (48)

such that formula (28) is applicable for calculating the charge
cBDI(S0) too.

Before moving on, we make a passing remark on the
generality of the Z2 Pfaffian invariant (28), respectively, (47)
for nodal surfaces occurring in an arbitrary systems with a
spectral symmetry, by which we mean that for any reason
the eigenvalues of H(k) and −H(k) coincide. For AZ+I
classes D and BDI of the last two sections, such a spectral
symmetry was enforced by P, but a very recent Ref. [113] also
considers systems with nodal surfaces protected by a global
U(1) symmetry corresponding to [H(k),γ 5] where γ 5 is the
“chiral” Dirac matrix. The spectral symmetry in their example
model follows from the additional chiral symmetry (3d) also
present in the model.

The spectral symmetry allows one to diagonalize the
Hamiltonian as

H(k) = Vk[Ek ⊕ (−Ek)]V†
k, (49a)

where Ek = diag[ε1(k),ε2(k), . . . ,εn(k)] is a collection of
eigenvalues (not necessarily of the same sign) and the columns
of unitary matrix Vk are the corresponding eigenstates of
H(k). Rotating the basis by U†

s V†
k brings the Hamiltonian to

antisymmetric form

H̃(k) = U†
s V

†
kH(k)VkUs =

(
0 −iEk

iEk 0

)
, (49b)

such that we can consider the Pfaffian

Pf[iH̃(k)] = det[Ek] =
n∏

a=1

εa(k). (49c)

If one enforces the continuity of Vk along a path in BZ, then
one of the eigenvalues εa(k) switches sign at the nodal surface.
Therefore Eq. (28) always defines a Z2 charge for spectral-
symmetric systems exhibiting nodal surfaces. Reference [113]
shows that the U(1)-symmetric nodal surfaces, in fact, exhibit
a richer Z classification, but this is not in contradiction with
our statement. Instead, one can draw an analogy to nodal lines
whenZ2 Berry phase can always be defined, but in the presence
of certain symmetry, a richer Z winding number also exists.
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C. Interpretation of π1(MBDI) = Z2

We first explain why MBDI = O(n). Note that C = σz relates
pairs of states with energies ±εa ,

|ua,+(k)〉 =
(∣∣ua,1

k

〉∣∣ua,2
k

〉) with εa(k) > 0, (50a)

|ua,−(k)〉 = σz|ua,+(k)〉 with − εa(k) < 0, (50b)

where (a,+) and (a,−) label a pair of bands. It follows from
the orthogonality of states (50) that〈

u
a,1
k

∣∣ub,1
k

〉 = 〈
u

a,2
k

∣∣ub,2
k

〉 = 1
2δab, (51a)∑

a

∣∣ua,1
k

〉〈
u

a,1
k

∣∣ =
∑

a

∣∣ua,2
k

〉〈
u

a,2
k

∣∣ = 1

2
1. (51b)

Furthermore, all the eigenstates are real because of T = K.
It follows that the flat-band Hamiltonian Q(k) acquires the
block-off-diagonal form (6) with

q(k) = 2
∑

a

|ua,1(k)〉〈ua,2(k)| ∈ O(n). (52)

Every S1 ⊂ BZ with a gapped spectrum therefore traces a
closed path image in O(n). The charge cBDI(S1) corresponds
to the homotopy equivalence class of this image.

The space O(n) consists of two separate components
characterized by det q(k) = ±1. This is just the π0 charge
(47), i.e., the sign of det(k) is fixed unless one crosses a nodal
surface, hence the image of a gapped S1 ⊂ BZ lies entirely
within one of the two components. If det[q(k)] = −1, we
replace q(k) by its composition with a mirror symmetry with
respect to the nth coordinate, while we keep it unchanged
otherwise. Then the analysed q(k) ∈ SO(n), and we formally
write down the π1 charge as the homotopy equivalence class

cBDI(S
1) = [q : S1 → SO(n)] (53)

within the special orthogonal group. In the subsequent sec-
tions, we will encounter a similar charge appearing also in the
case of nodal lines of AZ+I classes CI and AI.

Determining the homotopy class (53) can be achieved by
tracking the eigenvalues of q(k). For n even, the eigenvalues
come in complex conjugate pairs e±iα , while for n odd there
is an additional eigenstate (axis of rotation) with eigenvalue 1.
The charge cBDI(S1) may be nontrivial if the eigenvalue phases
αi contain a nontrivial winding along S1. More specifically,
one has to count the number of crossings at α = ±π , which is
a robust π1[SO(2)] = Z quantity for n = 2, while for n � 3
only the parity π1[SO(n)] = Z2 is conserved since then a pair
of ±π crossings is allowed to annihilate. For n = 1, there
is just the static unit eigenvalue and the topological charge
π1[SO(1)] = 0 is absent. These observations are in accord
with the exceptional entries in Table III.

