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Comment on “Magnetotransport signatures of a single nodal electron pocket
constructed from Fermi arcs”
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We comment on the recent work [N. Harrison et al., Phys. Rev. B 92, 224505 (2015)] which attempts to
explain the sign reversal and quantum oscillations of the Hall coefficient observed in cuprates from a single-nodal
diamond-shaped electron pocket with concave arc segments. Given the importance of this work, it calls for closer
scrutiny. Their conclusion of sign reversal of the Hall coefficient depends on a nongeneric rounding of the sharp
vertices. Moreover, their demonstration of quantum oscillation in the Hall coefficient from a single pocket is
unconvincing. We maintain that at least two pockets with different scattering rates is necessary to explain the
observed quantum oscillations of the Hall coefficient.
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Introduction. In a recent work [1], Harrison and Sebastian
have drawn the attention of the high-Tc community to an
intriguing idea. They have suggested sign reversal of the
Hall coefficient and its quantum oscillations by making a
reconstructed version of the observed Fermi arcs into a single
diamond-shaped electron pocket, shown in Fig 1. The problem
is that any natural reconstruction leads to both electron- and
hole-like pockets.

The nodal Fermi arcs observed in an underdoped cuprate
are pieced together to a single diamond-shaped electron pocket
centered at the nodal point (kx,ky) = (π

2 , π
2 ) of the Brillouion

zone, although we do not have an understanding of the
Fermi arcs themselves. Given this lack of understanding, the
construction by a simple shift of the wave vector needs to
be understood in some depth. Be that as it may, we address the
simpler aspects, assuming that this process can be justified
in the future. This electron pocket has four concave arcs
with sharp vertices, as schematically reproduced in Fig. 1.
Assuming that the magnitude of the velocity is a constant over
the whole Fermi surface contour and ignoring any rounding
of the sharp vertices, they have been able to compute the
magnetic-field-B-dependent conductivities σxx and σxy by
using the semiclassical Shockley-Chambers formula [2,3].
Then, from σxx and σxy , the Hall coefficient RH can be derived.
This treatment follows exactly Ref. [4]. In Ref. [1], Harrison
and Sebastian have found that if each side of the diamond
pocket is sufficiently concave, which means the angle α in
Fig. 1 is large enough, the Hall coefficient RH changes its sign
from being positive at B = 0 to negative at high fields, which
can potentially explain the sign reversal of Hall coefficient as
a function of temperature observed in experiments [5].

To explain the quantum oscillations observed in RH [6],
the authors in Ref. [1] made the following substitution for the
mean free time τ in the Chambers formula:

τ−1 → τ̃−1 ≡ [1 + 2 cos(2πF/H − π )e−π/ωcτ ] τ−1, (1)

where B is the magnetic field, F is the quantum oscillation
frequency, and ωc = eH/m∗c, with m∗ being the cyclotron
effective mass, is the cyclotron frequency. By this substitution,
they obtained quantum oscillations in the Hall coefficient with
a single diamond-shaped electron pocket. As we explain below,
it appears to have no justification for oscillations of RH .

In this Comment, we raise some questions with regard to
Ref. [1]. On the issue of the sign of the Hall effect within the
semiclassical approximation, they make a large contribution
to RH , even though the vertices are a small portion of the
Fermi surface. One can describe a limiting process where
one starts with a sufficiently smooth rounding of the Fermi
surface. Manifestly RH , especially in the large field limit,
is simply the enclosed area and not terribly sensitive to
the shape. As the vertices get more singular, the answer is
nongeneric. To summarize, unless there is some exchange
of particles between multiple bands, or some balance of
mobilities between different bands, it is hard to see how
quantum oscillations of RH could arise. We illustrate our
argument with a simple two-pocket model.

