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Analytical results for the Green’s functions of lattice fermions
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We present a further development of methods for analytical calculations of Green’s functions of lattice fermions
based on recurrence relations. Applying it to tight-binding systems and topological superconductors in different
dimensions, we obtain a number of noteworthy results. In particular, we derive an explicit expression for an
arbitrary Green’s function of an open Kitaev chain, and we discover nonlocal fermionic corner states in a
two-dimensional p-wave superconductor.
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I. INTRODUCTION

Fermionic lattice models are widely used not only as a
purely theoretical tool but also as a basis for investigation
and modeling of physical properties of real materials. Despite
their relative formal simplicity—the Hamiltonians of many
of them can be written down as bilinears of fermionic
operators—many of them resist explicit analytical solution.
The most prominent example is the Azbel-Hofstadter problem
of lattice fermions subject to a magnetic field [1,2]. Although
it is possible to set up recurrence relations for relevant
observables, an explicit analytical solution in a closed form
has not yet been found. Remarkably, the presence of the gauge
field complicates the progress, necessitating the application
of such advanced methods as the Bethe ansatz [3–5]. The
situation is better for special constellations of fields when some
analytical solutions are possible; see, e.g., [6,7]. But also in
simpler field-free situations, analytical results for solutions of
recurrence relations are few and far between, the vast majority
of studies being concentrated on numerical treatment of the
problem [8–10].

If one restricts oneself to a system’s single-particle Green’s
functions (GFs), an explicit solution on the level of eigenstates
is not always necessary. Here a formal functional integral
for GFs can immediately be written down. However, its
computation turns out to be very cumbersome. This kind of a
functional integral is essentially a sum over all possible paths
the particle can take during its evolution between two states.
While in the absence of the gauge field the phase gathered
along each individual path is simply related to the path length,
in the presence of the field it acquires a highly nontrivial
dependence on the path geometry and topology. One attempt
to take that into account is presented in [11]. However, the
resulting expressions are complicated and very difficult to
handle.

Recurrence relations for GFs were originally proposed
in the series of works in Refs. [12,13], and subsequently
successfully used for numerical calculations in a great variety
of set-ups; see, e.g., [14]. In recent years, this method became
very popular in the field of topological insulators as it allows
for fast and efficient band-structure calculations in systems
with any kind of elementary cells and arbitrary coupling
mechanisms between them; see, e.g., [15–17]. On the other
hand, in many situations the recurrence relations can be solved
analytically, leading to compact and useful results for relevant
physical quantities [18,19]. The goal of our paper is twofold:

first we apply this efficient technique to systems in gauge
fields, and second, we present analytical results not only for
systems with topologically nontrivial band structures but also
for simple-cubic lattices in different dimensions for different
surface and bulk geometries.

The structure of our presentation is as follows: In Sec. II we
explain our ideas on the simple example of a spinless 1D tight-
binding chain. Among other things, we present an analytical
result [Eq. (8)] for an arbitrary GF in terms of Chebyshev
polynomials. Section III proceeds with 2D systems. First, we
set the stage and present a straightforward generalization of
the 1D calculation, which yields an analog of Eq. (8) for the
2D case: Eq. (27). After that, we derive useful and simple
expressions for the local density of states (DOS) at different
positions in a lattice with an open boundary. In Sec. III B,
we proceed with a system in a uniform magnetic field. Here
our goal is to go beyond the seminal results of [6] and [11] by
deriving an explicit expression for the GF, which remains valid
for arbitrary magnetic fields. For not too strong magnetic fields,
we derive analytical expressions for the GFs and assess their
quality by comparison with the exact results. The subsequent
two sections are devoted to topological superconductors. In
Sec. IV, we apply our method in order to derive Eq. (45), which
is an explicit formula for an arbitrary GF of a Kitaev chain of
finite length. This is one of the central results of the present
work. In Sec. V, we turn to a 2D p-wave superconductor on a
lattice of finite size. Using the previously developed approach,
we find nonlocal corner states akin to zero-energy modes of
open Kitaev chains and discuss their possible applications.
Finally, in Sec. VI we present some previously unknown results
for the 3D tight-binding lattice. The Conclusions section offers
a short summary of our findings.

II. BASICS: 1D TIGHT-BINDING CHAIN

We begin our exposition with the simplest case—the spin-
less 1D tight-binding chain of length N with the Hamiltonian

Htb =
N∑

i=1

ε c
†
i ci +

N−1∑
i=1

γ c
†
i ci+1 + γ ∗ c

†
i+1ci, (1)

where ε is the uniform energy on each site and γ is the (in
general complex) hopping amplitude between the sites. Our
primary goal is the Matsubara GF of the form

gk,m(τ ) = −〈Tτ ck(τ ) c†m(0)〉, (2)
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where Tτ is the imaginary time ordering operator. The most
straightforward way to evaluate it is the direct diagonalization
in terms of new operators dl ,

ci =
√

2

N + 1

N∑
l=1

sin(qli)dl =
N∑

l=1

Sildl, (3)

where the momenta underlie the following quantization con-
dition:

ql = πl

N + 1
, 1 � l � N. (4)

The diagonalized Hamiltonian is then (from now on we shall
concentrate on the case ε = 0 unless otherwise stated)

H = 2γ

N∑
l=1

cos(ql)d
†
l dl, (5)

and the particle dispersion is obviously El = 2γ cos(ql). In
this representation, the evaluation of the GF is straightforward
and leads to

gk,m(iωn) =
N∑

p=1

Skp

1

iωn − Ep

Spm. (6)

Thus the result is

gk,m(iωn) = 2

N + 1

×
N∑

p=1

sin[πkp/(N + 1)] sin[πpm/(N + 1)]

iωn − 2γ cos[πp/(N + 1)]
.