We demonstrate this procedure on model (43a). The off-
diagonal block q ∈ SO(2) becomes

q = 1

‖ p‖
(

p1 p2

−p2 p1

)
or

1

‖r‖
(

r1 −r2

r2 r1

)
, (54)

where the first expression applies if ‖ p‖ > ‖r‖, and the
second one otherwise. Let us be more specific by setting

p(k) = (kx,ky) and r(k) = (m,0). Then the spectrum ε(k) =
±m ±

√
k2
x + k2

y exhibits a zero-energy nodal cylinder at
k2
x + k2

y = m2, as well as a pair of nodal lines with energies
±m coinciding at kx = 0 = ky . These nodal lines tie the
(un)occupied bands in a way that makes the nodal cylinder
robust: one can at best shrink the cylinder to a line by
setting m = 0, but it reappears for both m > 0 and m < 0.
To check the topological charge, we consider a circular path
S1 : k(ϕ) = (k cos ϕ,k sin ϕ,0) with ϕ ∈ [0,2π ]. We find

q(ϕ) =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)
or

(
1 0
0 1

)
, (55)

where the first expression applies for k > m (S1 enclosing the
nodal cylinder), and the second one otherwise. We observe
that the invariant (53) is trivial inside and nontrivial outside
the nodal cylinder, as expected.

We remark that invariant (53) does not correspond to the
Berry phase. Although the nodal lines at energies ±m of the
considered model both carry Berry π phase, their pairwise
appearance (imposed by P) leads to net Berry 2π phase both
outside and inside of the nodal cylinder. This doubling is
similar to the presence of an even Chern number in AZ+I
class D. The difference here is that Berry phases 2π and 0 are
indistinguishable and therefore both trivial.

D. Example class BDI model

As an example realization of the doubly charged nodal
surfaces of AZ + I class BDI, we consider AAA-stacked
graphene layers, obtained by identifying the Pt and As sites in
Fig. 5. The layers are further assumed dimerized into nearby
pairs at distance c, the pairs being separated by larger gaps rc

with r > 1. Importantly, we require the presence of a sublattice
realization of C which is usually only approximately present
in realistic systems.

Sticking to the Pauli matrix notation of Table VI, we
consider intralayer NN hoppings

H1(k) = t11ρ ⊗ [
S0,t

cos(k)rx − S0,t
sin (k)ry

]
(56a)

and vertical hoppings of different amplitude within and
between the dimerized layers

H2(k) = (t2eikzc + t3e−ikzrc)ρ+ ⊗ 1r + H.c., (56b)

where ρ± = 1
2 (ρx ± iρy), and h.c. denotes the Hermitian

conjugation. The spatial inversion of the system I = ρx ⊗ rx

commutes with the sublattice symmetry C = ρz ⊗ rz, making
this anI-even SLS model. Since the Hamiltonian respects TRS
and does not contain SOC, the scheme of Fig. 3(b) locates us
in AZ + I class BDI.

To be specific, we consider parameter values

t1 = 1, t2 = 0.5, t3 = 0.1, and r = 2, (57)

which create a pair of nodal cylinders centered on the vertical
BZ edges, see Fig. 7(a). Rotating the basis by

V = 1√
2

[
1ρ ⊗

(
1 0
i 0

)
r

+ ρx ⊗
(

0 1
0 −i

)
r

]
(58)

leads to C = ρz ⊗ 1r and T = K, as has been required for the
calculation of the topological charges. In Figs. 7(b) and 7(c),
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(a)

(b)

(c)

(d)

FIG. 7. Doubly charged nodal surfaces of AZ+I class BDI.
(a) Fermi surface of model (56) with parameters (57) consists of a
pair of nodal cylinders centered on the vertical BZ edges. (b) and (c)
Evolution of the q(k) ∈ SO(2) eigenvalues along a path encircling the
nodal surface (green) and a path inside of it (red) indicate a nontrivial
π1 charge (53). (d) Plot of the sign of det [q(k)] for horizontal planes
at the indicated values of kzc demonstrate the nontrivial value of π0

charge (47).

we check the q(k) eigenvalue winding (53) along a path that
encloses (green) and a path that is enclosed by (red) the nodal
cylinder. In Fig. 7(d), we plot the sign of det[q(k)] within
the horizontal high-symmetry planes of the BZ. These two
calculations confirm that both charges (47) and (53) of the
nodal cylinders are nontrivial.

