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We provide arguments relating to those recently made in a comment by Chakravarty and Wang, who question
the validity of our proposed charge-density wave Fermi surface reconstruction model and its relation to sign
changes in the Hall effect. First, we show that the form of rounding of the vertices (i.e. sharp corners) of the
reconstructed electron pocket, as used in our model calculations of the Hall coefficient, is consistent with Bragg
reflection from the periodic potential of a charge-density wave, rather than being arbitrarily chosen. Second,
we provide further justifications for why an oscillatory transport scattering time provides a useful means for
modeling Shubnikov–de Haas oscillations in the Hall effect, in the situation where a Fermi surface pocket departs
from the ideal circular form. Third, we discuss recent experimental evidence gathered from two different families
of underdoped cuprates supporting the existence of a single electron pocket produced by biaxial charge-density
wave order as a universal phenomena.
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In a recent paper [1], we showed how an electron pocket in
the shape of a diamond with concave sides [see, for example,
Fig. 1(a)] could potentially explain changes in sign of the
Hall coefficient RH in the underdoped high-Tc cuprates as a
function of magnetic field and temperature. For simplicity, this
Fermi surface is assumed to be constructed from arcs of a circle
connected at vertices [see Fig. 1(b)], which is an idea borrowed
from Banik and Overhauser [2]. Such a diamond-shaped
pocket is proposed to be the product of biaxial charge-density
wave order [3], which was subsequently supported by x-ray
scattering experiments [4,5]. Since those x-ray scattering
experiments were performed, the biaxial Fermi surface recon-
struction scheme has garnered widespread support in the scien-
tific literature [6–8]. It has been shown to account for the cross
section of the Fermi surface pocket observed in quantum oscil-
lation measurements [9–11], the sign and behavior of the Hall
coefficient [1,12], the size of the high magnetic field electronic
contribution to the heat capacity [13], and more recently the
form of the angle-dependent magnetoresistance [14]. The mea-
sured charge-density wave correlation length is comparable to
the mean free path obtained from quantum oscillations [10],
indicating it may be reasonably expected to yield Fermi surface
reconstruction.

In their comment [15], Chakravarty and Wang raise several
important questions relating to the validity of the Hall coeffi-
cient we calculated for such a diamond-shaped Fermi surface
pocket. These questions concern specifically (1) whether a
change in sign of the Hall coefficient RH with magnetic field
and temperature is dependent on a “special” form for the
rounding of the vertices in Fig. 1(a), (2) whether a pocket
of such a geometry can produce quantum oscillations in RH in
the absence of other Fermi surface sections, and (3) whether
a reconstructed Fermi surface consisting of a single pocket is
less “natural” than one consisting of multiple pockets. Below
we consider each of these in turn.

1. Rounding of the diamond vertices. Bragg reflection,
similar to that occurring with regard to the crystalline lattice
in conventional metals [2], is likely to be a crucial factor in

determining the form of the Hall coefficient in underdoped
cuprates. Bragg reflection, in which quasiparticles scatter
elastically from a periodic potential, is consistent with the
findings of a static charge-density wave in both x-ray scattering
[4,5] and quantum oscillation [9–11] experiments. In such
a case, we can consider the sharp corners of the Fermi
surface in Fig. 1(a) to be the product of mixing between
states εk,1 and εk,2 = εk+Q,1 (where Q is the charge-density
wave ordering vector), whose Fermi velocities before (vk,1)
and after (vk,2) reflection point in different directions [see
Fig. 2(a)]. Irrespective of the magnitude � of the periodic
charge-density wave potential, the y component of the Fermi
velocity vk,y tangential to the Bragg plane illustrated in
Fig. 2(b) is unchanged by the Bragg reflection process. The
x component of the velocity vk,x normal to the Bragg plane,
by contrast, passes through zero and undergoes a change sign.
The vanishing of vk,x at the point of intersection between
εk,1 and εk,2 upon mixing the two bands implies that the

magnitude vk =
√
v2

k,x + v2
k,y of the Fermi velocity is reduced

at the vertices relative to the magnitudes of vk,1 and vk,2. It
is this local reduction in the magnitude of the velocity at the
vertices that is fundamentally responsible for the change in
sign of the Hall coefficient with magnetic field, as originally
reported by Banik and Overhauser [2].

When one neglects the rounding of the vertices, the effect of
Bragg reflection is implicitly included in the calculation of the
Hall coefficient using the Shockley-Chambers tube integral
method [17,18] by virtue of the fact that vk,x (normal to
the reflection plane) changes sign at the vertex while vk,y

(tangential to the reflection plane) remains unchanged. In
modeling the Hall coefficient using the Jones-Zener method
[16], by contrast, the velocity reduction associated with Bragg
reflection needs to be carefully inserted by hand [1]. Only when
one correctly accounts for the reduction in the magnitude of
the Fermi velocity at the vertices does one obtain consistency
of the Jones-Zener [16] method with Shockley-Chambers tube
integral [17,18] method.
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FIG. 1. (a) Schematic diamond-shaped electron pocket from
Ref. [1], with blue arrows indicating the direction of cyclotron motion
and v1 and v2 indicating the Fermi velocity direction. (b) Schematic
showing how the electron pocket is produced by connecting arcs of
a larger hole Fermi surface, with α being the angle subtended by the
arc and the dotted lines indicating how they are connected.