(7)

The remaining sum can be evaluated, and one obtains

gk,m(iωn) =
Uk−1

(
iωn

2γ

)
UN−m

(
iωn

2γ

)
γUN

(
iωn

2γ

) , (8)

where Uk(x) denote the Chebyshev polynomials of the second
kind, which are defined by the following recurrence relation
[20–22]:

Un+1(x) = 2x Un(x) − Un−1(x),

U0(x) = 1, U1(x) = 2x. (9)

The expression (8) holds for k � m; for m > k we just have
to interchange the indices. An alternative calculation can
be performed using the functional integral formalism. The
partition function is given by

Z =
∫

D[c†,c]e−S1 , S1 = 1

β

∑
iωn

c†(iωn)A c(iωn), (10)

where

c†(iωn) = [c†1(iωn), . . . ,c†N (iωn)] (11)

are composite fields, and the action kernel is given by an N ×
N matrix (from now on we concentrate on purely real γ ;
the case of a generic tunneling amplitude can be analyzed in

exactly the same way),

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωn −γ 0
. . . 0 0

−γ iωn −γ
. . . 0 0

0 −γ iωn

. . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . iωn −γ

0 0 0
. . . −γ iωn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

The matrix (8) of all possible GFs is just the inverseA−1. It can
be calculated by the procedure proposed in [23]. The resulting
recurrence relations have solutions in terms of Chebyshev
polynomials, and one immediately obtains (8). We note in
passing that similar methods can be used to treat systems with
periodic boundaries. For basic results in one dimension, see
Appendix A.

One practical application of the above result is the compu-
tation of the local density of states (DOS), which is found as
the imaginary part of the local (at k = m) retarded GF:

νk(ω) = −2 Im gR
k,k(ω). (13)

The latter is conveniently found from the analytically contin-
ued Matsubara GF via the substitution iωn → ω + iδ, where
δ is a positive infinitesimal. Particularly interesting is the case
of the edge site at k = m = 1 or k = m = N (from now on we
use γ as the energy unit),

gend(iωn) = lim
N→∞

UN−1
(

iωn

2

)
UN

(
iωn

2

)
= iωn

2
+

√(
iωn

2

)2

− 1, (14)

where the evaluation of the limit can be done in accordance
with the procedure outlined in [24] (for the proper analytical
continuation, see Appendix B). We note in passing that in
different applications this kind of GF is also referred to as a
surface or boundary GF.

The same can be accomplished via the Dyson equation for
the GF of the outmost chain site in a chain of length N :

g−1
1,1(N,iωn) = g−1

0 (iωn) − γ 2 g1,1(N − 1,iωn). (15)

Here g−1
0 (iωn) = g−1

1,1(1,iωn) = iωn − ε is the reciprocal of
the Matsubara GF of an individual uncoupled chain site.
In the limit N → ∞, we can set gend(iωn) = g1,1(N,iωn) =
g1,1(N − 1,iωn) and solve the corresponding equation. The GF
of the bulk site (at k = m = N/2) in the limit of the infinitely
long chain N → ∞ can also be computed by a version of
the above Dyson equation. In this situation, 2gend(iωn) plays
the role of the self-energy and replaces g1,1(N − 1,iωn) in
Eq. (15) (obviously, the reverse procedure, i.e., from the bulk
to the “surface” GF, is as simple; see also [10]):

g−1
bulk(iωn) = g−1

0 (iωn) − 2γ 2 gend(iωn).

This equation can be considered to be the simplest ver-
sion of the bulk-boundary correspondence, often considered

155103-2



ANALYTICAL RESULTS FOR THE GREEN’s FUNCTIONS . . . PHYSICAL REVIEW B 96, 155103 (2017)

especially in the context of systems with topologically non-
trivial band structures [25].

III. 2D TIGHT-BINDING SYSTEM

A. Zero-field case

We construct a 2D system out of M 1D systems of length N

arranged in parallel and coupled by the same matrix elements:

Htb =
N∑

n=1

M∑
m=1

ε c†n,mcn,m + γ

N−1∑
n=1

M−1∑
m=1

c†n,mcn,m+1

+c
†
n,m+1cn,m + c†n,mcn+1,m + c

†
n+1,mcn,m. (16)

The partition function for this system can be written down in
terms of a functional integral over M composite fields, which
are this time arrays of objects (11):

Z =
∫ ⎛⎝ M∏

j=1

Dc
†
j Dcj

⎞⎠ e−S2 ,

where

S2 =
∑
iωn

M∑
j=1

c
†
j (iωn)A cj (iωn)

+
M−1∑
j=1

c
†
j (iωn) �†cj+1(iωn) + c

†
j+1(iωn) �cj (iωn).

Here A is as defined in (12) and � = −diag(γ, . . . ,γ ) is the
diagonal matrix of rank N coupling the chains. By a repeated
integration over the fields c1, . . . ,cM−1, one obtains

Z =
∫

Dc
†
M DcM e−S ′

2 ,

with the action

S ′
2 =

∑
iωn

c
†
M (iωn)

(
g−1

1 − �† gM−1 �
)
cM (iωn).

Here g1 = A−1 denotes the matrix of all GFs for an individual
1D chain with length N , given in Eq. (8). Thus the GF matrix
for the sites at the edge of the system is found from the
recurrence relation

g−1
M = g−1

1 − �† gM−1 �, (17)

with the initial value g0 = 0. This is a direct generalization of
the relation (15) and also has the form of a Dyson equation.

As is shown in Ref. [19], Eq. (17) allows for an explicit
solution in terms of matrix polynomials of Chebyshev type
[26]. Here we take another route and write the unknown GF as
a quotient of two matrices gM = PM Q−1

M . Then the recurrence
relation can be split into two:

PM+1 = �−1 QM,
(18)

QM+1 = g−1
1 �−1 QM − �† PM,

which can immediately be solved in terms of powers of a
matrix R: (

PM

QM

)
= RM

(
P0

Q0

)
, (19)

where

R =
(

0 �−1

−�† g−1
1 �−1

)
.

We note in passing that these objects are very closely related
to the transfer matrices used in, e.g., Refs. [8,27], but not
fully equivalent. Obviously the initial conditions are P0 = 0
and Q1 = 1. Let us now assume that γ is purely real (this
assumption considerably simplifies calculations and is not
restrictive in any way) and our energy unit. Then

� = �−1 = �† = 1

and

R =
(

0 1
−1 A

)
. (20)

We would like to find T and a diagonal R0, so that
R = T R0T

−1. To that end, we need the eigenvalues and
eigenvectors of the matrix R. Its characteristic equation for
the eigenvalues λ reads

det[(1 + λ2)1 − λA] = λNUN

(
1 + λ2

2λ
− iωn

2

)
= 0.