VIII. Z⊕Z2 NODAL LINES IN CLASS CI

The AZ+I class CI in D = 3 exhibits nodal lines charac-
terized by a pair of topological charges

c
(3)
CI ∈ π1(MCI) ⊕ π2(MCI) = Z ⊕ Z2. (59)

According to Table III, the minimal model supporting a
nontrivial value of the higher charge contains four bands. In the
following subsections we first introduce the general four-band
Hamiltonian belonging to this symmetry class and determine
its spectrum. We show that the π1 charge corresponds to the
winding of the determinant of q(k)—the off-diagonal block of
the flat-band Hamiltonian Q(k). We further show that the π2

charge corresponds to the homotopy equivalence class inside
SO(n) just like for the π1 charge of the AZ+I class BDI.
The difference is that the role of the Hamiltonian block q(k)
gets replaced by Wilson loop operators W(S1). In the last
section, we show how this species of nodal lines may appear in
TRS preserving singlet SC phase of nodal line metals without
SOC, provided that the sign of the gap function changes along
the (cylindrical or torical) Fermi surface. A viable route to
realize such a phase experimentally might be through the SC
proximity effect.

A. General four-band Hamiltonian

We order the six symmetry-compatible basis matrices of
Table II into a pair of three-component vectors:

v = (σz ⊗ τz, − σz ⊗ τx,σx ⊗ 1), (60a)

w = (−σx ⊗ τz,σx ⊗ τx,σz ⊗ 1), (60b)

such that {vi,vj } = {wi,wj } = 2δij and [vi,wj ] = −iδij σy ⊗
1τ . A general four-band Hamiltonian is expressed using two
real-valued vector functions a(k) and b(k) as

H(k) = a(k) · v + b(k) · w (61a)

and has spectrum

ε(k) = ±
√

a2 + b2 ± 2‖a × b‖. (61b)

The gap closes whenever simultaneously ‖a(k)‖ = ‖b(k)‖ and
a(k) · b(k) = 0. This is a pair of scalar constraints, compatible
with δCI = 2 that has been determined independently in
Table II. This means that the nodal objects in D = 3 are
one-dimensional lines.

B. Interpretation of π1(MCI) = Z

The presence of C implies a natural interpretation of the
Z-valued π1 charge as the usual winding number [86], with
I not playing a role. Rotating the basis of Table II by Uσ

of Eq. (34) leads to the canonical form C ∝ σz, when the off-
diagonal block q(k) of the flat-band Hamiltonian (5b) acquires
an integer winding

cCI(S
1) = i

2π

∮
S1

dk · tr[q†(k)∇kq(k)] ∈ Z. (62)

Formula (62) remains valid if we replace q(k) by the off-
diagonal block of the rotated H(k).

C. Interpretation of π2(MCI) = Z

The π2 charge of AZ+I class CI can be understood in
the way presented in the supplemental material to Ref. [52].
Here we apply a slight modification to that procedure which
replaces the gauge-dependent Wilson operators on open-ended
paths by gauge-invariant ones on closed loops. The invariant
is also related to the π1 charge of AZ+I class BDI.

To determine the charge on a gapped S2, we proceed as fol-
lows. We pick two arbitrary (but different) points N,S ∈ S2 and
consider a set of continuously varying closed paths S1(θ ) ⊂ S2

with θ ∈ [0,π ] such that (i) S1(0) = N and S1(π ) = S are
single points; (ii) for 0 < θ < π : S1(θ ) are homeomorphic to
a circle; and (iii) for θ1 �= θ2 : S1(θ1) ∩ S1(θ2) = ∅.

One can visualize loops S1(θ ) as the parallels on a globe
with N,S the geographic poles, although any other choice is
equally good. The union ∪θS

1(θ ) = S2 reproduces the original
sphere. We further consider the Wilson operator [87,88,111].
For a path γ from ki to kf this is

Wab(γ ) = lim
N→∞

〈ua(kf)|

⎡⎢⎣ ∏
{kj}N

j=1
∈γ

Pocc.(kj )

⎤⎥⎦|ub(ki)〉,

(63a)
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W(γ ) = lim
N→∞

∏
{kj}f

j=i∈γ

[1 − dk · A(kj )] (63b)

≡ exp

[
−
∫

γ

dk · A(k)

]
, (63c)

where Pocc.(k) is the projector onto the occupied states of
H(k) and the bar indicates path-ordering. Wilson loop operator
W(γ ) describes the adiabatic evolution of the occupied states
along γ , and as such has to be unitary,W†W = 1. For ki �= kf,
it depends on gauge, but for a closed path S1,

W(S1) = exp

[
−
∮

S1
dk · A(k)

]
, (64)

it becomes gauge-invariant. Additionally, the AZ+I class
CI respects T = K, which allows us to find a real set of
eigenvectors. It follows from the definition (63a) that W(S1)
is real unitary, i.e., an element of O(n).

