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Vortex dynamics in type-II superconductors under strong pinning conditions
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We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning
situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical
methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices,
thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine
the velocity-dependent average pinning-force density 〈Fp(v)〉 and find that it changes on the velocity scale
vp ∼ fp/ηa3

0 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small
pin-density limit, this velocity is much larger than the typical flow velocity vc ∼ Fc/η of the free vortex system
at drives near the critical force density Fc = 〈Fp(v = 0)〉 ∝ npfp . As a result, we find a generic excess-force
characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear
flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb’s law of dry
friction for the case of strong vortex pinning.
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I. INTRODUCTION

Superconductors carry electric currents without dissipation
[1] and expel magnetic fields from their body, known as the
Meissner-Ochsenfeld effect [2]. In a type-II superconductor,
magnetic fields H in the range between the lower (Hc1) and
upper (Hc2) critical fields penetrate the material in the form
of quantized flux lines (�0 = hc/2e) or vortices, resulting in
the mixed or Shubnikov [3] phase. The repulsive interaction
mediated by the vortex currents leads to the formation of an
Abrikosov vortex lattice [4] with an average induction B inside
the sample. A current density j drives the vortices with the
Lorentz force density FL = jB/c, giving rise to vortex motion
and dissipation. The vortex velocity v is determined by the
force balance equation ηv = FL with the Bardeen-Stephen
viscous coefficient [5] η ∼ BHc2/ρnc

2 and ρn the normal state
resistivity. The resulting electric field E = Bv/c deprives the
superconductor from its defining property, to carry electric
current without dissipation, with the emerging linear response
characterized by the flux-flow resistivity ρff ∼ ρnB/Hc2 < ρn.

Material defects lead to vortex pinning [6–8]; they trans-
form the Abrikosov lattice into a disordered phase [9–11]
and reestablish the superconductor’s ability to carry current
free of dissipation. The dissipative force balance equation
is augmented by the velocity-dependent mean pinning-force
density 〈Fp(v)〉, ηv = FL − 〈Fp(v)〉, entailing important mod-
ifications of the vortex dynamics v(FL): below the critical force
Fc = 〈Fp(v = 0)〉, vortex motion is inhibited; this defines the
critical current density jc = cFc/B. Above depinning at Fc (or
for currents j > jc), vortices start moving across defects with
an average bulk velocity determined by the velocity dependent
pinning-force density 〈Fp(v)〉. The linear flux-flow behavior
with its reduced resistivity ρff is assumed only at high drives
or velocities. The full force-velocity (FL-v) characteristic of
the superconductor, see Fig. 1, then characterizes the zero
temperature vortex dynamics in a complete way. With the
driving force FL proportional to the applied current I and
the voltage drop V across the sample proportional to the
vortex velocity v, the force-velocity curve is equivalent to
the measured current-voltage (or I -V ) characteristic. In this
paper, we determine the force-velocity (or current-voltage)

characteristic (see Fig. 1) of a strongly pinned vortex solid in
a generic isotropic type-II superconductor and in the absence
of thermal fluctuations.

Vortex pinning has originally been studied for strong
pinning centers by Labusch [6] (see also Ref. [7]). Strong
pins induce bistable states in the flux-line lattice. They act
individually [6] and the direct summation of pinning forces is
nonzero, i.e., jc ∝ np with np the density of defects or pins;
collective effects due to other pins result in small corrections.
If individual pins are weak, pinning is collective and vortices
are only pinned by the joint action of many pinning centers
[8]; the direct summation of the forces induced by individual
pins averages out to zero and jc ∝ n2

p for the simplest case of
nondispersive weak bulk pinning. The crossover between the
regimes of weak collective and strong pinning is given by the
Labusch criterion [6], which involves the ratio κ between the
steepest force gradient ∂xfp(x) (the largest negative curvature)
of the pinning potential and an effective elasticity C̄ of
the lattice. Pinning is strong if the pinning-force gradient
dominates the elasticity with κ > 1. On the other hand, in
a very stiff lattice with large elastic constants, we have κ < 1
and pinning is weak and necessarily collective.

While weak collective pinning has been intensely studied
during recent times [10,11], the further development of strong
pinning theory has been less dynamic, although some progress
has been made [12–16]. The relation between weak collective
versus individual strong pinning has been analyzed within a
pinning diagram [17] delineating the origin of static critical
forces Fc as a function of defect density np and strength
fp. Recently, the ac linear response of a field-penetrated
superconductor hosting a pinned vortex lattice has been
analyzed within the framework of strong pinning theory
[18,19]. In the present paper, we focus on the dynamic aspects
of strong pinning.

The force-velocity characteristic derives from the dynami-
cal equation for vortex motion:

ηv = FL(j ) − 〈Fp(v)〉. (1)

The main difficulty with Eq. (1) is in the determination of the
velocity-dependent average pinning-force density 〈Fp(v)〉 (we
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FIG. 1. Sketch of the force-velocity (equivalent to the current-
voltage) characteristic of a generic type-II superconductor in the
absence of thermal fluctuations. For an external force density FL

smaller than the critical force density Fc, the vortex system remains
pinned and v = 0. For FL > Fc, vortices are depinned and move
with finite velocity v > 0; at large drives FL � Fc, the characteristic
approaches the free flux-flow regime. For strong pinning in the dilute-
pin limit, we find an excess-force characteristic, with a linear flux-flow
branch shifted by Fc extending over a large regime of velocities
v beyond vc = Fc/η. The pinning-force density 〈Fp(v)〉 changes
on the velocity scale vp � vc and the force-velocity characteristic
approaches the free flux-flow regime only for v � vp .

choose 〈Fp(v)〉 to be positive). Within the framework of weak
collective pinning theory, dimensional [8,10] or perturbative
[20,21] estimates have been made and provide results on
a qualitative level with a focus on either the perturbative
regime at high velocities [20,21] or on the universal regime
near depinning [22]. In concentrating on the strong pinning
situation, we study the limit of dilute pins, i.e., a small
pin-density np, and consider defects, which pin at most one
vortex line—we call this the single-pin/single-vortex strong
pinning regime.

The task of finding the force-velocity characteristic involves
three steps: first, we solve the dynamical equation of motion
for a vortex line moving along x and crossing the center of
a pinning defect. The solution of this “microscopic” problem
provides us with the time-dependent displacement field u(t)
of the moving vortex and the “elementary” pinning force
fp[u(t)] acting on the vortex line. Second, a proper average
over the instantaneous force fp[u(t)] provides the average
pinning force −〈fp(v)〉 per pin acting on the vortex system
(with the sign guaranteeing a positive average pinning-force
density 〈Fp(v)〉). This force changes on the microscopic
velocity scale vp ∼ fp/ηa3

0 , which depends on the strength
fp of the individual pins and on the dynamical properties
of the vortex system but not on the pin density np; here,
a2

0 = �0/B denotes the inverse vortex density. The force
〈fp(v)〉 involves an average along the drive direction x; a
second average over the transverse dimension y is required
in order to find the average pinning-force density 〈Fp(v)〉.
This average can be cast into the form of a transverse pinning
or trapping length t⊥(v) within which vortices passing the
defect are pinned. Since the pins act individually in the small
pin-density limit, we obtain the average pinning-force density

in the form 〈Fp(v)〉 = np(2t⊥/a0)〈fp(v)〉. At v = 0, the value
of 〈Fp(v)〉 defines the critical force density Fc. Third, given the
driving force density (or current density) FL, we have to solve
the dynamical equation (1) for the velocity v. This macroscopic
problem defines a second velocity vc = Fc/η ∝ np, the flow
velocity of vortices at Fc in the absence of pinning, and
hence the sought force-velocity characteristic involves both
a microscopic (vp) and a macroscopic (vc) velocity scale.