(Contrary to Ref. [27], here the eigenvalues are slightly
different from the Lyapunov exponents.) This equation can
be solved using the trigonometric representation of the
Chebyshev polynomials. The 2N different solutions are given
by

λk1,2 =
[
iωn

2
− cos

(
πk

N + 1

)]

±
√[

iωn

2
− cos

(
πk

N + 1

)]2

− 1, (21)

where 1 � k � N . Therefore, R0 = diag(λj1,λj2). The matrix
T can be written down in terms of eigenvectors v1,...,N of the
action matrix A for a 1D chain:

T =
(

A B

C D

)
with

C = D = (v1, . . . ,vN ), A = (v1/λ11, . . . ,vN/λN1),

B = (v1/λ12, . . . ,vN/λN2). (22)

vj constitute a self-inverse symmetric matrix V , which is
essentially a square root of a unity matrix,

V = (vi)j =
√

2

N + 1
sin

(
π i j

N + 1

)
.

In fact, this result is already contained in the diagonalization
transformation (3). Computation of powers of R is now
straightforward and is just

Rq = T diag
(
λ

q

j1,λ
q

j2

)
T −1

=
(−vij Uq−2(εj ) vjk vij Uq−1(εj ) vjk

−vij Uq−1(εj ) vjk vij Uq(εj ) vjk

)
, (23)
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(a) (b)

(c)

(a) (b)

FIG. 1. 2D tight binding lattice. (a) The corner site, (b) the edge bulk site, and (c) the true bulk site.

where

εj = iωn

2
− cos

(
πj

N + 1

)
. (24)

Due to the special property of the recurrence initial conditions,
only the right column of the result (23) is important for the GF
computation. Plugging this back into (19) and computing the
ratio of PM Q−1

M , we obtain the final result:

g(iωn) = V B V, B = diag

(
UM−1(εj )

UM (εj )

)
. (25)

In Eq. (25) one can immediately recognize the 1D result (7).
On the other hand, from (7) and (8) follows the identity

UM−1(ε)

UM (ε)
= 2

M + 1

M∑
p=1

sin
(

πp

M+1

)
sin

(
πp

M+1

)
2ε − 2 cos

(
πp

M+1

)
= 1

2

M∑
p=1

w1p wp1

ε − cos
(

πp

M+1

) , (26)

where

W = (wi)j =
√

2

M + 1
sin

(
π i j

M + 1

)
.

Therefore, the GF between the sites (i,p) and (j,q) is

g(ip),(jq)(iωn) =
M∑

r=1

N∑
k=1

vikvkj wpr wrq

iωn

2 − cos
(

πk
N+1

) − cos
(

πr
M+1

)
=

N∑
k=1

vikvkj

Up−1(εk) UM−q(εk)

UM (εk)
. (27)

As an application, we compute the DOS at different points
in the lattice; see Fig. 1: (a) at the corner site of the lattice; (b)
at the site on the edge of the system far away from the corners,
which we call the edge bulk (eb) site; (c) at the bulk far away
from the edges. While an analytical result for (c) exists and is

reported in [28], the situations (a) and (b) have not yet been
considered.

First we concentrate on the corner site (1,1) of our lattice
for M → ∞ and N → ∞. Taking the latter limit amounts to a
replacement of the quotient of the polynomials in (25) by (14)
with appropriate arguments. Using the result of the analytical
continuation given in Appendix B and replacing the sum in
(25) by an integral, we then obtain the following result for
positive energies ω > 0:

νcorner(ω) = 2

π

∫ 1

ω/2−1
dy

√
(1 − y2)[1 − (ω/2 − y)2]. (28)

With the help of a similar procedure, we can compute the DOS
at a site (1,N/2) in the middle of the system edge, at the edge
bulk site. Here in the limit N → ∞ we obtain

νeb(ω) = 1

π

∫ 1

ω/2−1
dy

√
1 − (ω/2 − y)2

1 − y2
. (29)

Finally, the genuine bulk GF can be computed using
the version of the bulk-boundary correspondence condition
following from Eq. (17):

g−1
bulk = g−1

1 − 2�† g �.

This equation describes a 1D system of length N with the GF
g1 (the chain with open circles in Fig. 1), which is coupled to
two identical systems of sizes N × M with edge GFs g. (These
systems can, of course, in general be different.) Since

g−1
1 = A = V C V,

where C = diag(iωn − 2 cos[πk/(N + 1)]), we thus obtain

gbulk = V diag

[
iωn − 2 cos

(
πk

N + 1

)
− 2

UM−1(εk)

UM (εk)

]−1

V.
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FIG. 2. 2D tight-binding lattice in a magnetic field pointing
perpendicular to the lattice plane. Every amplitude γ describing a
tunneling process from left to right is to be supplemented by a factor
eimφ and that of the opposite direction by a factor e−imφ .

Using this result, we derive an alternative expression for the
edge bulk DOS of an infinitely large system:

νeb(ω) = 1

π

∫ 1

ω/2−1
dy

√
1 − y2

1 − (ω/2 − y)2
, (30)

which yields exactly the same result as Eq. (29). For
the genuine bulk DOS, we then obtain the known result
[28]

νbulk(ω) = 1

2π

∫ 1

ω/2−1

dy√
(1 − y2)[1 − (ω/2 − y)2]

. (31)

The expressions (28), (29), (30), and (31) are valid for positive
energies 0 < ω < 2 for ω > 2 (outside of the band) the DOS
is zero in all three cases. We would like to remark that all four
integrals can be expressed in terms of elliptic functions. We
abstain from doing so as it does not produce any added value.

B. 2D lattice in a magnetic field

To include a magnetic field in the model (16), we use
Landau gauge. We apply the Peierls substitution in the form
depicted in Fig. 2 [29]. In this kind of geometry, 1D systems of
length M are coupled by “bare” tunneling amplitudes γ , which
do not contain magnetic-field-dependent phases. On the other
hand, the tunneling amplitude within each of such 1D chains is
dressed by factors e±imφ , where 0 < m < M − 1 is the chain
index. The phase is defined as φ = Ba2

0/�0, where B is the

field magnitude, a0 is the lattice constant, and �0 = h/2e is
the magnetic flux quantum.

The GF for particles in each of the M chains is in analogy to
(12) given by the inverse of the corresponding N × N action
matrix:

Am =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωn −γ eimφ 0
. . .

−γ e−imφ iωn −γ eimφ
. . .

0 −γ e−imφ iωn

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Unsurprisingly, the eigenvalues εk = iωn/2 − cos[πk/(M +
1)] (1 < k < M) of this matrix do not depend on φ, and the
matrix of its eigenvectors is given by a still self-inverse matrix,

Ukl =
√

2

N + 1
sin

(
πkl

N + 1

)
e−i(k−l)mφ,

so that Am = UBU , where B = diag(2εn). For the GF, which
is a direct generalization of (8), one then obtains

gk,l(iωn) = [g1(iωn,m)]k,l = e−imφ(k−l)

× 1

γUN

(
iωn

2γ

){
Uk−1

(
iωn

2γ

)
UN−l

(
iωn

2γ

)
, k � l,

Ul−1
(

iωn

2γ

)
UN−k

(
iωn

2γ

)
, k > l.