In the following, we first show that in the small magnetic
field limit, the Shockley-Chambers formula is consistent with
the Jones-Zener formula [7], regardless of how the sharp
vertices in the Fermi surface contour are rounded. The sign
of the small field Hall coefficient obtained in Ref. [1] heavily
relies on a special rounding of the vertices. Different ways
of rounding can lead to completely different conclusion
about the sign, as correctly pointed out by Ong in Ref. [8].
Therefore, the conclusion of the sign reversal of RH obtained
in Ref. [1] is not convincing. Finally, we explain why the
simple replacement in Eq. (1) to obtain quantum oscillations
is physically inconsistent. We also give our reasoning for
why a pronounced quantum oscillation in a Hall coefficient
is not expected for a single Fermi surface pocket. At the end,
we close our Comment with some further discussions and
conclusion.

Sign of RH in the weak field limit: Shockley-Chambers
formula and the Jones-Zener method. The Shockley-Chambers
formula for the 2D conductivity tensor σαβ in a magnetic field
is [9]

σαβ = 1

2π2

e2

h̄

m∗ωc

h̄

∫ Tp

0
dt

∫ ∞

0
dt ′vα(t) vβ(t + t ′)e−t ′/τ ,

(2)

where α,β = x,y. In this formula, the time variable t (or t ′) is
introduced to parametrize an electron’s semiclassical periodic
cyclotron motion along the closed Fermi contour under the
Lorentz force. Tp ≡ 2π/ωc is the time period of one complete
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FIG. 1. Schematic diamond-shaped electron pocket Fermi sur-
face [1]. This pocket is supposed to be centered around the nodal
point (kx,ky) = ( π

2 , π

2 ) in the Brillouion zone. The lattice spacing
is set to unity. When viewed as a part of a circle, each arc has a
subtending angle α to the origin of that circle.

circuit motion. The Shockley-Chambers formula is a formal
solution to the Boltzman equation in the presence of a
perpendicular magnetic field and a longitudinal electric field.
This formula itself is applicable in all field regimes, as far
as the Landau level quantization effects can be neglected.
When these effects are incorporated, there will be quantum
corrections to the Shockley-Chambers formula, giving rise to
quantum oscillations such as Shubnikov–de Haas effect.

Consider the weak field limit ωcτ � 1. Then in Eq. (2) we
can expand

vβ(t + t ′) ≈ vβ(t) + t ′
∂vβ

∂t
(3)

because the factor e−t ′/τ falls off very fast. On the right hand
side, the first term contributes a zero to the Hall conductivity
σxy and therefore to the Hall coefficient RH . The second term
gives a contribution ∝ B to σxy and therefore a magnetic-
field-independent term to RH as RH ∝ σxy/B. Higher order
terms will give contributions ∼O(ωcτ ) or smaller to the Hall
coefficient and therefore vanish in the limit ωcτ → 0. In other
words, in the zero magnetic field limit, the expansion in Eq. (3)
becomes exact. For σxx , keeping the first term in the expansion
of Eq. (3) is enough.

Substituting Eq. (3) into Eq. (2) leads to

σxx = 1

2π2

e2

h̄

m∗ωcτ

h̄

∫ Tp

0
vx(t)vx(t)dt , (4)

σxy = 1

2π2

e2

h̄

m∗ωcτ
2

h̄

∮
vx(t) d vy(t) , (5)

where the integration path
∮

is along the closed Fermi
surface contour. Using ωc = eB/m∗c and the definition of
the magnetic field length lB = √

h̄c/eB, we can rewrite the

Hall conductivity as

σxy = e2

h

∮
[vxτ ] d[vyτ ]

/
πl2

B, (6)

which is identical to the Jones-Zener method result (see Eq. (4)
of Ref. [8]),

σxy = e2

h

∮
lx dly

/
πl2

B, (7)

if we define a scattering path length vector: �l = (lx,ly) =
[ vx(t)τ (t),vy(t)τ (t) ], as in Ref. [8]. The assumption here is
that τ (t) ≡ τ is uniform along the Fermi surface contour.