Since the above scheme essentially describes a one-particle
(in fact, one vortex-line) problem, it can be solved via
analytical and numerical methods and the results obtained are
precise, in opposition to the usual estimates made in weak
collective pinning theory. Furthermore, the result in the dilute
pin limit (i.e., small np) is simple and generic: rewriting the
dynamical equation (1) in the form

FL

Fc

= v

vc

+ 〈fp(v/vp)〉
fc

(2)

makes the dependence on the two velocity scales vc and vp

explicit. Since vc ∝ np involves the pin density np, we have
vc � vp and the velocity scales separate in the dilute pin
limit. With 〈fp(v/vp)〉 ≈ fc for velocities v/vp � 1, we find
a characteristic that takes the generic form of an Fc-shifted
linear curve,

v ≈ 1

η
(FL − Fc), (3)

see Fig. 1; the free dissipative flow v = FL/η is approached
only at very high velocities v � vp � vc. Experiments mea-
suring the current-voltage, i.e., I -V , characteristic then should
observe an excess-current characteristic V = Rff(I − Ic) with
Rff the flux-flow resistivity; this type of characteristic has
been widely measured in the past [23–27] and its microscopic
derivation is the main purpose and result of this paper. In
doing so, we prove the analog of Coulomb’s law of dry friction
(describing the motion of a solid body sliding on a dry surface)
for the case of strong vortex pinning in the dilute limit; in
Amontons’ first and second laws of friction, the friction force,
corresponding to our Fc, is given by the product of the friction
coefficient k and the normal force Fn, Ff = kFn. Amontons’
third law or Coulomb’s law of dry friction tells, that the kinetic
friction at finite velocity is independent of the sliding velocity
v, Ff (v) = Ff = kFn. These laws immediately imply a linear
excess-force characteristic v = (F − Ff )�(F − Ff )/η for
the driven (by the force F ) body with viscous (η) dynamics
and subject to a friction force Ff .

Besides this simple and generic result for the overall
shape of the force-velocity characteristic, it is interesting to
understand the change in the pinning-force density 〈Fp(v)〉
with velocity v and the underlying mechanism for this
velocity dependence, i.e., the analog of the corrections to
Coulomb’s law of dry friction. Figure 6 shows the result
for the average force 〈fp(v)〉 (carrying the main velocity-
dependence of 〈Fp(v)〉) generated by a Lorentzian-shaped
pinning potential. For very strong pinning with κ � 1, we
find a smooth decrease of 〈fp(v)〉 with increasing velocity
v with three characteristic velocity regions; starting with
large velocities v > κvp and using perturbation theory around
the flux-flow solution, one finds that 〈fp(v)〉 ∝ 1/

√
v. An

extended intermediate-velocity regime vp < v < κvp appears
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for large κ values where 〈fp(v)〉 ∝ 1/v. This rapid decay is
due to a collapse of the longitudinal pinning or trapping length
t‖(v) from σκ to the geometrical pin size σ with increasing
velocity v. Finally, developing a perturbative theory around
the static (pinned) solution, we find a decreasing pinning force
〈fp(v)〉 − fc ∝ −√

v at small velocities v < vp. This square-
root decrease in the pinning force at small velocities v entails
an interesting feature in the force-velocity characteristic; the
latter exhibits hysteretic behavior with separated jumps [14]
upon increasing/decreasing the drive FL across Fc.

The pinning force 〈fp(v)〉 looks different when pinning is
weak. For κ < 1, the critical force fc = 〈fp(v = 0)〉 vanishes
and the dynamical force 〈fp(v)〉 ∝ √

v increases with velocity.
This behavior remains valid for moderately strong pinning
with κ � 1, where the critical current fc ∝ (κ − 1)2 assumes a
finite value [17] and the small v correction 〈fp(v)〉 − fc ∝ √

v

still increases with velocity v, see Fig. 6. This square-root
increase in the pinning-force density then leads to a smooth
and reversible quadratic onset of the velocity, v ∝ (FL − Fc)2

in a narrow region above Fc.
The results at small κ � 1 can all be obtained with

the help of perturbation theory which directly addresses the
pinning-force density 〈Fp(v)〉. Thereby it turns out that the
expression for the lowest-order correction 〈F (1)

p (v)〉 has a form
which is identical to that of weak collective pinning theory,
after proper identification of the pinning-energy correlators.
This also implies that we can use the single-pin analysis to
rederive the weak collective pinning results for the critical
current density jc, a quite remarkable finding.

In the following, we first (Sec. II) derive the expression for
the pinning-force density 〈Fp(v)〉, simplify the problem to a
manageable version of the single-pin-single-vortex situation,
and derive the Labusch criterion separating weak from strong
pins. In Sec. III, we focus on the static solution and discuss the
universal solution at very strong pinning κ � 1. Section IV is
devoted to the dynamic solution at finite velocities. In order
to get an insight into the problem, we first provide numerical
results for the average pinning force 〈fp(v)〉 generated by a
Lorentzian-shaped pinning potential and identify the various
strong pinning regimes at high, intermediate, and low veloc-
ities. We discuss the various analytical schemes to deal with
the problem, perturbative methods at large and small velocities
and a self-consistent universal solution in between. A special
discussion is devoted to the transverse pinning or trapping
length t⊥(v) and its velocity dependence, see Sec. IV E. In
Sec. V, we discuss the excess-force characteristic as obtained
in the dilute pin-density limit. Section VI is devoted to a
brief discussion of model potentials, in particular, the (exactly
solvable) parabolic potential, which is often used in the context
of simulations on vortex dynamics in pinning landscapes [28].
In Sec. VII, we summarize our results and place them into
context. A brief account on parts of this work has been given
in Ref. [29].

II. FORMALISM

We assume a random homogeneous distribution of identical
defects of density np and acting on the vortices with a pinning
potential

εp(R,z) = ep(R) δ(z), (4)

of depth ep and width σ ∼ ξ � a0 [ξ and a0 = (�0/B)1/2

denote the coherence length or vortex core size and the
distance between vortices, respectively]. The pinning force
is given by the gradient fp(R) = −∇Rep(R) and we denote its
maximal amplitude by fp. Defects, which strongly suppress
the superconducting order parameter within a coherence
volume ∼ ξ 3, generate a pinning potential of depth ep ∼
H 2

c ξ 3 ∼ ε0ξ , with ε0 = (�0/4πλ)2 the vortex line energy. On
the other hand, for small (atomic) defects [30], the pinning
energy is of order ep ∼ H 2

c ξσsc, with the electronic scattering
cross section σsc replacing the larger area ξ 2; such defects then
are more likely to be weakly pinning. An extensive discussion
of different types of pinning defects including insulating and
metallic defects and defects leading to a modulation of Tc

and of the mean free path � (termed δTc and δ� pinning)
have been presented in Ref. [19], including also the various
H -T diagrams illustrating where pinnning is strong. Below,
we will make occasional use of Lorentzian-shaped pinning
potentials [29] ep(R) = −ep/(1 + R2/σ 2) with σ = √

2ξ as
motivated by the (variational) shape of the vortex core [31,32]
in combination with a pointlike defect.

An ensemble of (homogeneously distributed) defects lo-
cated at positions ri = (Ri ,zi) acts on the flux lines at the
positions [33] (Rμ + uμ(z,t),z) with the pinning-force density
(exploiting self-averaging)

〈Fp〉 = − 1

N

N∑
μ

∫
dz

L
Fp(rμ,uμ), with

Fp(rμ,uμ) = 1

a2
0

∑
i

fp[Rμ + uμ(z,t) − Ri]δ(z − zi). (5)

The minus sign in Eq. (5) derives from our sign convention
in Eq. (1) where 〈Fp〉 acts against the direction of the drive.
Here, the coordinates rμ = (Rμ,z) describe an ideal triangular
Abrikosov lattice with density a−2

0 = B/�0 that is fixed in
space. They serve as reference positions for the vortices
that move with velocity vt . The dynamical displacement
field uμ(z,t) = vt + up,μ(z,t) then involves two terms, the
first describing their bulk average motion, while the pinning-
induced term up,μ(z,t) accounts for the vortex deformations
away from the ideal lattice configuration. This definition of
the displacement field differs from the one used in the static
strong-pinning situation in Ref. [17], where the displacement
field has been measured with respect to the free asymptotic
positions of the (static) vortices.

The dynamical displacement field uμ(z,t) can be found
from the self-consistent solution of the vortex equation of
motion which we write in its integral form,

uν(z,t) = vt + a2
0

∑
μ

∫
dz′dt ′ Ĝ(Rν − Rμ,z − z′,t − t ′)

× Fp[r′
μ,uμ(z′,t ′)], (6)

with r′
μ = (Rμ,z′). In the absence of pinning, the first term ac-

counts for the Lorentz force in Eq. (1) generating the flux-flow
velocity v = FL/η; in the presence of a pinning-force density
〈Fp〉, the velocity v has to be determined self-consistently from
the dynamical equation (1). The dynamical elastic Green’s
function Ĝ(r,t) is given by the Fourier transform of the matrix
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[we define k = (K,kz)]

Gαβ(k,ω) = KαKβ/K2

c11K2 + c44k2
z − iηω

+ δαβ − KαKβ/K2

c66K2 + c44k2
z − iηω

, (7)

with the dispersive elastic moduli [10] c11(k) (compression),
c44(k) (tilt), and the nondispersive shear c66, as well as the
dissipative dynamical term −iηω.