Such 1D systems are coupled to each other by the same
matrices � as in the field-free case. Therefore, the recurrence
relation for the GFs of the edge chain reads

g−1
M (iωn) = g−1

1 [iωn,(M − 1)φ] − �†gM−1(iωn)�.

Its solution can be constructed in terms of a matrix Rs defined
as

Rs =
(

0 1
−1 As

)
=

(
0 1

−1 g−1
1 [iωn,(s − 1)φ]

)
.

In this notation, the above recurrence relation reads(
PM

QM

)
= RM

(
PM−1

QM−1

)
,

where as in the previous subsection gM (iωn) = PMQ−1
M , P0 =

0 and Q0 = 1. Its solution obviously is

(
PM

QM

)
=

(
1∏

s=M

Rs

)(
P0

Q0

)
.

We use the following substitution:

s = R−1
0 Rs = 1 + εs, εs =

(
0 Ds

0 0

)
,
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where R0 is the matrix (20) of the field-free case, and

Ds+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 eisφ−1 0 0
. . .

e−isφ−1 0 eisφ−1 0
. . .

0 e−isφ−1 0 eisφ−1
. . .

0 0 e−isφ−1 0
. . .

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

With this notation, the above matrix product reads

RM RM−1 · · · R2 R1 = R0MR0M−1 · · · R01

= R0(1 + εM )R0(1 + εM−1) · · ·
×R0(1 + ε1). (32)

This representation is very useful for expansion in small fields
as Ds+1 and thus εs+1 are objects of the order sφ. Therefore,
the expansion to the order (Mφ)2 is given by

RM RM−1 · · · R2 R1 = RM
0 +

M∑
s=2

RM−s+1
0 εsR

s−1
0

+
M∑

i,j=2, j>i

R
M−j+1
0 εjR

j−i

0 εiR
i−1
0

+O(ε3). (33)

In the next step, we keep only terms linear in εs . Since

RM−s+1
0 εsR

s−1
0 =

(· · · −V UM−s−1 V Ds V Us−1 V

· · · −V UM−s V Ds V Us−1 V

)
,

where Uk = diag Uk(εj ) denotes a diagonal matrix containing
Chebyshev polynomials of the argument εj , 1 < j < N

as defined in Eq. (24), using the identity UM−1UM−s −
UM−s−1UM = Us−1, we obtain the following result for the
GF on the edge of our system:

g(iωn,φ) = g0(iωn,0) + g1(iωn,φ) + · · ·

= g(iωn,0) +
M∑

s=2

V Us−1

× U−1
M V Ds V Us−1 U−1

M V + · · · . (34)

The form of this correction allows for an interesting and useful
interpretation. In accordance with Eqs. (8) and (27), one can
consider the factors V Us−1 U−1

M V as being the GFs for the
lattice nodes located in the rows m = s and m = M; see Fig. 2.
So the first factor from the right describes particle propagation
from the row m = M to the row m = s, where the particle
“feels” the magnetic field, picks up the factor Ds , and after that
propagates back to the row with index M , thereby correcting
the field-free result g(iωn,0). According to this scheme, the
second-order contribution can be found to be given by the

−4 −2 2 4 ω/Γ

1

2

3

DOS

FIG. 3. Local density of states measured in arbitrary units at the
edge of a noninteracting 2D tight-binding lattice far away from the
lattice corners (edge bulk case) without the magnetic field (dotted
line) and in the field with the strength φ/φ0 = 1.5 (solid line). Both
systems have dimensions M = N = 60. The dashed line represents
the local DOS in the bulk of a 1D system computed with the help of
formula (B3). The peak structure in the magnetic case indicated the
presence of four Landau levels.

following expression:

g2(iωn,φ) =
M∑

s,s ′=2,s>s ′

(
V Us−1U−1

M V
)

×Ds

(
V

[
Us−1UM−s ′U−1

M − Us−s ′−1
]
V

)
×D′

s

(
V Us ′−1U−1

M V
)
.

Here the particle travels to the row s ′, picks up the phase
induced by Ds ′ , travels to the row s > s ′, picks up the second
phase due to Ds , and after that returns back. In a similar way
one can construct corrections of arbitrary order.

C. Edge states: The local density of states

It is known that in 2D systems subject to strong magnetic
fields there are gapless edge states. It is interesting to recover
them using the just developed technique. The simplest quantity
is the local density of states (DOS), the spacial dependence of
which is exemplarily plotted in Fig. 3. A direct comparison of
the edge DOS in the 2D case in the presence of a magnetic
field with the one of a 1D system indicates the presence of
edge channels with approximately 1D geometry.

D. Edge states: The edge currents

As we have seen in the previous subsection, the local DOS
is not sensitive to chirality of the edge states. To access this
information, a direct computation of particle currents is more
appropriate. One can, for example, consider the current flowing
between the sites (n,M) and (n + 1,M) at the rightmost edge
of a sample with dimensions N and M . The corresponding
operator is given by

Jn = −iγ (c†n,Mcn+1,M − c
†
n+1,Mcn,M ). (35)

This quantity can be computed in the following way. Let us
consider two 2D systems in the same magnetic field. The
operators of one of them are cn,m1 and the operators of the
other one are dn,m2 , where 1 � n � N and 1 � m1,2 � M1,2.
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We gauge the field in such a way that the (for definiteness
lower) edge m1 = 0 of the first system does not carry phase
factors and they grow in a positive direction for growing index
m1 up to the value (M1 − 1)φ in the opposite edge of the
system. On the other hand, the (upper) edge of the second
system carries the phase factor −φ and it grows into negative
values up to −M2φ on the opposite edge of this subsystem.