To obtain the π2 charge, we determine W[S1(θ )] ≡ W(θ ),
which depends continuously on θ . Since W(0) = W(π ) = 1,
the Wilson loop W(θ ) traces a closed path in SO(n), and
cCI(S2) is expressed as the homotopy equivalence class of
loops in the special orthogonal group,

cCI(S
2) = [W : θ → SO(n)]. (65)

The topological classification for various n follows:

π1[SO(n)] =
⎧⎨⎩0 for n = 1
Z for n = 2
Z2 for n = 3

, (66)

which agrees with Table III.
A more illustrative geometric interpretation of charge (65)

exists for the n = 2 case (61). To keep the discussion simple,
we consider a specific choice

a(k) = k and b = (0,0,m). (67)

This creates a nodal loop at k2
x + k2

y − m2 = 0 = kz, which has
a nontrivial π2 charge (65) as is checked in Fig. 8(a). The nodal
loop lies on a surface S2

a,b = {k|k2
x + k2

y + k2
z = m2} defined

by ‖a(k)‖ = ‖b(k)‖. Note that while vector field b(k) has a
fixed direction, field a(k) has a hedgehog structure on S2

a,b.
The map

S2
a,b � k �−→ na(k) = a(k)

‖a(k)‖ ∈ S2 (68)

is characterized by the second homotopy group π2(S2) = Z,
and the hedgehog structure of the considered a(k) corresponds
to a nontrivial element of π2(S2). By virtue of Eq. (61b), the
nodal loop separates the “northern hemisphere” of S2

a,b with
a(k) · b(k) > 0 from the “southern” one with a(k) · b(k) < 0.
Because of the nontrivial winding of map (68), the two
“geographic poles” with parallel vectors a(k) × b(k) = 0
appear somewhere on S2

a,b. Since a(k) varies continuously
on S2

a,b, the presence of the two “poles” makes the equator
separating the two hemispheres—i.e., the nodal loop—robust.

We compare these observations to a model with

ã(k) = (√
k2
x + k2

y,m̃,kz

)
and b = (0,0,m), (69)

(a) (b)

(c)

(d) (e)

FIG. 8. (a) Nontrivial eigenvalue winding of Wilson loop oper-
ators (65) for the nodal loop exhibited by model (67), and (b) the
trivial winding for the nodal loop of model (69). Both spectra were
calculated on a sphere with radius 2m centered at k = 0. (c) Torical
Fermi surface of a nodal loop metal. If the system develops a singlet
SC order parameter with a gap function �k that changes sign along
the torus (red and blue regions), a pair of SC nodal loops appear
(cyan). By locally adjusting the energy of the metallic nodal loop to
the chemical potential, it is possible to shrink the SC node to a single
point. However, further energy variation of the metallic node leads
to a regrowth of the SC nodal loop, thus manifesting a nontrivial
π2 charge. (d) The same consideration for a torical Fermi surface
without an underlying nodal loop lead to removable SC nodal loops
with a trivial π2 charge. (e) Both torical Fermi surfaces admit a more
complicated geometry of the SC nodal loops. Such linked nodal loops
were argued to exhibit anomalous gravitomagnetoelectric response
[114,115].

which for m̃ = 0 produces a nodal line at the same location
as model (67) but with a trivial π2 charge (65) as checked
in Fig. 8(b). In this case, the surface S2

ã,b = S2
a,b remains

unchanged, but the winding (68) of nã(k) is trivial because
nã(k) lies on a circle with ny = 0. Indeed, increasing m̃ from
zero to ±m shrinks the nodal line to a point, and a gap opens for
|m̃| > |m|, thus manifesting the trivial value of its π2 charge.

D. Example class CI model

In Sec. V, we identified two qualitatively different real-
izations of AZ+I class CI. Here we focus on the case of
a TRS-preserving singlet SC in the absence of SOC. We
first show how such a class of systems relates directly to
k · p models (67) and (69). We afterwards develop a concrete
TB model of a nodal line metal on a SrPtAs-like lattice of
Fig. 5, and we show that its singlet SC phase exhibits doubly
charged nodal loops whenever the gap function changes sign
along the Fermi surface. The SC order parameter may either
appear spontaneously at low enough temperatures, or it may
be induced at an interface through the proximity effect.

155105-15



TOMÁŠ BZDUŠEK AND MANFRED SIGRIST PHYSICAL REVIEW B 96, 155105 (2017)

Consider a two-orbital system with I = 1τ without a
sublattice realization of C. According to the discussion in
Sec. V B, its singlet SC phase acquires AZ+I symmetries
P = iςy ⊗ 1τK and T = K. These are precisely the forms
listed in Table II, meaning that the symmetry-compatible basis
matrices of the reduced BdG Hamiltonian (19) are exactly
those organized in Eqs. (60) (with replaced σi �→ ςi). More
specifically, model (67) corresponds to the (nonreduced) BdG
Hamiltonian (12b) with

	k = 1σ ⊗ (kxτz − kyτx + m1τ ), (70a)

�k = kz(iσy) ⊗ 1τ . (70b)

The metallic state described by 	k exhibits a cylindrical Fermi
surface FS = {k|k2

x + k2
y = m2} connected to a nodal line at

energy m, hence we call this system a nodal line metal.
Additionally, the gap function �k changes sign from negative
for kz < 0 to positive for kz > 0, leading to a zero-energy
nodal loop located at kz = 0 in the SC phase. If one imagines
warping the cylindrical FS into a torus, then such SC nodal
loops have to come in pairs as visible in Fig. 8(c).