For a dilute density np of pinning defects with moderately
to strong pinning forces but trapping no more than one vortex
at a time, we can reduce the sum over i in Eq. (5) and the
sum over μ in Eq. (6) to only one term each; we call this
the single-pin/single-vortex limit which will provide us with
results correct to order np. With the vortex μ impinging on the
defect at (Rp,zp), we have to find the displacement field

uν,α(z,t) = vαt +
∫

dt ′ Gαβ(Rν − Rμ,z − zp,t − t ′)

× fp,β [Rμ + uμ(zp,t ′) − Rp]. (8)

Once we have (self-consistently) solved the dynamical equa-
tion for the displacement field uμ,α(zp,t),

uμ,α(zp,t) = vαt +
∫

dt ′ Gαα(0,t − t ′)

× fp,α[Rμ + uμ(zp,t ′) − Rp], (9)

we can find the full displacement field uν,α(z,t) by simple
integration of Eq. (8). In Eq. (9), we have used that the Green’s
function Gαβ(r = 0,t) is diagonal.

Next, we simplify the expressions for 〈Fp〉 and uμ,α(zp,t),
Eqs. (5) and (9), in the single-pin-single-vortex approximation.
We choose a representative vortex at Rμ = R and a pin at rp

and rewrite the average pinning-force density Eq. (5) in the
form

〈Fp〉 = − np

Na2
0L

∫
d2R

a2
0

∫
dz

∫
d3rp

× fp[R − Rp + u(R − Rp,z,t)]δ(z − zp), (10)

where we have replaced the sums over μ and i by the
integrations over d2R/a2

0 and npd3rp. We can choose the pin
location (Rp,zp) at the origin and cancel the integral over rp

against the volume Na2
0L to arrive at

〈Fp(v)〉 = −np

∫
d2R

a2
0

fp[R + u(R,0,t)]. (11)

Furthermore, we note that we can rewrite the displacement
field in Eq. (9) in the form u(R,0,t) = vt + up(R + vt), where
the pinning-induced part up of the displacement u obeys the
equation

up,α(R + vt) =
∫

dt ′ Gαα(0,t − t ′)

× fp,α[R + vt ′ + up(R + vt ′)]. (12)

The force in Eq. (11) can be written as fp[R + vt + up(R +
vt)] and thus only depends on the combined argument R + vt ,
the distance between the vortex and the pin at time t .

FIG. 2. Illustration of a vortex trajectory uμ(0,t) with a finite
impact parameter uμ,y(z = 0,t = −∞) = −b, approaching a defect
with pinning potential of width σ located at Rp = (0,0); for a
Lorentzian-shaped pinning potential, σ = √

2ξ . For a strong pinning
center, trapping and depinning are strongly asymmetric, which gives
rise to a finite pinning force 〈Fp(v)〉.

Next, we simplify our task by considering a geometry (see
Fig. 2) with impact parameter b = 0, i.e., a vortex hitting the
pin head-on. The average pinning force for this situation can
be written as [see Eq. (11)]

〈fp(v)〉 ≈ −
∫

dx

a0
fp[x + vt + up(x + vt)]. (13)

This expression can be further simplified, on the one hand,
by selecting convenient references for the position x and the
time t , on the other hand, by choosing between space and
time averaging. Specifically, we change space to time average,
dx → vdt , and then set x = 0, what corresponds to choosing
our reference position such that the unperturbed vortex passes
the pin at time t = 0. Using u(vt) = vt + up(vt), we arrive at
the final result for the average pinning force

〈fp(v)〉 ≈ −
∫

dx

a0
fp[u(x)], (14)

where the displacement field u(x = vt) = uμ,x(0,t) obeys the
self-consistent dynamical equation Eq. (9) in the simplified
form

u(x) = x +
∫ x

−∞

dx ′

v
G[0,(x − x ′)/v] fp[u(x ′)]. (15)

In Eq. (15), we have made use of causality, forcing the Green’s
function to vanish at negative times t − t ′ < 0. The coordinate
x = vt denotes the asymptotic position of the vortex at z =
±∞ (replacing u by u − x produces the displacement field
defined in Ref. [17]) and we have used the simplified notation
G = Gxx and fp = fp,x for the force along x.

In order to find the mean pinning-force density 〈Fp(v)〉,
we have to perform an additional average over the impact
parameter b = y of the vortex on the pin in Eq. (11), see
Fig. 2. This task is dealt with by equally treating all trajectories
within the transverse trapping range t⊥(v) of the pin; this can
be done exactly in the static limit [17], see below, and is a
good approximation at finite velocities where t⊥(v) depends
on v as discussed in Sec. IV E. As a result, the average over
b contributes a factor 2t⊥(v)/a0 and the y component of the
force averages to zero. We then obtain the final expression for
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the mean pinning-force density 〈Fp(v)〉 along x in the form

〈Fp(v)〉 ≈ np

2t⊥(v)

a0
〈fp(v)〉. (16)

Equations (14)–(16) together with the dynamical equation (1)
define the simplified problem which now is amenable to a
complete (numerical) solution.

The local dynamical Green’s function G(t) ≡ Gxx(r = 0,t)
is obtained from the Fourier transform Gxx as given by Eq. (7).
We neglect the compression modes as compared to the softer
shear modes [10] to find (the average of K2

y /K2 over the
Brillouin zone leads to the overall factor 1/2, which has been
ignored in Ref. [10])

G(t) = �(t)
1

2η

∫
BZ

d3k

(2π )3
e−[c66K

2+c44(k)k2
z ]t/η. (17)

Depending on the time t , the integral is either cut by the
exponential or by the Brillouin zone boundary (we use a
circularized Brillouin zone with K2

BZ = 4π/a2
0); in addition,

the dispersive nature of the tilt modulus has to be accounted
for within an intermediate-time regime.

In the static limit, it is the local static elastic Green’s
function G(r = 0,ω = 0) = ∫ ∞

0 dt G(0,t), which plays an
important role; the latter defines an effective elasticity [19]
through C̄ = 1/G(0,0),

C̄ ≈ 2
√

2π ln(a0/ξ )
ε0

a0
, (18)

where ε0 = (�0/4πλ)2 denotes the characteristic line energy
of a vortex. The above estimate derives from analyzing the
deformation of a vortex trapped within a cage potential Vcage =
πε0(u/a0)2 set up by the neighboring vortices [19,34] and
provides an upper limit for C̄; a precise determination of C̄

requires a numerical analysis. In the following, we drop the
logarithmic factor.

The characteristic time separating different dynamical
regimes is given by the thermal relaxation time

tth = η

c66K2
BZ

≈ 4ηa3
0√

2πC̄
, (19)

the dissipative relaxation time of free short-scale elastic
deformations as induced, e.g., by thermal fluctuations [10].
At long times t > tth(λ/a0)2, the integral in (17) is cut by the
exponential at small values of K such that the dispersion in c44

can be neglected; with c44 ≈ B2/4π and c66 ≈ �0B/(8πλ)2

one finds the 3D Green’s function [10]

G3D[tth(λ/a0)2 � t]) ≈ 1

2
√

2π

a0/λ

C̄tth

(
tth

t

)3/2

, (20)

describing a response G3D(t) ∝ t−d/2 involving the entire
d = 3 bulk vortex system. At intermediate times tth(λ/a0)2 >

t > tth, the dispersion c44 ≈ B2/4πλ2K2 in the tilt modulus
becomes relevant and the response is that of a dispersive elastic
manifold with an elastic Green’s function behaving as the one
of a 4D nondispersive medium [10],

G4D[tth � t � tth(λ/a0)2] ≈ 1

2
√

2

1

C̄tth

(
tth

t

)2

. (21)

For short times t < tth, the integral is cut by the Brillouin-zone
boundary. This short-time response describes the dynamics of
an individual vortex line [10] (in this 1D limit both, longi-
tudinal and transverse parts of the Green’s function Eq. (7),
contribute)

G1D(t � tth) ≈ �(t)

√
2

π

1

C̄tth

(
tth

t

)1/2

. (22)

Note that the time integral in Eq. (15) is well behaved as the
Green’s function is regular (integrable) at long times (since
G3D ∝ t−3/2) as well as at short times (since G1D ∝ t−1/2), with
the main contribution to the time integral originating from tth.

Applicability

The formalism and the results derived in this paper apply
in the 3D strong pinning regime of the pinning diagram in
Ref. [17]. This density-force pinning diagram delineates the
various regimes of vortex pinning into four domains, 3D weak
pinning at small fp and small/intermediate np, single vortex
(or 1D) weak pinning at small/intermediate forces fp and large
densities np, 1D strong pinning at large fp and intermediate
np, and finally the region of interest in the present work with
the condition of large force fp > C̄σ and small density np <

C̄/a0σfp. The strong pinning condition fp > C̄σ guarantees,
that defects induce bistable solutions with pinned and unpinned
branches such that a single defect can pin a vortex. On the other
hand, the low-density condition np < C̄/a0σfp makes sure
that the pinning action of defects do not interfere. Hence care
has to be taken to properly interpret the term “strong” pinning,
as it does not imply a high critical current density close to
the depairing current density due to the low defect density.
Strong pinning in the sense of large jc requires large forces
fp and large densities np, what naturally takes us across the
line npfp ∼ C̄/a0σ and into the 1D strong pinning domain.
Similarly, decreasing the magnetic field at fixed pinning force
fp and defect density np takes us across the 3D-1D strong
pinning boundary as B decreases below (npξ 3)(fp/ε0)Hc2.