Let g be the GF of the sites on the lower edge of the system
1 and h be the GF of the upper edge of the second system.
Now we couple the systems by tunneling. Then the effective
action has the form

S = 1

β

∑
iωn

(c†,d†)

(
g−1 �

� h−1

)(
c
d

)
,

where the notation (c†,d†) stands for the composite field
(c†1,c

†
2 · · · c†N,d

†
1,d

†
2 · · · d†

N ) and � is a unit matrix times −γ .
We are interested in the GF between the neighboring lattice
sites, and we choose them to be of the kind 〈Tτ cn(τ ) d

†
n(0)〉 and

〈Tτ dn(τ ) c
†
n(0)〉. The difference between the two is precisely

the current according to the definition (35). These expectation
values can be found via matrix inversion of the above action.
Taking the difference of the off-diagonal components of the
inverse matrix, we obtain an array of currents,

J = −i
γ

β

∑
iωn

[〈cd†〉 − 〈dc†〉]

= −i
γ 2

β

∑
iωn

[h(1 − γ 2gh)−1 g − g(1 − γ 2hg)−1 h].

This expression is odd with respect to exchange g ↔ h. This
automatically yields currents of opposite signs through the
links located at the same distance from the middle symmetry
axis of the sample. The opposite signs for the currents on the
opposite sample edges follow. Moreover, in the absence of
the magnetic field, the matrices g and h commute and the net
current through the links vanishes. This is due to the fact that
both subsystems are diagonalized by the same transformation.

Numerical evaluation of the above expression is not
difficult, and one can conveniently discuss all features of the
currents in the sample. Among other things, one immediately
verifies that the currents decay exponentially with the distance
from the sample edge; see Fig. 4. We also find that there is no
noticeable net field-driven depletion of charge even in the case
of very strong fields.

It turns out that the edge current computation can be
very conveniently performed using the perturbative expansion
presented in Sec. III B. To the lowest order, we can write g ≈
g0 + g1 and h ≈ h0 + h1 and use the result (34). Defining f :=
1 − γ 2g0h0 and taking advantage of the identity [g0,h0] = 0,
one obtains

Jiωn

−iγ
≈ [h0f−1,g1] + γ 2h0f−1[g1,g0]h0f−1

−(g0 ↔ h0 , g1 ↔ h1)

= V ([H0F
−1,G1] + γ 2H0F

−1[G1,G0]H0F
−1)V

−(G0 ↔ H0 ,G1 ↔ H1),

0 10 20 30 l
10−8

10−5

10−2

J/Γ

FIG. 4. Logarithmic plot of the absolute values of the currents on
the sites l in the middle of an 80 × 80 lattice in a strong magnetic
field φ/φ0 = 0.80π at temperature T/γ = 0.1 as a function of the
distance from the edge. Gray dots represent the exact solution for the
full current, while the black dots show the results gained from the
approximation derived in Sec. III D. The dotted line corresponds to
the curve f (l) = 0.25e−0.5(l−1).

where we defined Jiωn
as the energy-resolved current with the

property J = 1
β

∑
iωn

Jiωn
, as well as G0,1 = V g0,1V , H0,1 =

V h0,1V , and F = V fV .
Assuming γ to be the energy unit as before, one arrives at

an explicit expression for the current to first order in eiM1φ − 1
or eiM2φ − 1, whichever is larger,(

Jiωn

−iγ

)
kl

= (
V Jiωn

V
)
kl

≈ δk,l+1 mod 2

× −4

N + 1

sin
(

π
N+1k

)
sin

(
π

N+1 l
)

cos
(

π
N+1k

) − cos
(

π
N+1 l

)
× UM2 (εl)UM2−1(εk) − UM2 (εk)UM2−1(εl)[

UM2 (εk)UM1 (εk)−UM2−1(εk)UM1−1(εk)
]·(k↔l)

×
M1∑
s=1

Us−1(εk) sin[(s − 1)φ]Us−1(εl)

− [M1 ↔ M2, (s − 1)φ → −sφ],

where εk were defined in (24) and the very last term denotes the
term identical to the first one up to the indicated substitutions.
In the last computation step, we have performed an index
shift of s, which does not affect the index of the Chebyshev
polynomials.

Even in the expansion of this order, one can see many
features imposed on the system by the magnetic field. A
comparison between the full current and the approximation
can be found in Figs. 4 and 5. As expected, the current decays
exponentially with the distance from the sample edge. It turns
out that the perturbative approach works surprisingly well,
yielding a good approximation for the edge current up to depths
of about 10% of the sample size; see Fig. 4.

IV. KITAEV CHAIN MODEL

Recently, the Kitaev chain model became the focal point
of research as it represents one of the simplest realizations
of nonlocal Majorana edge states [30–32]. Its Hamiltonian is
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5 10 15
l

− 0.01

− 0.02

− 0.03

J/Γ

5 10 15
l

− 0.1

− 0.2

− 0.3

J/Γ

FIG. 5. Comparison between the exact result for the current and
the perturbative expansion of Sec. III D (dashed line) in the middle
of a 40 × 40 lattice at temperature T/γ = 0.1 as a function of the
distance l from the sample edge. The main plot shows the current for
a magnetic-field strength of φ/φ0 = 10−3 π , while the inset displays
the results for φ/φ0 = 10−2 π .

given by

HKitaev = Htb +
N−1∑
i=1

(eiφ c
†
i c

†
i+1 + e−iφ ci+1ci), (36)

where Htb is defined in (1).  is the gap parameter and φ

is the superconducting phase. The action can be written in
the form (10) after the introduction of composite fields of the
form c†(iωn) = (c†1(iωn),c1(iωn), . . . ,c†N (iωn),cN (iωn)). The
action kernel is

AN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1
0 � 0

. . . 0 0

�† D−1
0 �

. . . 0 0

0 �† D−1
0

. . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . D−1

0 �

0 0 0
. . . �† D−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (37)

where the intersite coupling matrix is

� =
( −γ −eiφ

e−iφ γ

)
, (38)

and D−1
0 = diag(iωn − ε,iωn + ε) is the action of a single

detached site. The diagonal 2 × 2 Nambu blocks of the inverse
of AN yield the local GFs of a respective site, on its diagonal
are the electron and hole GFs, while the anomalous GFs are
on the off-diagonals:

D =
(

G G+

G− G̃

)
, (39)

where we define the local Matsubara GFs in Nambu represen-
tation as

G(τ ) = −〈Tτ ck(τ )c†k(0)〉, G+(τ ) = −〈Tτ c
†
k(τ )c†k(0)〉,

G̃(τ ) = −〈Tτ c
†
k(τ )ck(0)〉, G−(τ ) = −〈Tτ ck(τ )ck(0)〉.