Notice that the underlying nodal line of the metallic band
structure (70a) makes nodal loops of the SC phase (70b) robust;
one can at best shrink the loop to a point by setting m = 0, but
the loop reappears for m �= 0 of both signs. The reason is that
the underlying electronlike FS (for m < 0) evolves directly
into a holelike FS (for m > 0) via the nodal line which glues
the bands together. This touching is protected by the Berry
π -phase invariant. We illustrate such a band evolution and the
robustness of such SC nodal loops in Fig. 8(c).

We compare this to model (69) which arises from

	̃k = 1σ ⊗ (√
k2
x + k2

yτz − m̃τx + m1τ

)
. (70c)

This leads to a cylindrical F̃S = {k|k2
x + k2

y = m2 − m̃2} with-
out an underlying nodal line (apart from the fine-tuned case
m̃ = 0 which is accidental and does not carry a topological
charge). This makes it possible to remove F̃S by setting
|m̃| > |m| which also eliminates the nodal loop of the SC
phase (70b) as illustrated in Fig. 8(d). We infer that the doubly
charged nodes of the gap function are bound to SC phase of
nodal line metals. This observation supplements the already
known unusual SC phases enabled by nontrivial Fermi surface
topology [116,117].

We now develop a concrete TB model belonging to this
symmetry class to make our ideas more tangible. We consider
again the lattice of Sec. VII D but without dimerization. There
are two orbitals per unit cell that lead to I = rx and C = rz.
We consider parameters

t1 = 1 and t2 = 0.4, (71)

and further t3 = t2, r = 1 and μ = 0. The hexagonal crys-
talline symmetry imposes nodal lines running along the
vertical BZ edges. The chosen TB parameters (71) lead to
touching electron and hole Fermi pockets as shown in Fig. 9(a).
We further assume that the system acquires a singlet SC order
parameter

�k = ψ0[δ + cos(kzc)](iσy) ⊗ 1r . (72)

(a) (b)

(c)

FIG. 9. Doubly charged nodal lines of AZ+I class CI. (a) Fermi
surface of the developed TB model with parameters (71) consists
of touching electron (blue) and hole (red) pockets. The SC order
parameter (72) creates two pairs of SC nodal loops when |δ| < 1.
(b) Winding of W(θ ) eigenvalues on an ellipsoid described in the text
which contains a pair of nodal loops, and (c) the same calculation
on an ellipsoid containing a single nodal loop reveal a nontrivial π2

charge (65).

The AZ+I symmetries of this model are T = rxK, P = irx ⊗
ςyK and C = iςy , which is modified to the choice of Table II
if one rotates the basis by U†

r of Eq. (34).
The developed model exhibits four SC nodal loops for |δ| <

1 [one pair at heights kzc = ± arccos(−δ) at both BZ edges],
which move along the touching Fermi pockets when varying δ.
These nodes annihilate in pairs at kz = 0 (kz = π ) for δ = −1
(δ = +1). They shrink to points for δ = 0 when they coincide
with the touching points of the Fermi pockets. To check the
π2 charge of these nodes, we set ψ0 = 0.2 and δ = −√

3/2,
which locates them at kzc = ±π/4. In Fig. 9(b), we plot the
trivial eigenvalue winding on an ellipsoid with radii ( π

3a
, π

3a
, π

3c
)

centered at kc = (0, 4π

3
√

3a
,0), which contains a pair of SC nodal

loops, while in Fig. 9(c), we plot the nontrivial eigenvalue
winding for an ellipsoid of the same dimensions centered at
k̃c = (0, 4π

3
√

3a
, π

4c
) containing a single SC nodal loop. These

observations imply a nontrivial value of the π2 charge (65).
The π1 charge (62) is nontrivial for every (nonaccidental) SC
nodal line of this symmetry class.

IX. Z2 ⊕Z2 NODAL LINES IN CLASS AI

We finally discuss the AZ+I class AI in D = 3, which has
been to varying degree considered in Refs. [52,94,118]. This
symmetry class supports nodal lines with charge

c
(3)
AI ∈ π1(MAI) ⊕ π2(MAI) = Z2 ⊕ Z2. (73)

According to Table IV, the minimal half-filled model support-
ing a nontrivial π2 charge contains four bands. The nine basis
matrices of Table II can be organized into three vectors (called
a real Dirac basis by Ref. [118]):

v(1) = (σz ⊗ τz, − σz ⊗ τx,σx ⊗ 1), (74a)

v(2) = (1 ⊗ τx,1 ⊗ τz,σy ⊗ τy), (74b)

v(3) = (−σx ⊗ τz,σx ⊗ τx,σz ⊗ 1) (74c)
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fulfilling {v(a)
i ,v