Another limitation of our analysis is given by the condition
that the maximal displacement u ∼ κσ before depinning
should be smaller than the intervortex separation a0, κσ < a0.
Indeed, as u ∼ κσ approaches a0, the angle ∂zu ∼ u/a0 en-
closed by the vortex pinned to the defect approaches unity and
our elastic theory breaks down. Furthermore, the periodicity of
the pinning landscape induced by the lattice period cannot be
ignored any more [19]. This condition then limits the strength
fp of the defects: using κ ∼ fp/C̄σ (see below), we find that
the pinning force fp of individual defects should satisfy the
constraint fp < C̄a0. Using the above estimate for C̄, we find
that fp < ε0. Superstrong pins with pinning forces fp beyond
this value induce large plastic deformations as described by
Schönenberger et al. [35], where finite segments of line- or
columnar pins have been considered. Depinning from such
defects then can proceed via vortex recombination or loop
formation, limiting the maximally possible force fp that a
defect can exert on a vortex. Also, we note that ‘strong’ pinning
is often associated with defects of special geometric shape,
e.g., columnar pins or grain/twin boundaries that pin vortices
as a line object rather than in a point. Such correlated pinning
has been extensively discussed in Ref. [10], see also Ref. [36]
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for recent computational work, and is not explicitly considered
in the present analysis. Although the above restriction on fp

limits the applicability of our analysis in the strict sense, we
believe that the important result regarding the separation of
velocity scales and the resulting excess-current characteristic
remain valid.

III. STATIC SOLUTION

The critical pinning-force density Fc is obtained in two
steps, where in the first, we determine the pinning-force
average fc (longitudinal average) and in the second, we find
the transverse trapping length t⊥ (transverse average).

A. Longitudinal average fc

In the static situation, the self-consistent integral
equation (15) turns into the simpler algebraic equation

us(x) = x + fp[us(x)]/C̄. (23)

Solving Eq. (23) self-consistently for us(x) and inserting the
result into Eq. (14), we obtain the critical force

fc = 〈fp(v = 0)〉 = −
∫

dx

a0
fp[us(x)]. (24)

The static self-consistency equation (23) can be derived from
a total energy et (x) that includes both the elastic energy of the
vortex deformation and its pinning energy, see Fig. 3(d),

et (x) ≡ et [x; us(x)] = C̄

2
[us(x) − x]2 + ep[us(x)]. (25)

Indeed, minimising et (x; u) with respect to u, ∂uet (x; u) =
C̄(u − x) − fp(u) = 0, reproduces Eq. (23). Then, the total
derivative of et (x) can be written in the form

det (x)

dx
= −C̄(us − x) + ∂xus[C̄(us − x) − fp(us)]

and using Eq. (23), we find that

fp[us(x)] = −det (x)

dx
. (26)

This relation is very helpful in evaluating the critical force
fc in Eq. (24). At weak pinning, the effective static pinning
force fp[us(x)] appearing in Eq. (24) is a single-valued smooth
function, resulting in a vanishing force average:

fc =
∫

dx

a0

det (x)

dx
= et (∞) − et (−∞)

a0
= 0. (27)

A finite critical force density Fc ∝ n2
p then is established

through fluctuations in the defect density as described through
weak collective pinning theory.

A strong pin producing a finite average pinning-force
density ∝ np is characterized by the appearance of bistable
solutions (or branches) in the single-pin problem Eq. (23).
The critical force fc then depends on the occupation of these
branches by vortices, with an asymmetric occupation of the
solutions resulting in a finite average force. Indeed, when
typical values of fp/σ C̄ become large, the bare pinning
force fp(x), see inset of Fig. 3(c), when evaluated at the
shifted position us(x), is tilted backward, see Fig. 3(c). In

x

x

(a)

(b)

(c)

(d)

FIG. 3. Sketch of the static and dynamic displacement fields
us(x) and u(x) (a). The static displacement us(x) jumps from the
free to the pinned branch at −xf

s and back to the free branch at
xp

s . For the smooth dynamic displacement u(x), these jumps are
replaced by steep rises at the shifted positions −xf and xp . Below,
we will make use of a smooth multivalued static solution ūs where
the jumps are replaced by the unstable branch uu

s (dotted). The
dotted arrows refer to the shift xeff [u](x), see (b), that connects the
smooth static and dynamic solutions ūs(x) and u(x), respectively. (b)
Effective coordinate xeff [u](x) = x − δx[u](x) allowing to express
the dynamic solution through the static one, u(x) = ūs[xeff [u](x)].
(c) Static and dynamic force profiles fp[us(x)] and fp[u(x)]. (d)
Static total energy profile et (x). The insets show the bare force and
energy profiles of the pinning center.
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this strong-pinning situation the derivative

∂xus(x) = 1

1 − ∂us
fp[us(x)]/C̄

(28)

diverges at the positions ±x
f
s and ±x

p
s where ∂us

fp[us(x)] =
C̄, signaling the appearance of multiple solutions with pinned
[up

s (x)], unstable [uu
s (x)], and free [uf

s (x)] or unpinned
branches, see Fig. 3. Strong pinning then requires the ratio

κ = max
x

{
∂us

fp[us(x)]
}/

C̄ = max
x

[f ′
p(x)]/C̄ (29)

to be larger than one, κ > 1; this is the famous Labusch
criterion for strong pinning [6]. A vortex incident from the
left onto the defect and moving towards the right will leave
the free branch u

f
s (x) at −x

f
s and jump to the pinned branch

u
p
s (x) [see Fig. 3(a), the unstable branch uu

s (x) and parts of the
pinned branch are jumped over]. After crossing the defect, the
vortex will depin from the pinned branch at x

p
s and jump back

to the free branch (the points x
f
s and −x

p
s are relevant when

the vortex moves from right to left). As a result, the critical
pinning force fc becomes finite and equal to the sum of energy
jumps at −x

f
s and x

p
s ,

fc =
[∫ −x

f
s

−∞
+

∫ x
p
s

−x
f
s

+
∫ ∞

x
p
s

]
dx

a0

det (x)

dx
= �e

fp
t +�e

pf
t

a0
(30)

with the positive jumps �e
fp
t = e

f
t (−x

f
s ) − e

p
t (−x

f
s ) and

�e
pf
t = e

p
t (xp

s ) − e
f
t (xp

s ). Hence it is the asymmetry between
jumping into the pinning well at −x

f
s and out of it at x

p
s

which generates the finite (and actually maximal) pinning force
[6,8,14,17] fc, see Fig. 3(c). Alternatively, Eq. (30) may be
interpreted in a (nonequilibrium) statistical sense in terms of
an imbalance between the occupation of the different pinning
branches that is produced by the applied Lorentz force.

B. Trapping lengths t⊥ and t‖

In order to obtain the critical force density Fc, we have
to determine the trapping length t⊥, see Eq. (16). For a
radially symmetric defect potential, this is conveniently done
by considering the total energy et (R; r) for a vortex with radial
asymptotic and tip positions R and r , see Eq. (25),

et (R; r) = C̄

2
(r − R)2 + ep(r). (31)

Plotting this function at fixed R versus r , one observes a
single (pinned) minimum in the variable r for 0 < R < R

f
s ,

two minima (pinned and free) when R
f
s < R < R

p
s , and

again a single (free) minimum for R > R
p
s , see Fig. 4; these

minima determine the (static) tip position rs(R) at given
asymptotic position R; indeed, the condition ∂ret (R; r) = 0
at fixed R reproduces Eq. (23) in the form r = R + fp(r)/C̄
and interrelates asymptotic (R) and tip (r) positions of the
vortex. The appearance or disappearance of these minima at
R

f
s (= x

f
s ) and R

p
s (= x

p
s ) signals the beginning or ending of

the free and pinned branches. At these points, the second
derivative ∂2

r et (R; r) = 0 vanishes as well, i.e., the curvatures
in the elastic and pinning term of Eq. (31) compensate

(a)

(b)

(c)