The nonlocal GFs are defined in the same way with the pair of
k indices replaced by the indices of the sites between which
the respective GF is considered. Let us denote by D̃N the GF

of the kind (39) at the leftmost site of a chain with length M .
Then the following recurrence relation holds:

D̃−1
N+1 = D−1

0 − �D̃N �†. (40)

It can, of course, be recast into the Dyson equation as

D̃N+1 = D0 + D0 �D̃N�† D̃N+1. (41)

After making the substitution

D̃N+1 = (�†)−1P̃N P̃ −1
N+1, (42)

one then obtains a matrix-valued three-point recurrence rela-
tion for a new variable P̃N ,

P̃N+1 = D−1
0 (�†)−1P̃N − �(�†)−1P̃N−1

= A P̃N − B P̃N−1. (43)

It can be considered to be a matrix generalization of the
Chebyshev polynomials of the second kind. Using a similar
approach, we can compute the GF on the rightmost site of
the chain. The corresponding identities are obtained by the
exchange � ↔ �†. We shall denote these GFs by DN and the
respective Chebyshev polynomials by Pn.

Now we compute the local GF at the site 1 < k < N of
the chain. Obviously, it cuts the chain into two pieces: (i) with
length k − 1 to the left and (ii) with length N − k to the right
of the site k. That is why Dk−1 and D̃N−k are the corresponding
self-energies and

Dk,k = (
D−1

0 − �† Dk−1 � − �D̃N−k �†)−1

= [
Pk P −1

k−1 � − � (�†)−1P̃N−k−1P̃
−1
N−k �†]−1

. (44)

Using similar procedures, one can derive an explicit expression
for the GF between arbitrary sites k and m. It is given by

Gk,m = (−1)m−k
[
Pk P −1

k−1 � − � (�†)−1P̃N−k−1P̃
−1
N−k �†]−1

× (
P0 P −1

m−k−1 �
)[

P̃N−m+1 P̃ −1
N−m �†

−�† �−1Pm−k−2P
−1
m−k−1 �

]−1
. (45)

For a detailed derivation, see Appendix C. One special case—
k = 1, m = N—is particularly interesting as the respective GF
is responsible for the transport properties of the chain. Here
the expression is very appealing and concise:

G1,N = (−1)N+1(�†)−1 P̃N−1 P̃ −1
N P −1

N−1. (46)

It is not difficult to show that in the scalar case the last two
results immediately reproduce the corresponding formula for
the tight-binding chain (8). One of the applications for that is
the derivation of the effective action for end Majoranas used
in Refs. [33,34], or the computation of transport properties in
the spirit of [35,36].

The most important advantage of these results is that the
computation of the Chebyshev matrix polynomials itself only
requires matrix multiplications. Only the very last steps in
(45) and (46) require matrix inversions. This is different from
directly using the recurrence relation (47), which, being a
generalization of a continuous fraction to matrices, requires
a matrix inversion in each step. Needless to say, it is also more
efficient than the direct matrix inversion of (37).
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As in the case of the simple tight-binding chain, one can
produce a bulk-boundary correspondence relation using the
Dyson equation (41),

D−1
bulk = D−1

0 − �D̃edge �† − �† Dedge �, (47)

with the only difference being that in the present situation there
are two different edges coupled to a bulk site: a “right” and a
“left” one.

To access the end site GF, we can alternatively follow the
route discussed in the previous section and define new matrices

PN and QN , similar to those in Eq. (18), so that DN = PNQ−1
N .

Then the recurrence relation (40) is solved by(
PN+1

QN+1

)
= RN

(
P1

Q1

)
,

(48)

R =
(

0 (�†)−1

−� D−1
0 (�†)−1

)
,

where P1 = D0 and Q1 = 1. Further progress is made by
diagonalizing the matrix R. Its eigenvalues are

λ2
1,2 = ±[(iωn)2 − 2(γ 2 + 2)] +

√
162γ 2 + (iωn)4 − 4(iωn)2(γ 2 + 2)

2(γ 2 − 2)
.

Eigenvectors of R can be written down as (u,v)T . Obviously,

u = λ−1(�†)−1 v. (49)

From the requirement[
D−1

0 (�†)−1 − λ − λ−1� (�†)−1
]
v = 0

we obtain

v2 = e−iφ (iωn)λγ − (1 + λ2)γ 2 + (λ2 − 1)2

[(iωn)λ − 2γ ]
v1.

Setting v1 = 1, we obtain a set of four different vectors
v(λ1,2,3,4), from which we compute u(λ1,2,3,4) using (49). Then

T =
(

u(λ1) u(λ2) u(λ3) u(λ4)
v(λ1) v(λ2) v(λ3) v(λ4)

)
is the matrix that diagonalizes R. Thus we obtain

RN = T diag
(
λN

1 ,λN
2 ,λN

3 ,λN
4

)
T −1.

In this way, we obtain an analytical solution for the local GF
in a Kitaev chain of finite length N .

V. 2D p-WAVE SUPERCONDUCTOR

The Kitaev chain model dealt with in the previous section
is a 1D version of the more general p-wave superconductor
models. In two dimensions it can be understood as a stack
of Kitaev chains coupled by superconductor pairing (see,
e.g., [37]):

Hpw = Htb +
N−1∑
n=1

M−1∑
m=1

(ic†n,mc
†
n,m+1 − i∗cn,m+1cn,m

+c†n,mc
†
n+1,m + ∗cn+1,mcn,m), (50)

where Htb is defined in Eq. (16). The system can be considered
to be built up from M Kitaev chains of length N , which are
coupled by matrices �:

� = diagN

(
�′,�′, . . . ,�′), �′ =

(
γ i

i∗ −γ

)
. (51)

Then the recurrence relation for the GF of the edge row is
formally equivalent to that given in Eq. (17):

g−1
M = G−1 − �† gM−1 �, (52)

where G is the GF of an individual uncoupled Kitaev chain
computed in (45). The solution of this recurrence relation can
again be performed using yet another set of Chebyshev matrix
polynomials of the second kind.

As an application, we compute the energy spectra of
systems of different size. As can be seen from Fig. 6, there
is a pronounced even-odd effect. While for even N = M there
are no zero modes, for odd N = M there is always a doubly
degenerate energy level at E = 0. For more generic lattice
sizes, the zero modes exist whenever both N and M are odd.
The case of M = 1 corresponds to an ordinary Kitaev chain,
in which the zero modes lie at precisely E = 0 for odd N

and approach zero energy with growing even N . A similar
phenomenon takes place in the present case—also in the case
of either of N or M being even (or both), the eigenenergies tend
toward E = 0 with growing lattice sizes. There is, however,
a fundamental difference between these lattices and those
with both N,M being odd. While the former are fourfold-
degenerate, the latter are always doubly degenerate.