An important question in the cuprates is whether there exists
an alternative inelastic mechanism that can lead to a different
form for the rounding of the vertices of the diamond-shaped
pocket in Fig. 1(a). Chakravarty and Wang [15] refer to a
scenario postulated in Ref. [19] in which the magnitude |lk|
of the mean free path vector lk = vkτk is invariant over the
Fermi surface, leading to a situation in which the sign of RH

no longer changes with magnetic field. We note that a constant
|lk| runs into compatibility problems with Bragg reflection. For
example, in order to maintain a constant |lk| while traversing
the vertices, either of two unlikely situations would need to
apply. In one, the scattering rate would need to be locally
suppressed at the vertices to compensate for the momentarily
reduced magnitude of the velocity at the vertices. In the other,
the y component of quasiparticle velocity would need to
momentarily accelerate at the vertices in order to maintain
both vk and τk constant. Neither of these scenarios appear to
be more realistic than the standard Bragg reflection scenario
considered above and in Ref. [1].

When interactions do accompany Bragg reflection, as in the
case of “hot spots,” it is more likely that these will suppress
the contribution to RH from the vertices, causing a sign change
in RH to become more pronounced or to occur for smaller
values of the parameter α in Fig. 1. Possibilities include a
local increase in the effective mass at the hot spots [20] or an
increase in the quasiparticle scattering rate [21].

2. Oscillations in the Hall coefficient. The comment of
Chakravarty and Wang [15] focuses on the Drude treatment
of a multiband metal and does not, we believe, adequately
consider the nongeometric nature of the Hall coefficient RH in
a bulk metal in the intermediate regime regime in which h̄ωc

is neither in the limit ωcτ → 0 nor ωcτ → ∞.
It is well known that for a multiband metal consisting of

pockets with different mobilities, or different values of the
product ωcτ , RH is a function of ωcτ , causing it to vary with
the strength of a magnetic field. Only in limits ωcτ → 0

(a) (b)

FIG. 2. (a) Solid lines showing the reconstructed Fermi surface
in the vicinity of a vertex produced by Bragg reflection. Dotted lines
indicate the Fermi surface in the absence of hybridization. v1 and
v2 are velocities before and after a quasiparticle traverses the vertex.
(b) Schematic of the Bragg reflection in real space assumed to be
responsible for the sharp corner.

and ωcτ → ∞ does RH become a truly geometric quantity
and approach constant low and high magnetic field values.
Since σxx,yy/σxy ≈ ωcτ for a given section of Fermi surface
and Shubnikov–de Haas oscillations occur only in σxx,yy ,
oscillations in the quasiparticle scattering rate τ−1 provide
a natural means for modeling the Shubnikov–de Haas effect
in metals. Such a method also reproduces the correct behavior
for various different limits. For example, in the case of a single
band metal, it correctly predicts that there are no oscillations
in RH [22,23]. Meanwhile, for a multiband metal, it correctly
predicts that oscillations are present in RH [24], yet vanish
in the limits ωcτ → 0 and ωcτ → ∞. The justification for
considering the oscillations to occur in τ−1 is provided by
Fermi’s golden rule, which states that the transport scattering
rate that enters into the electrical resistivity is approximately
proportional to the number of states available for scattering
[25]—in other words, the electronic density of states. The
oscillatory τ̃−1 is therefore expected to be approximately
proportional to the oscillatory density of states, which is
precisely what we assume for our calculations in Ref. [1].
A more rigorous model for quantum oscillations in the Hall
coefficient of the underdoped cuprates could be developed by
a fully quantum mechanical derivation for a diamond-shaped
pocket, which we look forward to.

Banik and Overhauser showed that, in a manner similar to
that for a multiband metal, the Hall conductivity of a diamond-
shaped pocket is a function of ωcτ [2]. Therefore, in a manner
like that for a multiband metal, RH of a diamond-shaped pocket
varies with the strength of a magnetic field. In a manner similar
to that for a multiband metal, RH also becomes constant (i.e.,
nonoscillatory) in the limits ωcτ → 0 and ωcτ → ∞. The
quantum oscillations in the underdoped cuprates are observed
in the intermediate regime in which ωcτ ∼ 1 for which RH

does not have a simple geometric representation and for which
oscillations in RH cannot therefore be excluded.

146502-2



COMMENTS PHYSICAL REVIEW B 96, 146502 (2017)

3. Single versus multiple pockets. The occurrence of mul-
tiple pockets in the majority of Fermi surface reconstruction
scenarios [6,7,26–28] does not make these scenarios more
likely, as argued by Chakravarty and Wang [15]. Other
considerations such as the small value of the electronic heat
capacity at high magnetic field in fact point to a single pocket
per CuO2 plane [29], making such multiple-pocket scenarios
less likely. We note that while low-frequency oscillations have
been detected in underdoped YBa2Cu3O6+x [30] (displayed
in one of the supplementary figures), the weight of the
experimental evidence points to their origin from a Stark
quantum interference effect [1,31] rather than additional small
pockets [9].

There are at least two other materials [32,33] in which
Fermi surface reconstruction by incommensurate spin- and
or charge-density wave order has been shown experimentally
to yield only a single reconstructed pocket. In the case of the
underdoped cuprates as well, two Fermi surface reconstruction
scenarios based on biaxial charge-density wave order [11,34]

have been shown to be capable of producing a reconstructed
Fermi surface consisting of only a single electron pocket. In
addition to the biaxial charge-density wave YBa2Cu3O6+x ,
which is associated with the electron pocket [35], a uniaxial
charge-density wave with longer correlation lengths is found
to onset at lower temperatures [35,36]. The lower integrated
spectral weight of the uniaxial charge-density wave compared
to the biaxial charge-density wave indicates the role of the
uniaxial charge-density wave in Fermi surface reconstruction
to be secondary.
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