FIG. 4. Total energy et (R; r) providing the configurational energy
of a vortex at the asymptotic distance R from the pin when its tip
resides at the distance r . Minimizing et (R; r) at fixed R with respect
to r defines the static tip position rs(R). Dotted lines trace the pinning
potential ep(r) and the elastic energy C̄r2/2. Solid lines show the
situation for (a) Rf

s < R = Ra < Rp
s with two minima, just before the

vortex in the free minimum jumps into the pin at Rf
s = xf

s , (b) Rf
s <

R = Rb < Rp
s with two minima just before depinning at Rp

s = xp
s ,

and (c), R = Rc > Rp
s with one (free) minimum just after depinning

at Rp
s .

and hence

∂rfp(r)|
r(Rf,p

s ) = C̄. (32)

The latter condition actually determines the critical tip posi-
tions r

f
s = r(Rf

s ) and r
p
s = r(Rp

s ), while the corresponding
asymptotic positions R

f
s and R

p
s are obtained from solving the

force balance equation r = R + fp(r)/C̄.
In the static situation, a vortex approaching the defect gets

trapped as soon as it enters the circle at R
f
s : as the free branch

ends at R
f
s , the vortex tip falls into the stable minimum at

r(Rf
s ), which resides on the pinned branch, see curve a) in

Fig. 4. Hence all vortices impacting the defect within a distance
R

f
s will get trapped and we find that

t⊥ = Rf
s = xf

s , (33)

see also Ref. [17]. Similarly, the vortices remain trapped by the
pin until the asymptotic position R

p
s is reached and we obtain

the longitudinal trapping length

t‖ = Rp
s = xp

s . (34)

Hence the positions ±x
f
s and ±x

p
s , where the slope ∂xus(x) of

the static displacement diverges, also determine the physical
lengths t⊥ and t‖ where the vortices get and remain trapped,
respectively. Finally, we combine the results Eq. (30) for the
critical pinning force and Eq. (33) for the transverse trapping
length into the expression for the critical-force density Fc, see
Eq. (16), and obtain

Fc = 2x
f
s

a2
0

np

(
�e

fp
t + �e

pf
t

)
. (35)
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(b)

(a)

FIG. 5. (a) Bare and effective static pinning forces fp(x) and
fp[us(x)] for a strong pinning potential. The steep negative slope
∂xfp(x) on the scale σ transforms into the flat universal slope −C̄x in
fp[us(x)] on the larger scale κσ . The rounding before the collapse of
fp[us(x)] at xp

s extends over a distance σ/2κ with a drop in restoring
force fp/2κ2 and hence disappears in the limit κ → ∞; the jump
∼fp/κ into the pin at −xf

s is small at large κ . (b) Vortex deformation
for two asymptotic positions x1 and x2. While x2 − x1 increases on
the scale κσ the associated displacements us1 and us2 change on the
scale σ .

C. Universal static solution for very strong pinning κ � 1

It turns out, that the above general considerations can be
pushed further in the limit of very strong pinning κ � 1, where
a universal solution is available that is independent of the
details of the pinning potential shape. We start from Eq. (23) by
noticing that for the pinned situation, the last term fp[us(x)]/C̄
is large and has to be compensated by the coordinate x, since
the tip position us(x) on the right has to stay within the pin and
hence is small, us(x) < σ . As a result, we find that for very
strong pinning, the static force

fp[us(x)] ≈ −C̄x (36)

changes linearly over a wide range until reaching the largest
(negative) force −C̄x

p
s ≈ −fp before depinning, see Fig. 5.

The latter condition provides an accurate estimate for x
p
s in

the very strong pinning limit,

t‖ = xp
s ≈ fp

C̄
∼ κσ. (37)

Since κσ is large, the residual force after depinning is
very small. Alternatively, the above result can be found by
transforming Eq. (28) to its force analog; taking the derivative
of Eq. (23) and using Eq. (28), we find that

dfp[us(x)]

dx
= − C̄

1 − C̄/∂ufp[us(x)]
. (38)

Again, for strong pinning, we have ∂ufp[us(x)]/C̄ � 1 over a
large range ∼κσ along the x axis and hence the force deriva-
tive is renormalized to the (constant) effective elasticity C̄,
see Fig. 5.

Next, we discuss the jumps into and out of the pin at −x
f
s

and at x
p
s –we will need these results later in the discussion

of the small velocity corrections to Fc. We distinguish pins
with (long) tails decaying algebraically with ep(r) ∝ (σ/r)n,
from compact pins with tails decaying faster than any power;
while this keeps our discussion more general, we may consider
a situation in superconductors with small Ginzburg-Landau
parameter where σ ∼ ξ ∼ λ such that ep(r) ∝ e−r/σ .

The jumps in and out of the pin are determined by the
conditions ∂uet (x; u) = 0 and ∂2

uep(x; u]) = 0, see Sec. III B.
For the jump into the pin, we solve ∂ufp(u) = C̄, cf. Eq. (32),
and find that us(−x

f
s ) ∼ −κ1/(n+2)σ for a pin with tails

and us(−x
f
s ) ∼ −σ ln κ for a compact pin. The associated

asymptotic vortex position x
f
s follows from Eq. (23); since

the jump into the pin takes place at small forces, we can
approximate −x

f
s ≈ us(−x

f
s ) and hence

t⊥ = xf
s ∼ κ1/(n+2)σ (39)

for a pin with tails. Similarly, for a compact pin, x
f
s ∼ σ ln κ .

The result for the vortex jumping out of the pin has been found
above, see Eq. (37).

The pinning force at −x
f
s can be estimated with the help of

Eq. (23): just before the jump, us ≈ −x
f
s and the force assumes

a small value fp(−x
f
s ) ≈ fp/κ (n+1)/(n+2), while after the jump,

|us | � x
f
s and hence fp(us) ≈ C̄x

f
s ∼ fpκ1/(n+2)−1, which is

of the same order. For a compact pin, the force before the jump
is fp/κ and assumes a logarithmically larger value after the
jump, (fp/κ) ln κ . When jumping out of the pin, us(x

p
s ) ≈ σ

and the pinning force goes from −fp before the jump to very
small values thereafter, ∼ −fp/κn+1 and −fpe−κ for pins with
tails and for compact pins, respectively.

The integration over the static force profile fp[us(x)]
provides us with a critical force density [see Eqs. (24) and
(33); note that fp[us(x)] ≈ −C̄x on the pinned branch]

Fc ≈ −np

2x
f
s

a2
0

∫ x
p
s

−x
f
s

dx fp[us(x)]

≈
(

x
f
s + x

p
s

a0

)2

npxf
s C̄ ∼ κσx

f
s

a2
0

npfp, (40)

where we have used x
p
s ∼ κσ � x

f
s and κ ∼ fp/σ C̄ in the

last estimate. The result involves, besides the maximal force
fp and density np of pins, the trapping area [15,17]

Strap = 2t⊥t‖ ∼ 2xf
s κσ. (41)

With κ ∼ fp/σ C̄ and C̄ ∼ ε0/a0, see Eqs. (29) and (18),
we obtain a field dependence Fc ∝ B(n+1)/2(n+2) for the
critical force Fc, assuming a pin with tails [15]. For large
n, this produces the typical strong-pinning field-dependence
jc ∝ 1/

√
B for the critical current density, which is cutoff

at small fields when bulk 3D strong pinning crosses over
to single-vortex 1D strong pinning at npa0σ

2κ ∼ 1 [17].
Corrections to this universal static solution are discussed in
Appendix A.
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D. Static solution for moderately strong pinning κ � 1

A similarly accurate analysis can be done at moderate
pinning with κ � 1 close to unity [17]. Expanding the pinning
potential ep(x) around the point σmc of maximal negative
curvature, e

′′
p(x) = −C̄κ + α(x − σmc)2/2, the transition to

weak pinning can be described within the Landau formulation
of a magnetic phase transition and one finds the result [17]

Fc ≈ 18
x

f
s

a2
0

np

C̄2

e
′′′′
p

(κ − 1)2 ∼ σx
f
s

a2
0

npfp(κ − 1)2, (42)

with e
′′′′
p |σmc

= α. In the last relation, we have used the estimate
α ∼ fp/σ 3 and C̄2/α ∼ fpσ with κ close to unity.

IV. DYNAMIC SOLUTION

Once the Lorentz force density FL in Eq. (1) increases
beyond the critical force Fc, the mean velocity v becomes
finite. According to Eq. (15), the deformation u(x) of the vortex
is determined by the pinning force fp[u(x ′)] averaged over
(past) times t ′ = x ′/v and weighted by the local dynamical
Green’s function G(0,(x − x ′)/v). The average pinning force
〈fp(v)〉, Eq. (14), then depends on the mean velocity v, starting
at fc for v = 0 and vanishing at large velocities v as the pins
only weakly disturb the fast flow of vortices. Given the thermal
time scale tth of G(0,t) and the pinning scale κσ over which
the force fp[u(x ′)] remains finite, we can estimate the pinning
velocity

vp = κσ

tth
∼ fp

η a3
0

, (43)

where dynamical effects start to modify 〈fp(v)〉. The last
expression describes the typical velocity scale of a vortex
segment of length a0 (the vortex tip) moving in the pinning
potential ep(r), ηla0ṙ ∼ fp and ηl = a2

0η the line viscosity of
a vortex.