The present 2D case is obviously different from the edge
state in the Kitaev chain. It is instructive to investigate the
spatial distribution of the DOS in order to find out whether the
zero modes are localized. As we have shown above in Fig. 1,
there are three distinct points of the lattice: (a) a corner site, (b)
an edge bulk site, and (c) the true bulk site. In Fig. 7 we plot

20 40 60 80 100 n0

1

2

3

4

5

|En|/

FIG. 6. Energy levels of 2D p-wave superconductor systems for
difference lattice sizes: N = M = 4,5,6,7 (circles, squares, open
diamonds, and triangles) for μ = 0 and /γ = 2. For N = M = 5,7
there is a doubly degenerate energy level at E = 0.
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bulk edge

�4 �2 0 2 4 ω �γ
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bulk

�4 �2 0 2 4 ω�γ

0.2

0.4

0.6

0.8

DOS
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1.0

DOS
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(a) (b)

(c) (d)

�4 �2 0 2 4 ω�γ

0.5

1.0
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FIG. 7. DOS measured in arbitrary units as a function of energy at (a) corner site (upper left panel), (b) bulk edge site (upper right panel),
and (c) bulk site (lower left panel) in the center of the lattice for systems with dimensions N = M = 100 and μ = 0, /γ = 0,0.35,0.75,1
(dotted, solid, dashed, and dot-dashed lines, respectively). The lower right panel shows the comparison between the DOSs for /γ = 0.35 at
the corner, bulk edge, and bulk sites (dashed, solid, and dotted lines, respectively). All energy levels are artificially widened by δ/γ = 0.075
for better readability.

the corresponding DOS. Surprisingly, the zero-energy states
are indeed localized at the lattice corners, and the respective
DOS falls off exponentially with the distance from the corner.
We would like to stress that for large N and M there are
always states in the vicinity of E = 0. But only the odd-odd
constellation possesses a true zero mode, which is doubly
degenerate. In all other cases, there are multiple levels (at least
four) in the vicinity of E = 0.

In the odd-odd case, one is confronted with a fermionic
state, which is highly delocalized between the four corners
of the lattice. This is very similar to the end states in the
open Kitaev chain [30]. However, in the 2D case the corner
states are not Majorana fermions. Nonetheless, they are also
perfectly suitable to be used as qubit states in the context of
quantum-information technology.

The existence of nontrivial topological edge-on-the-edge
states was recently pointed out in Ref. [38]. It is not yet fully
clear whether these are indeed the same, and the corresponding
investigation is a possible avenue for further research.

VI. 3D TIGHT-BINDING LATTICE

The recurrence relation method can be straightforwardly
generalized to lattices of higher dimensions. Here we consider
a 3D cubic tight-binding sample with dimensions M × N ×
K . We recover all known results and generate a number
of different ones. The expression for the single-particle GF
between the sites with coordinates (jpq) and (j ′p′q ′) is given
by

g(jpq),(j ′p′q ′)(iωn) =
K∑

s=1

N∑
r=1

M∑
k=1

vjkvkj ′ wpr wrp′ yqs ysq ′

iωn

2 − cos
(

πk
M+1

) − cos
(

πr
N+1

) − cos
(

πs
K+1

) =
N∑

r=1

M∑
k=1

vjkvkj ′ wpr wrp′
Uq−1(εkr ) UK−q ′ (εkr )

UK (εkr )
,

where

yqs =
√

2

K + 1
sin

(
π q s

K + 1

) and

εkr = iωn

2
− cos

(
πk

M + 1

)
− cos

(
πr

N + 1

)
.
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For the DOS at the corner site of the lattice, we then obtain the
following result:

νcorner(ω) = 4

(
2

π

)2 ∫ ∫
dy dz

√
(1 − y2)(1 − z2)

×
√

1 − (ω/2 − y − z)2, (53)

whereby the integration domain is fixed by the requirements
|y| < 1, |z| < 1, and |ω/2 − y − z| < 1. The edge bulk site is
the one on the edge of the sample far away from the corners,

νeb(ω) = 2

(
2

π

)2 ∫ ∫
dy dz

√
1 − y2

1 − z2

×
√

1 − (ω/2 − y − z)2, (54)

with the same integration domain. In the bulk of the face far
away from the edges, we obtain

νface(ω) =
(

2

π

)2 ∫ ∫
dy dz

√
1 − (ω/2 − y − z)2

(1 − y2)(1 − z2)
. (55)

And finally, in the bulk of the lattice one finds

νbulk(ω) = 1

2

(
2

π

)2 ∫ ∫
dy dz

1√
(1 − y2)(1 − z2)

× 1√
1 − (ω/2 − y − z)2

. (56)

To the best of our knowledge, Eqs. (53) and (54) represent
new results and are complementary to, e.g., those of [39].
All remaining integrals can be rewritten in terms of elliptic
integrals. We refrain from that, however, as it does not produce
any added value.

VII. CONCLUSIONS

We revisit the recurrence relation method (also referred to as
the transfer-matrix method) for band-structure calculations of
lattice models, and we apply it for the computation of Green’s
functions (GFs). We show a number of analytical solutions
for conventional lattices in different dimensions. While for a
simple 1D tight-binding system every single GF can be written
down as a rational function of Chebyshev polynomials of the
second kind, in higher dimensions or for systems with such
nontrivial structure as a p-wave superconductor or ones with
spin-orbit coupling, the resulting expressions for the GFs are
given by functions of matrix-valued Chebyshev polynomials.
Using this concept, we derive an explicit expression for any
kind of GF for a Kitaev chain; see Eq. (45). Even though
our results require numerical calculations, their efficiency is
vastly superior to all existing methods as they require only a
small number of matrix inversions, regardless of the system
size.

We generalize the method for lattices in external fields,
and for corresponding GFs we derive analytical formulas in
closed form. By an explicit computation of the density of states
and energy-resolved particle currents, we show how in a 2D
tight-binding lattice subject to a magnetic field, a 1D chiral
edge state is formed. Furthermore, we develop a perturbative
approach in order to construct simpler analytical solutions,

which adequately describe the properties of edge states for not
too strong fields.