Therefore, within a uniform τ assumption, the small-field
limit of Shockley-Chambers formula agrees perfectly with the
Jones-Zener formula. Note that this conclusion dos not depend
on how the sharp vertices in the Fermi surface contour are
rounded, contradicting the claim made in Ref. [1] that their
consistency does depend on an appropriate rounding of the
vertices.

Dependence of the sign of σxy on the variation of the Fermi
velocity in the vicinity of the vertices. Although the consistency
between the weak field limit Shockley-Chambers formula and
the Jones-Zener formula does not depend on how the Fermi
velocity around the sharp vertices are modeled, the sign of
the computed σxy(B → 0) does depend on it crucially [8].
Therefore, the sign of the RH (B → 0) also heavily relies on
the modeling of the Fermi velocity around the vertex. Different
modeling can lead to opposite conclusions about the sign of
RH (B → 0).

The analysis of Banik and Overhauser. In Ref. [4], Banik
and Overhauser defined the Fermi surface piece-wise manner
by the four arc segments as in Fig. 1, while neglecting any
rounding effects at the vertices. Assuming that the magnitude
of the Fermi velocity |�vF | = vF is a constant along the Fermi
surface contour, the Fermi velocity can be parametrized by

vx(t) = vF cos φ(t), (8)

vy(t) = vF sin φ(t), (9)

where

φ(t) ≡ 4α

2π
ωct −

(π

2
+ α

) n=4∑
n=1

θ (ωct − nπ/2)

+
(π

4
− α

2

)
(10)

is the angle made by the Fermi velocity �vF (t) ≡ [vx(t),vy(t)]
with the x axis at time t . On the right-hand side, the second term
is a sum of four step functions, θ (x). These jumps of φ(t) at
ωct = nπ/2 come from the “Bragg reflecton” of the particle at
each vertex. The initial condition φ(t = 0) = π

4 − α
2 has been

chosen such that the expression of φ(t) is simple. According
to Eq. (5), to calculate σxy(B → 0) we only need to compute
τ 2

∮
vx(t)dvy(t). Because of the discontinuous jumps of �vF (t)

at ωct = nπ/2 from one side of a vertex to the other, there
is a nonzero contribution to the integral τ 2

∮
vx(t)dvy(t) from

each vertex. In other words, the integral can be decomposed
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into two parts as follows:

τ 2
∮

vx(t) dvy(t) (11)

= τ 2

{∫
a1

+
∫

a2

+
∫

a3

+
∫

a4

}
vxdvy

− τ 2
4∑

n=1

δωct,
nπ
2

vx(t) lim
δ→0

[vy(t + δ) − vy(t − δ)] (12)

≡ Aa − Ad. (13)

On the second line,
∫
a1

,
∫
a2

,
∫
a3

,
∫
a4

stand for integrations
along the four arc segments in Fig. 1. The sum of these
four terms is denoted as Aa in the last line. The subscript
a in Aa stands for “arc.” The third line is a sum of the
discontinuous contributions of the Fermi velocity from the
four vertices, as indicated by the Kronecker δωct,

nπ
2

. This sum
is then denoted as Ad in the last line, where the subscript
d stands for “discontinuity,” stressing that it comes from the
discontinuous jumps of the Fermi velocity.

A little inspection shows that Aa is equal to the sum of the
Stokes area swept out by the scattering path vector �l as an
electron moves along each Fermi arc segment. Therefore,

Aa = 4
1

2
α(vF τ )2 = 2αl2, (14)

where l = vF τ is the mean free path.
Computation of Ad is straightforward and the final result is

Ad = 2l2 cos α. (15)

Similar to Aa,Ad also has a geometric interpretation. This can
be seen clearly if we antisymmetrize vx(t) and vy(t) in calcu-
lating the Hall conductivity σxy . After the antisymmetrization,
Ad can be rewritten as follows:

Ad

τ 2
=

4∑
n=1

δωct,
nπ
2

1

2
[vx(t)�vy(t) − vy(t)�vx(t)], (16)

where �vx/y(t) = limδ→0[vx/y(t + δ) − vx/y(t − δ)]. Now
each term in the above sum can be identified as the area
of the triangle made by the two Fermi velocity vectors on
the two sides of each vertex. Each of them is equal to
1
2v2

F sin( π
2 + α) = 1

2v2
F cos α. Therefore, the sum is equal to

2v2
F cos α and Ad = 2l2 cos α. Hence, the Hall conductivity

σxy ∝ (Aa − Ad ) ∝ (α − cos α). Correspondingly, the Hall
coefficient RH ∝ (α − cos α). So it changes sign as α changes
from π/2 to 0.

From this analysis, we see that the small field Hall
conductivity contains not only a contribution Aa from each
arc segment, but also another contribution Ad from the
discontinuous jumps of the Fermi velocity from one arc to
the adjacent arc at each vertex. We should emphasize that this
Ad contribution exists without taking into account how the
vertices are rounded.

Harrison and Sebastian rounding of the vertices. After
computing the σxy directly from the Shockley-Chambers
formula, the authors of Ref. [1] then tried to calculate the
σxy by computing the Stokes area swept out by the scattering
path vector as an electron moves along the entire Fermi surface
contour, following Ong [8]. There are two contributions: one

from the four disjoint arc segments and the other from the
vicinity of vertices. The arc segment contribution is equal to
Aa as computed in the previous section and given by Eq. (14).
Computing the vertex contributions requires a knowledge
of how the sharp vertices are rounded and how the Fermi
velocity varies near the vertices after rounding. We denote this
contribution as Av , where the subscript v stands for vertices.

In order to compute Av , the authors of Ref. [1] modeled
the vertices by assuming an elastic Bragg reflection of
quasiparticles at the end of the disconnected Fermi arcs from
the charge density wave (CDW). However, this is hardly
justified without a real understanding of the nature of the Fermi
arcs and also the semiclassical dynamics of the quasiparticles
at the end of the Fermi arcs before the reconstruction takes
place. Using this modeling of the vertices, the authors of
Ref. [1] then calculated the vertex contribution Av .

The surprising thing is that the Av they have obtained
is identical to Ad introduced in the previous section, which
comes from the discontinuous jump of the Fermi velocity at
the vertices without rounding. Therefore, the σxy ∝ Aa − Av

calculated in Ref. [1] is identical to the σxy ∝ Aa − Ad

computed in the previous section by following Banik and
Overhauser. Based on this fact, the authors of Ref. [1]
have claimed that such an agreement shows that they have
appropriately modeled the variation of the Fermi velocity in
the vicinity of vertices using Ref. [4] to compute the σxy .
But from our analysis, we see that this claim cannot be true.
The agreement between Av and Ad they have found is a
coincidence, not generic. A different way of rounding the
vertices can give a contribution Av that is completely different
from Ad in general (see, for example, Ref. [8]).

This can be a big concern, especially given that the
experimentally observed CDW in the cuprates has a very short
in-plane correlation length (see, for example, Ref. [10]), which
would likely smear out any details of an elastic Bragg scatter-
ing in the small vertex region, even if the Bragg scattering of
quasiparticles on the Fermi arcs were to be well defined.

In short, the sign of the small field σxy depends on how
the sharp vertices are rounded. The special modeling of the
vertices in Ref. [1] might be artificial. Therefore, it puts the
conclusion obtained about the sign of the small field σxy in
doubt. A slightly more realistic modeling of the Fermi velocity
around the vertices might change the final results.

Quantum oscillation corrections at higher magnetic fields.
In the following, we first give our reasons why a simple
replacement of τ with τ̃ in the Shockley-Chambers formula
to extract quantum oscillation is wrong and also give our
arguments as to why a multiple-pocket scenario is reasonable.