(b)
j } = 2[δij δ

ab1 + εijkε
abcv

(c)
k ]. We failed to

derive analytic conditions for the occurrence of a gap closing,
so we proceed directly with the discussion of the topological
charges. The π1 charge is just the Berry phase, which is
for closed paths quantized to {0,π} by T. The π2 charge is
again the π1[SO(n)] homotopy equivalence class of Wilson
loop operators that has been explained for AZ+I class CI in
Ssec. VIII C. In the last section, we develop a TB model on a
SrPtAs-like lattice that exhibits either singly or doubly charged
nodal loops, depending on the chosen parameter values.

A. Interpretation of π1(MAI) = Z2

The π1 charge cAI(S1) of AZ+I class AI corresponds to
the Berry phase acquired along S1, which is obtained from the
Wilson loop operator W(S1) of Eq. (63) as

cAI(S
1) = 1

iπ
ln detW(S1) mod 2 ∈ Z2, (75a)

which is equivalent to

c̃AI(S
1) = i

π

∮
S1

dk · tr A(k) mod 2. (75b)

The Berry phase is quantized because T = K makes it possible
to find a real set of eigenvectors |ua(k)〉, such that W(S1) ∈
O(n) has determinant ±1.

Note that according to Table IV there is an exception to
the order of the π1 charge in half-filed two-band models. In
this case, the basis of symmetry-compatible Hamiltonians is
two-dimensional (spanned by σx and σz) and thus allows for a
richer Z-valued winding number.

B. Interpretation of π2(MAI) = Z2

The π2 charge of this symmetry class is

cAI(S
2) = [W : θ → SO(n)], (76)

i.e., it corresponds to the homotopy equivalence class of
Wilson loop operators W(θ ) ∈ SO(n) for a set of closed
paths S1(θ ) covering S2, just like for the AZ+I class CI.
However, we see from Table IV that the order of charge (76)
is modified whenever min{n,�} � 2. Such exceptions were
absent in symmetry class CI. We use the rest of the subsection
to clarify this complication.

The key observation is that the homotopy class (76) can
be determined for two Wilson loop operators, Wocc. ∈ SO(n)
over the occupied and Wun. ∈ SO(�) over the unoccupied
bands. The presence of P in class CI enforces the two Wilson
operators to have identical spectra, so nothing is gained by
considering both. On the other hand, particle-hole symmetry
is absent in class AI, which allows the Wilson spectra to be
different. As with the other topological charges, we expect
the sum of the two charges to be trivial, but the sum has to
be perceived in the sense of π1[SO(n + �)], which may differ
from groups π1[SO(n)] and π1[SO(�)], cf. (66). In fact, the
latter two may be different themselves.

For example, for n = 2 and � = 1, the two occupied bands
admit cocc.

AI (S2) ∈ SO(2) = Z, while the unoccupied band has
a trivial cun.

AI (S2) ∈ SO(1) = 0. The sum of the two has to be
trivial within π1[SO(2 + 1)] = Z2 which only perceives the

(a) (b)

(c) (d)

FIG. 10. (a) Wilson loop spectrum over the occupied and (b) the
unoccupied states of the (2+1)-band Hamiltonian (77). The pair of
plots looks identical for the (2+2)-band Hamiltonian (79). (c,d) The
corresponding Wilson loop spectra for the (2+2)-band Hamiltonian
(80).

parity, hence cocc.
AI (S2) must be an even integer as indicated in

Table IV. An example Hamiltonian with a prescribed charge
2ν ∈ 2Z is

H(2,1)
2ν (k) = k[2n(θ,νϕ) · n�

(θ,νϕ) − 1], (77)

where k = kn(θ,ϕ) is expressed using spherical coordinates
(k,θ,ϕ), and

n�
(α,β) = (sin α cos β, sin α sin β, cos α) (78)

with α ∈ [0,π ] and β ∈ [0,2π ) is the unit vector in a specified
direction, expanded in Cartesian coordinates. The Wilson
loop spectra Wocc. and Wun. of model (77) with 2ν = 2 are
plotted in Figs. 10(a) and 10(b). This enrichment to 2Z is
in a stark contrast to models with n � 3 and � = 1 when
the only consistent choice of charges summing to 0 (mod
2) is cocc.

AI (S2) = 0 (∈ Z2) and cun.
AI (S2) = 0 (∈ 0), such that

no topological classification remains. The same conclusion
is also found for n = � = 1. Clearly, the order of the charge is
unchanged if we exchange n ↔ �, which is manifested by the
symmetry of Table IV.

For n = 2 and � � 3, we find Z topologically inequivalent
classes: charges cocc.