Given the form of the pinning potential ep(r), the straight-
forward integration of the dynamical equation (15) gives us
access to the average pinning force 〈fp(v)〉 for any velocity v

and the calculation of t⊥(v) provides us with the pinning-force
density 〈Fp(v)〉 via Eq. (16). Analytic results, instead, have to
be obtained using different approaches that depend on the
velocity v: At high velocities, we use perturbation theory
away from flux flow and directly address the force density
〈Fp(v)〉, in the intermediate velocity regime that is present at
large values of κ , we determine the average force 〈fp(v)〉 via
construction of a self-consistent solution for fp[u(x)], while
at low velocities, we find again the average 〈fp(v)〉 using a
perturbative approach, this time away from the static solution.
The intermediate and small velocity results then have to be
completed with a calculation of t⊥(v).

A. Overview on pinning-force averages

We first present the results obtained from a numerical for-
ward integration of Eq. (15) for a Lorentzian-shaped pinning
potential (we assume nondispersive moduli corresponding to
a field B ∼ �0/λ

2). In Fig. 6, we show the scaled average
pinning force 〈fp(v)〉a2

0/epσ versus the scaled velocity v/vp.
Varying the pinning energy ep at fixed size σ , we follow

FIG. 6. Velocity dependence of the pinning-force density 〈fp(v)〉
for Lorentzian pins ep(r) = −ep/(1 + r2/σ 2) with Labusch param-
eters ranging from κ = 1 to κ = 10; the typical depinning velocity
scale vp where the pinning force changes depends on the Labusch
parameter κ . We haven chosen a field B = �0/λ

2, a0 = λ, such
that the elastic moduli are nondispersive. While the pinning force
decreases monotonically for large κ , it first increases at small
velocities for κ � 1 before eventually decreasing at large velocities.
Original figure published in Ref. [29].

the evolution of the average pinning force 〈fp(v)〉 from very
strong pinning κ = 10 to moderately strong pinning at κ � 1.
With ep ∼ H 2

c ξ 3 ∼ ε0ξ (Hc the thermodynamic critical field)
the Labusch parameter can naturally access large numbers
κ ∼ fp/σ C̄ ∼ (ep/σε0)(a0/σ ) ∼ a0/ξ � 1. For very strong
pinning, the critical force fc = 〈fp(v = 0)〉 is large and the
pinning force 〈fp(v)〉 decreases when vortices start moving.
On approaching the Labusch point κ = 1 and for weak pinning
(κ < 1, not shown) the critical force vanishes and 〈fp(v)〉
increases with v; this increase is trivially understood as the
pinning force cannot turn negative. The vanishing of fc

on approaching κ = 1 follows a quadratic behavior [6,17],
fc ∝ (κ − 1)2, see (42).

In order to understand the rough functional form of 〈fp(v)〉
at small and large velocities v, we start from Eq. (14) and
expand it about the static (us(x)) and dynamic (u(x) ≈ x = vt)
solutions of Eq. (15), respectively. In the static limit v = 0,
fp[us(x ′)] can be taken out of the integral in Eq. (15); the
remaining integral draws its main contribution from times
t ∼ tth,

∫
dt G ∼ tth G1D(tth) ∼ 1/C̄, see Eq. (22). The velocity

correction at small v then derives from cutting this time
integral at large but finite times tv ∼ κσ/v, as the pinning
force fp[u(x ′ = vt ′)] vanishes when the vortex leaves the pin
at tv . For tv > tth or v < vp, the integral still picks up its
main contribution near tth that produces the static displacement
us(x); the correction

∫ ∞
tv

dt G3D(t) ∼ √
vtth/κσ/C̄ scales with√

v/vp and hence 〈fp(v)〉 − fc ∝ √
v/vp at small velocities.

Note that a more refined discussion (see Sec. IV D below) is
required in order to explain the sign change in the derivative
of 〈fp(v → 0)〉 with decreasing κ , see Fig. 6.

In the limit of very high velocity v, the displacement
u(x) ≈ vt and the force (14) vanishes since

∫
dxfp(x) =

0. Corrections derive from the second term in Eq. (15),
where the time integral now is cut on tv ∼ σ/v � tth. This
implies that the entire pinning force derives from the integral
at short times,

∫ tv
0 dt G1D(t) ∼ √

σ/vtth/C̄, and hence the
pinning force vanishes as 〈fp(v)〉 ∝ √

vp/v, resulting in a
monotonic decrease of 〈fp(v)〉 for large values of κ . For small
values of κ , i.e., κ → 1, the vanishing of the critical force
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FIG. 7. Velocity dependence of the effective pinning force
fp[u(x)] for a Lorentzian pin [with maximal force fp =
(3

√
3/8)ep/σ ] with Labusch parameter κ = 5 and for velocities

v/vp = 0.015, 0.5, and 20. The dynamical force profile is compared
to the bare force fp(x) (dashed) and the static effective force fp[us(x)]
(dotted). For small velocities, the finite-velocity solution follows
closely the static solution us(x), motivating an approximative scheme
based on the latter as a starting point. For large velocities, the
force profile approaches that of the bare force, motivating the use
of perturbation theory around free flux flow.

fc = 〈fp(v = 0)〉 ∝ (κ − 1)2 implies first an increase of the
pinning-force density 〈fp(v)〉 − fc ∝ √

v/vp at small v, which
is later followed by the decrease ∝ √

vp/v at large v, resulting
in the nonmonotonic behavior of 〈fp(v)〉 shown in Fig. 6.

In the above very high velocity regime, the pinning-induced
correction up ∼ fp

√
σ/vtth/C̄ ∼ σ

√
κvp/v should be small,

up < σ , and thus v > κvp. This leaves a large intermediate
velocity regime vp < v < κvp where neither of the above
perturbative approaches can be applied. Understanding this
intermediate velocity regime requires a more elaborate analy-
sis of Eq. (15). Within this region, the two terms on the right
are large and nearly compensate one another to produce a
tip position u(x) � σ within the pin. Hence Eq. (15) can be
written in the form

−vt ≈
∫ t

−∞
dt ′G(0,t − t ′)fp[u(t)], (44)

where we have replaced space by time coordinates. Using
the 1D Green’s function (22), we estimate the right hand
side as

√
t/tthfp[u(t)]/C̄ and therefore fp[u(t)] ∼ −v

√
t tthC̄.

The linear static force fp[us(x)] ≈ −C̄x of Eq. (36) then
transforms into a square-root dynamic force

fp[u(x)] ∼ −C̄
√

xσ
√

v/vσ . (45)

The maximal pinning force −fp is reached at x ∼ κσ (vp/v),
reduced by a factor vp/v with respect to the maximal pinning
length x

p
s ∼ κσ at vanishing velocity. The above results

smoothly interpolate between those found in the small and
large velocity regions at v < vp and v > κvp, respectively.
Furthermore, one easily convinces oneself that the pinning
time tv ∼ κσvp/v2 < tth within this velocity region, justifying
the use of the 1D Green’s function. Integrating the pinning
force (45) over the reduced pinning length t‖κσ

√
vp/v, we

obtain a decaying average pinning force 〈fp(v)〉 ∝ vp/v.
The above results provide a good qualitative understanding

of the velocity dependence of the effective pinning force
fp[u(x)] shown in Fig. 7 as calculated for a fixed Labusch
parameter κ = 5 and different velocities v. Indeed, one finds

that at low and high velocities v, the effective dynamical force
smoothly evolves out of the static force fp[us(x)] (dotted in
Fig. 7) and the bare force fp(x) (dashed in Fig. 7). Furthermore,
at intermediate velocities, the effective pinning force roughly
follows a square-root shape of reduced extent, in agreement
with the result (45). The average pinning force 〈fp(v)〉 shown
in Fig. 6 derives from an average over the local pinning force
fp[u(x)], see Eq. (16). In the following, we present a more
detailed analysis of the various pinning and velocity regimes.