Application of our method to a 2D p-wave superconductor
on a lattice reveals its very interesting energy-level structure.
It turns out that for lattices with odd length and width,
there is always a doubly degenerate zero-energy state, which
is nonlocal and spread between the four corners of the
lattice. That is confirmed by an explicit calculation of the
spatial dependence of the respective density of states. This
phenomenon is very similar to end states in open Kitaev chains.
However, the emergent fermionic state is not of Majorana
type. Nonetheless, its nonlocality is very advantageous for
future quantum information technology applications, not least
due to its explicit higher dimensionality, which entails better
experimental feasibility. In addition, we derive numerous
analytical results for densities of states of conventional tight-
binding lattices in different dimensions and different spatial
locations in lattices with open boundaries.
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APPENDIX A: 1D CHAIN WITH PERIODIC BOUNDARIES

With the periodic boundary condition, the action matrix is
slightly modified:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

iωn −γ 0
. . . 0 −γ

−γ iωn −γ
. . . 0 0

0 −γ iωn

. . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . iωn −γ

−γ 0 0
. . . −γ iωn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Its determinant and the inverse are given by

detA = 2UM

(
iωn

2γ

)
−

(
iωn

γ

)
UM−1

(
iωn

2γ

)
− 2,

(A−1)k,m =
UN−1−|k−m|

(
iωn

2γ

) + U|k−m|−1
(

iωn

2γ

)
2UN

(
iωn

2γ

) − (
iωn

γ

)
UN−1

(
iωn

2γ

) − 2
.

On the other hand, the matrix

Skm = ei2πkm/N

straightforwardly diagonalizes A. That is why the GF is also
given by the following expression:

gk,m(iωn) =
N∑

l=1

S−1
kl

1

iωn − εl

Slm =
N∑

l=1

ei2πl(k−m)/N

iωn − εl

,

(A1)

where εk = −2γ cos(2πk/N ). From the equality gk,m(iωn) =
(A−1)k,m then follows an interesting result for the trigonomet-
ric sum in (A1).
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APPENDIX B: ANALYTICAL CONTINUATION FOR
THE 1D CHAIN

The retarded GF obtained from the Matsubara GF in (14)
can be found to be

gR(ω) = 1

γ 2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[

ω
2 − i

√
γ 2 − (

ω
2

)2]
, |ω| < 2γ,[

ω
2 +

√(
ω
2

)2 − γ 2
]
, ω < −2γ,[

ω
2 −

√(
ω
2

)2 − γ 2
]
, ω > 2γ.

(B1)

As a result, the DOS is only nonzero within the band |ω| < 2γ

and has the expected half-ellipsoidal form

νedge(ω) = −2 Im gR(ω) = γ −1
√

1 − (ω/2γ )2. (B2)

In the bulk DOS one immediately recognizes the van Hove
singularities,

νbulk(ω) =
[
γ

√
1 − (ω/2γ )2

]−1

. (B3)

APPENDIX C: END-TO-END GF FOR THE KITAEV
CHAIN

We first outline the calculation of the end-to-end GF. Here
we use the chain contraction procedure proposed in [19]. One
starts with a partition function generated by the action (37),
and subsequently integrates out all fermionic fields up to those
describing the end sites. We start with

AM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1
0 T1 0

. . . 0 0

T̃1 F−1
1 �

. . . 0 0

0 �† D−1
0

. . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . D−1

0 �

0 0 0
. . . �† D−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, after integrating out the fermions of the second site
(counted from the left), the action kernel is given by a matrix
of reduced dimensions:

AM−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1
0 − T1F1T̃1 −T1F1� 0

. . . 0 0

−�†F1T̃1 D−1
0 − �†F1� �

. . . 0 0

0 �† D−1
0

. . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . D−1

0 �

0 0 0
. . . �† D−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1
0 − T1F1T̃1 T2 0

. . . 0 0

T̃2 F−1
2 �

. . . 0 0

0 �† D−1
0

. . . 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0
. . . D−1

0 �

0 0 0
. . . �† D−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (C1)

Continuing this lattice contraction, we finally obtain the 2 × 2 action

A2 =
(

D−1
0 − ∑N−2

j=1 Tj Fj T̃j −TN−2 FN−2 �

−�† FN−2 T̃N−2 D−1
0 − �† FN−2 �

)
,

where for Fn, Tn, and T̃n we have the following recurrence relations:

F−1
n+1 = D−1

0 − �† Fn �, Tn+1 = −Tn Fn �, T̃n+1 = −�† Fn T̃n (C2)

with the initial conditions F1 = D0, T1 = �, and T̃1 = �†. So Fn satisfy the recurrence relation for the local GF on the rightmost
site Dn; see Sec. IV. Now we use the formula for the block matrix inversion,(

A B

C D

)−1

=
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
,

where A,B,C,D are arbitrary nonsingular quadratic matrices. Applying this to invert (C2), we immediately recognize that

(A − BD−1C)−1 ≡ D̃N , (C3)
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i.e., it is equal to the local GF of the outmost left site of the chain. That is why for the object G1,N we obtain the relation

G1,N = −(A − BD−1C)−1BD−1 = −D̃N B DN−1 = (−1)N+1(�†)−1 P̃N−1 P̃ −1
N P −1

N−1. (C4)

To access the k-to-m GF for m > k, we follow the following
strategy. First one integrates out all sites with indices j < k

and j > m. This process can be understood as outer chain
contractions. Then one is confronted with the effective action

Ak,m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D−1
k �

. . . 0 0

�† D−1
0

. . . 0 0
. . .

. . .
. . .

. . .
. . .

0 0
. . . D−1

0 �

0 0
. . . �† D̃−1

N−m+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Our task is now the calculation of the end-to-end GF for this
action. To that end, we employ the approach used above, which
we call inner contractions. As a result, for the end-to-end

effective action kernel, we get

A2=
(
D−1

k − ∑m−k−1
j=1 Tj Fj T̃j −Tm−k−1 Fm−k−1 �

−�† Fm−k−1 T̃m−k−1 D̃−1
N−m+1− �† Fm−k−1 �

)
.

Inversion of this expression yields for the off-diagonal com-
ponent the value

Gk,m = (−1)m−k
[
Pk P −1

k−1 � − � (�†)−1P̃N−k−1P̃
−1
N−k �†]−1

× (
P0 P −1

m−k−1 �
)[

P̃N−m+1 P̃ −1
N−m �†

−�† �−1Pm−k−2P
−1
m−k−1 �

]−1
. (C5)

We would like to remark that this kind of procedure can be used
for inversion (and, of course, calculation of the determinants)
of block-tridiagonal matrices even in the general case of
arbitrary �, �†, and D0 matrices. Our approach is different
from that presented in, e.g., [40].
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