AI (S2) ∈ Z and cun.
AI (S2) ∈ Z2 have to sum up

to 0 (mod 2). Clearly, there is a unique solution to cun.
AI (S2) for

any cocc.
AI (S2). Finally, in the case n = � = 2, we have to pick

two integers that sum up to 0 (mod 2), meaning they are either
both even or both odd. This corresponds to the Z ⊕ Z entry in
the middle of Table IV. As a nontrivial example, consider

H(2,2)
(2ν,0)(k) = H(2,1)

2ν (k) ⊕ (k), (79)

i.e., where we just increase the dimension of Hamiltonian
(77) by putting k in its bottom-right corner, which produces
an additional trivial unoccupied state. As indicated by the
subscripts, Hamiltonian (79) has charges cocc.

AI = 2ν and cun.
AI =

0, manifested again by the Wilson loop spectra of Figs. 10(a)
and 10(b). On the other hand, the two charges of [118]

H(2,2)
(ν,−ν) = Re[(kx + sign(ν) iky)|ν|]v(a)

1

+ Im[(kx + sign(ν) iky)|ν|]v(a)
2 + kzv

(a)
3 (80)
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with a real Dirac basis (74) are ν and −ν. We plot the
corresponding spectra of Wocc. and Wun. for ν = 1 in
Figs. 10(c) and 10(d). The somewhat unusual charge appearing
for n = � = 2 stems from the fact that the classifying space
O(4)/O(2) × O(2) is double covered by S2 × S2 [119,120].

We remark that Hamiltonians (77), (79), and (80) are fine-
tuned such that the node is contracted to a single point at
k = 0. The study of how the exceptional charges cocc.

AI (S2) and
cun.

AI (S2) manifest themselves in the few-band spectra when
the Hamiltonian becomes detuned is beyond the scope of the
present manuscript.

C. Example class AI model

We consider a SrPtAs-like lattice with s-like orbitals at both
the Pt and the As sites (assumed inequvalent) contributing to
a TB model. In the absence of SOC, the hexagonal lattice
symmetry enforces nodal lines running along the vertical BZ
edges. A single unit cell extends over two layers and contains
a pair of orbitals in each.

We stick to the Pauli matrix notation of Table VI, such that
the two orbitals of the same species [same color in Fig. 5(a)] are
exchanged by I = ρx ⊗ rx . We consider intralayer hoppings
with amplitude t1,

H1(k) = t11ρ ⊗ [
S0,t

cos(k)rx − S0,t
sin (k)ry

]
, (81a)

and vertical interlayer hoppings with amplitude t2,

H2(k) = 2t2 cos(kzc)ρx ⊗ 1r . (81b)

We further consider vertical hoppings to the second nearest
layer with amplitudes t0 ± t3 and a staggered on-site potential
±m on the two elemental sublattices,

H3(k) = [m + 2t3 cos(2kzc)]ρz ⊗ rz

+ 2t0 cos(2kzc)1ρ ⊗ 1r . (81c)

The representation T = ρx ⊗ rxK in the employed basis
differs from the choice of Table II, but there is no need for a
basis transformation as the Wilson loop formulation of charges
(75) and (76) applies to any basis.

Model (81) exhibits a gap closing at k with energy −mt0/t3
whenever the pair of conditions

2t3 cos(2kzc) + m = 0, (82a)

[
S0,t

cos(k)
]2 + [

S0,t
sin (k)

]2 = 2
t2
2

t2
1

(
1 − m

2t3

)
(82b)

are fulfilled. Nodal loops appear in the model for |m| < 2 and
a small enough ratio |t2/t1|. These loops annihilate in pairs at
the kzc = 0 plane for m = −2, and at the kzc = π/2 plane for
m = 2, and we plot their trace for the intermediate values of
m and for parameters

t1 = 1, t2 = 0.4, and t3 = 1 (83a)

(a) (b)

(c)

FIG. 11. Doubly charged nodal loops of AZ+I class AI. (a) The
transparent green sheets indicate the trajectory traced out by nodal
loops of TB model (81) for parameters (83a) for m ∈ [−2,2]. Snap-
shots of these nodal loops for m ∈ {−2, − 1.6, − 0.8,0,0.8,1.6,2}
are shown in various shades of blue to red. The large circular gray
loops inside the BZ correspond to nodes of the same model with
t2 = 1.5. (b) The Wilson loop spectrum for one of the nodal lines
for parameters (83) exposes the nontrivial value of their π2 charge
(76). This is related to the underlying nodal lines formed within the
(un)occupied bands along the vertical BZ edges, running through the
interior of the plotted nodal loops. (c) The π2 charge is trivial for
nodal loops with t2 = 1.5 on the other side of the topological phase
transition (84).

in Fig. 11(a). We determine the π2 charge (76) of these nodal
loops for

m = 0, (83b)

which sets their vertical location to kzc = π/4. In Fig. 11(b),
we plot the Wilson loop spectrum for an ellipsoid with radii
( 1
a
, 1
a
, 1
c
) centered at kc = (0, 4π

3
√

3a
, π

4c
), which contains a single

nodal loop. The spectrum has a nontrivial winding, thus
exposing the nontrivial value of the π2 charge.