B. Perturbation theory around flux flow

When the effect of pinning is small, either at small κ � 1
or at high velocities v, we can use perturbation theory away
from flux flow [10,20,21]. This analysis can be done on the full
two-dimensional problem at z = 0, using the ansatz u(R,t) =
vt + up(R + vt) for the dynamical displacement field with the
pinning contribution up providing a small correction. We start
with Eq. (12) and expand the pinning force in up to obtain the
correction

up,α(R + vt) ≈
∫ t

−∞
dt ′G[0,(t − t ′)]fp,α(R + vt ′). (46)

Next, we insert this expression back into the formula for the
average pinning force density Eq. (11) (we assume a drive
along x with v = (v,0) and evaluate the average force at t = 0)
and arrive at

〈Fp(v)〉 ≈ −np

∫
d2R

a2
0

∂αfp,x(R)

×
∫ ∞

0
dt G(0,t) fp,α(R − vt). (47)

This result can be brought to the form known from weak
collective pinning theory,

〈Fp(v)〉 ≈
∫ ∞

0
dt G(0,t) Kxαα(vt) (48)

with the pinning energy correlator

K(u) = np

∫
d2R

a2
0

ep(R) ep(R − u) (49)

and the superscripts in Eq. (48) denoting derivatives with
respect to ux and uα (and summation over α = x,y). For weak
pinning, the result Eq. (48) can be used for any velocity v.

1. Weak pins, small v

We first show that the pinning force indeed increases ∝√
v

at small velocities. This is easily done in Fourier space, which
takes Eq. (48) into the form (we assume a drive along x)

〈Fp(v)〉 ≈ np

a2
0

∫
d2K

(2π )2
K2Kx |ep(K)|2

×
∫ ∞

0
dt G(0,t) sin(Kxvt). (50)

Using the 3D Green’s function Eq. (20) that is relevant at
small velocities v, we obtain the result [with the numerical
ν< ≈ K(1/2)/(3

√
2ππ2) and K(m) the complete elliptic
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FIG. 8. Velocity dependence of the effective pinning force
fp[u(x)] for a Lorentzian pin with Labusch parameter κ = 1.0 and
for velocities v/vσ = 0.07, 0.86, and 24. The dynamical force profile
is compared to the bare force fp(x) (dashed) and the static effective
force fp[us(x)] (dotted). The asymmetry in the effective pinning
force fp[u(x)] (narrowing on the left as the vortex is dragged into
the pin, broadening on the right as the vortex is held back in the pin)
generates the finite pinning-force density 〈Fp(v)〉 at finite velocities,
see Eq. (16).

integral of the first kind]

〈Fp(v)〉 ≈ ν<
np

a0λC̄

√
v

vσ

∫ ∞

0
dK K4

√
Kσ |ep(K)|2

∼ σ 2

a0λ
npκfp

√
v

vσ

, (51)

where we provide a simple scaling estimate in the last line.
Here, the velocity

vσ = σ/tth (52)

replaces vp at weak pinning κ < 1. As expected, the average
pinning force increases with velocity v from zero with a
dependence ∝ √

v/vσ ; this result can be traced back to the
time dependence ∝ t−3/2 of the 3D Green’s function relevant
at long times (and hence small velocities v) and a time integral
that is cut on t ∼ 1/Kxv.

The appearance of a finite pinning-force density for finite
velocities v is illustrated in Fig. 8. In the static situation,
the pinning-force density 〈Fp(v = 0)〉 = Fc vanishes for the
single-valued antisymmetric solution us(x) = −us(−x) at
weak pinning κ � 1. For finite velocities, the asymmetric
deformation of the effective pinning force fp[u(x)] generates
a finite positive result 〈Fp(v)〉 > 0 instead.

The scaling ∝ √
v/vσ in the pinning-force density persists

even beyond the Labusch point at κ = 1, the only relevant
change being the appearance of a finite critical force den-
sity [6,17], Fc ∼ (σx

f
s /a2

0)npfp(κ − 1)2, see Eq. (42), while
the velocity dependent part [〈Fp(v)〉 − Fc] ∝ √

v/vσ evolves
smoothly across the Labusch point.

Next, we remain in the weak pinning regime and follow
the evolution of the average pinning-force density 〈Fp(v)〉
with increasing velocity. We use the perturbative result for
the average pinning-force density Eq. (47) in order to find a
simple estimate for the evolution of 〈Fp(v)〉. The integration
over space contributes a factor σ 2 due to the pin extension, the
force derivative is estimated as ∂xfp(x) ∼ fp/σ , and the time
integral over the Green’s function contributes a factor tG(0,t);
the conversion from time to velocity again involves the pin
size σ , v ∼ σ/t . Starting from small velocities v, we choose

the appropriate Green’s function and obtain the results (with
κ < 1)

〈Fp(v)〉 ∼ σ 2

a2
0

npκfp

⎧⎪⎪⎨
⎪⎪⎩

a0
λ

√
v
vσ

, v
vσ

<
a2

0
λ2 ,

v
vσ

,
a2

0
λ2 < v

vσ
< 1,√

vσ

v
, 1 < v

vσ
,

(53)

with a maximal pinning force ∼(σ/a0)2npκfp appearing at
vσ . For weak pinning, all these results remain within the
perturbative regime with |δu| < σ . This is no longer true if
we turn to very strong pinning with κ � 1.

2. Very strong pins κ � 1, large v > κv p

For very strong pinning κ � 1, we have to make sure that
the displacement up remains small, up < σ . A simple estimate
of Eq. (46) provides the high-velocity result (we consider short
times and hence use the 1D Green’s function)

up(x) =
∫ ∞

0
dtG(0,t)fp(x − vt) ∼ σ

√
κvp

v
. (54)

Hence, for very strong pinning, perturbation theory becomes
applicable only at very large velocities v > κvp.

In this high-velocity regime, we can make use of Eq. (51)
and the 1D Green’s function Eq. (22) to find an accurate
expression for the mean pinning force density (with the
numerical ν> ≈ 2[�(3/4)]2/(

√
2ππ2))

〈Fp(v)〉 ≈ ν>
np

a2
0C̄

√
vσ

v

∫ ∞

0
dK (K4/

√
Kσ )|ep(K)|2

∼ σ 2

a2
0

npfp

√
κvp

v
. (55)

The last estimate is consistent with a transverse trapping length
t⊥ ∼ σ , which is reduced by a factor κ1/(n+2) with respect to
the static result of Eq. (33). As the velocity drops below κvp,
new effects show up which require a self-consistent evaluation
of the vortex dynamics.

Before turning to this intermediate velocity regime, we
comment on the relation between weak collective pinning
theory and our single-pin approximation discussed above.
Indeed, one can show (see Appendix B) that adopting the cutoff
scheme of weak collective pinning to the strong pinning result
Eq. (47), one can obtain a finite critical current density jc ∝ n2

p,
in agreement with the results obtained from weak collective
pinning theory [17]. This finding is quite remarkable, as it
provides an order n2

p result (that includes pin-pin correlations)
from a standard ∝ np strong pinning approach by using an
appropriate cutoff scheme.

C. Universal self-consistent dynamical solution
for very strong pins with κ � 1

Upon decreasing the velocity v below κvp in the very strong
pinning regime, one has to account for the large deformation of
the vortex before depinning. This is illustrated in Fig. 7, where
the effective pinning force extends over a region t‖ larger than
σ and reaches x

p
s ∼ κσ at sufficiently low velocities. Here,

we attempt to use Eq. (15) to find a self-consistent solution for

144516-11



A. U. THOMANN, V. B. GESHKENBEIN, AND G. BLATTER PHYSICAL REVIEW B 96, 144516 (2017)

the effective pinning force fp[u(x)] in the regime where the
vortex deformation is still large.

In the very strong pinning regime and for velocities v >

vp the largest time scale in the depinning process is given
by t ≈ κσ/vp = tth and hence the relevant Green’s function
entering Eq. (15) is given by the 1D expression Eq. (22). The
self-consistency equation (15) then can be written as

u(x) − x = 1

C̄
√

vtth

∫ x

−∞
dx ′ fp[u(x ′)]√

x − x ′ . (56)

This equation can be solved in three regimes. (i) For x < −σ ,
the vortex does not yet feel the pin and the equation is trivially
solved by u(x) = x. (ii) Similarly, for x > t‖, the vortex has
depinned and again u(x) = x. (iii) In the intermediate region
−σ < x < t‖ � κσ , we make use of the ansatz fp[u(x ′)] =
−αfp

√
x ′ + σ [see also the discussion leading to Eq. (45) in

Sec. IV A above] and find that

x − u(x) = α fp

C̄
√

vtth

∫ x

−σ

dx ′ √(x ′ + σ )/(x − x ′)

= α π fp

2C̄
√

vtth
(x + σ ). (57)

Dropping the small corrections u(x) � σ � x on both sides of
the equation, we find that the constant α = 2C̄

√
vtth/πfp ≈

2
√

vtth/πκσ provides a consistent solution, resulting in the
dynamical effective pinning force

fp[u(x � σ )] ≈ − 2

π
C̄

√
vtthx ∼ −fp

√
v

vp

x

κσ
. (58)

At depinning, the force assumes its maximal value −fp and
we find the longitudinal trapping length

t‖(v > vp) ≈ π2

4

(
fp

C̄

)2 1

vtth
∼ vp

v
κσ, (59)

starting from σ at high velocities v ∼ κvp and increasing to
the maximal value t‖(vp) ∼ κσ as v drops to vp, see Sec. III.
One easily checks that we indeed remain in the 1D elastic
regime throughout this range of velocities: for velocities v

larger than vp one finds that the relevant time t ∼ t‖(v)/v ∼ tth
(vp/v)2 < tth.