Inconsistency of the replacement of τ−1 with τ̃−1 in
Schokley-Chambers formula. To obtain quantum oscillations
in the Hall coefficient, the authors in Ref. [1] made a simple
substitution of the mean free time τ in Eq. (1) into the
Schokley-Chambers formula in Eq. (2). However, this kind
of treatment cannot be correct. We know that the Schokley-
Chambers formula is a formal solution to the semi-classical
Boltzman equation in the presence of both an electric field �E
and a perpendicular magnetic field �H ,

(−e) �E · �v�k
∂f 0

∂ε
+ −e

h̄c
�v�k × �H · ∇�k g = g

τ
, (17)
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where f 0 is the equilibrium distribution in the absence
of fields �E, �H and g is the out-of-equilibrium distribution due
to the fields. The total distribution is f = f 0 + g. The right-
hand side of this equation accounts for the relaxation back
to the equilibrium distribution due to incoherent scattering
processes within the relaxation time approximation. However,
the ad hoc replacement [1] of τ by τ̃ in Eq. (1) cannot be used
to calculate the Hall coefficient RH . This is because the Hall
coefficient is geometric and does not directly depend on τ−1;
see Ref. [8].

Arguments favoring quantum oscillations of Hall coefficient
in the multiple-pocket scenario. In the extreme high field
limit, neither the single- nor the multiple-pocket scenario can
lead to quantum oscillations. However, for the experimentally
accessed field range, the situation strongly favors the multiple-
pocket scenario.

Consider a simple two-pocket situation of longitudinal
resistivities ρ1 and ρ2 and the corresponding Hall coefficients
R1 and R2. A well-known result [11] for R(H ) is

R(H ) = ρ2
2R1 + ρ2

1R2 + R1R2(R1 + R2)H 2

(ρ1 + ρ2)2 + (R1 + R2)2H 2
. (18)

In general, for values of the magnetic field as in the current
experiments, the differing ρ1, ρ2, R1, and R2 can give rise to
quantum oscillations because the scattering rates do not cancel
out from the numerator and the denominator, as can be easily
seen. However, if we consider H → ∞,

R(H ) → R1R2

(R1 + R2)
, (19)

which is independent of H ; hence, there are no quantum
oscillations. Whether this limit is attained or not can be seen
in future experiments. It would imply decreasing quantum
oscillation of Hall amplitudes with field, as the higher field

regime is approached. This would be interesting to observe in
future experiments.

Conclusion. The conclusion about the sign of the zero
field Hall conductivity and/or coefficient obtained in Ref. [1]
heavily relies on a special modeling of the sharp vertices in the
diamond-shaped electron pocket Fermi surface of Fig. 1 and
is therefore nongeneric. The quantum oscillation in the Hall
coefficient obtained in Ref. [1] was based on an inconsistent
substitution of the mean free time with an oscillatory mean
free time in the Shockley-Chambers conductivity formula. We
have given arguments disfavoring this treatment.

The negative Hall coefficient is quite a general result in
the cuprates. Even in cuprates where it is not negative at
higher temperatures, it heads toward negative values at low
temperatures. The specifics of the CDW, on the other hand,
vary quite a bit between different cuprates. And one could
imagine that the details of the rounding of the corners would
be very different indeed. Therefore, it seems unlikely that
something so general—-a negative Hall coefficient—could
rely on something so specific as corner rounding.

Experimentally, there is an observation of small electronic
specific heat coefficient [12] proportional to

√
H , which is

hard to reconcile with the multiple pocket scenario. However,
this experiment is still controversial; see Ref. [13]. There are,
however, other experiments, such as those in Refs. [14,15],
which favor the multiple-pocket scenario. In addition, in a
recent direct experiment a second small hole pocket is indeed
observed in quantum oscillation measurements in cuprates [16]
consistent with the multiple-pocket scenario.
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