Interestingly, a topological transition occurs for

1 = 2
t2
2

t2
1

(
1 − m

2t3

)
(84)

in which pairs of the doubly charged nodal loops merge
together, thus forming nodal loops with a trivial value of the
π2 charge. For the values of t1, t3, and m listed in Eqs. (83), the
transition occurs for t2c = 1/

√
2. Choosing t2 = 1.5 > t2c, we

find the nearly circular nodal loops drawn in gray in Fig. 11(a).
In Fig. 11(c), we plot the Wilson loop spectrum on an ellipsoid
with radii ( 3

2a
, 3

2a
, 3

2c
) centered at k̃c = (0,0, π

4c
), which encloses

a single such a nodal loop. The spectrum has a trivial winding,
thus confirming the trivial value of the π2 charge. Indeed, these
loops disappear from the spectrum for t2 > 3/

√
2, thus once

again confirming their trivial nature.

X. SUMMARY

In this work, we used homotopy theory to generalize
the observation of doubly charged nodal lines in certain
three-dimensional centrosymmetric semimetals by Ref. [52] to
the centrosymmetric extensions of all Atland-Zirnbauer (AZ)
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classes of arbitrary spatial dimension D. Our main results
are summarized by Table I and Fig. 3. After explaining our
strategy in Secs. II to IV, we treated in a greater detail all
the symmetry classes supporting doubly charged nodes in
D = 3. This includes doubly charged nodal surfaces in the
centrosymmetric extensions of the AZ classes (dubbed the
“AZ+I classes”) D and BDI, and doubly charged nodal lines
in the extensions of the classes CI and AI. Both topological
charges characterizing these nodes are protected solely by the
inversion symmetry and the global symmetries, making them
very stable against a wide range of perturbations.

The doubly (and in higher spatial dimensions also “multi-
ply”) charged nodes are often naturally robust in the sense
that they can not be gapped out on their own but only
by annihilation in pairs, thus reaching the high degree of
stability usually associated with Weyl points. In D spatial
dimensions, this is always the case for nodes with a nontrivial
charge on (D − 1)-spheres. On the other hand, if the largest
p̃-sphere accommodating a nontrivial charge has only p̃ <

(D − 1) dimensions, the corresponding nodes need to possess
(D − 1 − p̃) dimensions winding around the Brillouin zone
torus to become robust in the same sense. This robustness is
in a stark contrast with the case of the extensively studied
nodes protected by crystalline symmetries (such as rotation
axes or mirror planes), which are typically gapped out if the
appropriate strain is applied.

We made a connection between the AZ+I symmetry
classes and the physical systems in Sec. V. Restating the results
for the symmetry classes supporting doubly charged nodes in
D = 3, class D nodal surfaces appear in time-reversal breaking
multiorbital superconductors (as has been recently also found
in Ref. [80]), robust nodal lines of class CI appear in singlet
superconducting phases of nodal line metals, nodal lines of
class AI are relevant for time-reversal symmetric semimetals
without spin-orbit interaction, and nodal surfaces of class
BDI may appear in AI-like system respecting a sublattice
symmetry. Other realizations are also possible and are listed
in Fig. 3. Although we didn’t search for actual materials
exhibiting doubly charged nodes, we provided simple and

realistic tight-binding models for each of the four cases to
support our claims.

The present work leaves various questions open. For
example, we did not formalize the meaning of the topological
charges in Table I appearing on p-spheres with p � 3. Already
for p = 1 and 2, we encountered an example of a charge
that is absent in the tenfold way classification of gapped
systems [86], namely, the homotopy equivalence class of
closed paths in the special orthogonal group SO(n). We also
did not study the signatures of the multiple charges in the
transport properties. For example, Ref. [80] pointed out the
unusual thermal conductivity and specific heat associated with
class D nodal surfaces which are characterized by a Z-valued
Chern number. Since these nodal surfaces can be interpreted
as inflated double Weyl points, it might be interesting to
look for signatures of the chiral anomaly in such systems.
As another example, very recent Ref. [121] showed that a
small inversion-symmetry breaking perturbation in class AI
nodal line semimetals facilitates an anomalous transverse
Hall-like current. Since the topological charges of class CI
nodal lines are closely related to those of class AI, we expect
a related phenomenon to also exist in superconducting nodal
line metals. Furthermore, doubly charged class AI nodal lines
were very recently predicted to exist in magnon spectra of
certain realistic T-symmetric antiferromangets [79]. The way
the higher charges are manifested in the surface spectra has
also been left out for future studies.
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