Combining Eqs. (58) and (59), we can provide a good
approximation for the behavior of the dynamical effective
pinning force at large values of x � σ ,

fp[u(x � σ )] ≈ −fp

√
x/t‖(v). (60)

When the vortex depins at t‖(v), it attains its original straight
shape back within a thermal time tth; this follows from the
dissipative equation of motion for a vortex segment a0 that
is displaced by u, ηla0u/tdp ∼ ε0u/a0 (with ηl = ηa2

0 the
line friction), from which we obtain tdp ∼ ηa4

0/ε0 ∼ tth, see
Eq. (19). During this depinning process, the vortex moves
by a distance xdp ∼ vtth = σv/vσ . As v increases beyond
vσ , the depinning process smoothens, the depinning time
is determined by the average motion, tdp ∼ σ/v, and the
depinning distance xdp saturates at σ ,

xdp(v) ∼
{
σv/vσ , v < vσ ,

σ, vσ < v.
(61)

These results describe qualitatively well the depinning curves
in Fig. 7.

Making use of the dynamical effective pinning force (58) in
the expression for the average pinning force (14) and cutting
the integral on t‖(v), we find that 〈fp(v)〉 decays ∝ vp/v over
the extended velocity regime vp < v < κvp,

〈fp(v)〉 ≈ π2

6
fp

(
fp

C̄a0

)2
a0

vtth
∼ κσ

a0

vp

v
fp, (62)

where we have replaced fp/C̄σ ≈ κ in the second expression.
The pinning-force density 〈Fp(v)〉 requires knowledge of the
transverse pinning or trapping length t⊥(v) which will be
calculated in Sec. IV E.

D. Perturbation theory around static solution

At low velocities, the dynamical force fp[u(x)] remains
close to the static one fp[us(x)], as illustrated in the example of
a Lorentzian potential shown in Fig. 7. The basic idea then is to
construct a perturbative analysis away from the static solution
us(x); the latter rests on a reformulation of the dynamical
equation (15) that makes use of the integrated Green’s function

G↑(x) =
∫ ∞

x

dx ′

v
G(0,x ′/v) (63)

and rewriting the Green’s function G[(x − x ′)/v] in Eq. (15)
through the derivative −v∂xG

↑(x − x ′). Interchanging the
derivative and the integral, we can extract a term fp[u(x)]/C̄
and arrive at a formula reminiscent of the static variant (23),

u(x) = [x − δx[u](x)] + fp[u(x)]

C̄
, (64)

with the coordinate shift

δx[u](x) = ∂x

∫ x

−∞
dx ′G↑(x − x ′)fp[u(x ′)]. (65)

The dynamic solution u(x) then can be expressed [14] through
the smooth multivalued static solution ūs(x) via the self-
consistent coordinate shift δx[u](x),

u(x) = ūs[x − δx[u](x)] ≡ ūs[xeff[u](x)]. (66)

Here, the smooth static solution ūs(x) follows the free,
unstable, and pinned branches and thus differs from us(x) by a
substitution of the jumps by the unstable branches. One easily
checks that evaluating the static self-consistency equation (23)
at x − δx and making use of Eq. (66) reproduces the dynamical
equation (64).

The integrated Green’s function (63) relevant in the coor-
dinate shift δx[u](x) assumes the form

G↑(x) ≈

⎧⎪⎪⎨
⎪⎪⎩

1
C̄
, x

vtth
< 1,

1
2
√

2C̄

vtth
x

, 1 < x
vtth

< λ2

a2
0
,

1√
2π

a0
λ

1
C̄

√
vtth
x

, λ2

a2
0

< x
vtth

.

(67)

In the static limit v → 0, the coordinate shift δx[u](x) = 0
vanishes, except for two finite spikes of vanishing width ∝ √

v

at −x
f
s and x

p
s , and the dynamic displacement approaches

the static one, u(x) → us(x). Substantial changes in δx[u](x)
(and hence in u(x) and 〈fp(v)〉) are to be expected when the
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scale vtth of G↑(x) increases beyond the pinning scale κσ of
fp[u(x)], confirming the estimate vp ∼ κσ/tth for the pinning
velocity scale in Eq. (43).

Given the shape of the displacement ūs(x) as discussed
above and illustrated in Fig. 3(a), let us first understand how
this static solution generates the dynamic solution u(x) via the
coordinate shift δx[u](x), see (66)—the precise understanding
of this mapping is an important step in the construction of
the perturbative analysis of the dynamical displacement u(x)
at small velocities v discussed below. The most noticeable
feature in the static solution us(x) are the jumps at −x

f
s and

x
p
s marking the trapping of the vortex tip and its depinning.

These jumps imply that the vortex does not probe all of the pin
potential. In the dynamic situation, the vortex tip moves with
a finite velocity across the pin and thus has to pass every point
in the pinning potential at some time, hence the dynamical
solution u(x) has to be continuous in x. The relation (66) maps
the continuous function u(x) via the shift function δx[u](x) to
the static solution ūs(x) of Eq. (23), where u(x) probes all
three branches of the static solution ūs(x), free, unstable, and
pinned ones. In order to do so, the shift δx[u](x) or the effective
coordinate xeff[u](x) = x − δx[u](x) has to develop (sharp)
negative spikes close to the points −x

f
s and x

p
s , see Fig. 3(b).

These spikes start at the shifted positions −xf and xp defined
through the conditions [see Eq. (66) and note that u(−xf ) =
us(−x

f
s ) and u(xp) = us(x

p
s ), see Figs. 3(a) and 3(b)]

− xf − δx[u](−xf ) = xeff[u](−xf ) = −xf
s , (68)

xp − δx[u](xp) = xeff[u](xp) = xp
s . (69)

The height of these spikes are such as to shift the unstable
branches uu

s (x) to the dynamical solution u(x) [dotted arrows
in Fig. 3(a)]. It turns out, that the shift function δx[u](x) is the
central quantity in the perturbative calculation of 〈fp(v)〉.

Our goal then is to find the correction in the average pinning
force

〈fp(v)〉 − fc ≡ 〈δfp(v)〉

= − 1

a0

∫ ∞

−∞
dx (fp[u(x)] − fp[us(x)]). (70)

The difficulties with the evaluation of Eq. (70) are the steep
slopes in u(x) and jumps in us(x) when the vortex enters and
leaves the pin, see Fig. 3. While the jumps in us(x) appear at the
positions −x

f
s and x

p
s , these positions are shifted to −xf and

xp for the dynamical solution u(x). At the locations −x
f
s , −xf ,

xp, and x
p
s either the static (fp[us(x)]) or dynamic (fp[u(x)])

force changes rapidly between free and pinned branches. We
then can split the integral in Eq. (70) into appropriate intervals
with and without jumps,

〈δfp(v)〉 = − 1

a0

[∫ −x
f
s

−∞
dx δfff (x) +

∫ −xf

−x
f
s

dx δffp(x)

+
∫ xp

−xf

dx δfpp(x) +
∫ x

p
s

xp

dx δffp(x)

+
∫ ∞

x
p
s

dx δfff (x)

]
, (71)

where

δfab(x) ≡ fp

[
ua

s (x − δx[u](x))
] − fp

[
ub

s (x)
]

(72)

and ua
s with a ∈ {f,p} denote free and pinned branches of the

static solution us(x) (we have expressed u(x) through Eq. (66)
but do not resolve the steep rise in u(x) on the unstable branch).
The contributions of the various terms in Eq. (71) to the average
pinning force is given in Appendix C. It turns out that only
the third and the fourth term are relevant; furthermore, their
contribution can be expressed in a closed form that contains
only the static solution us(x),

〈δfp(v)〉 ≈ 1

a0

(∫ x
p
s

−x
f
s

dx ∂xfp

[
up

s (x)
]
δx

[
up

s

]
(x)

+ δx
[
up

s

](
xp

s

) {
fp

[
uf

s

(
xp

s

)] − fp

[
up

s

(
xp

s

)]})
.

(73)

An equivalent formula was obtained by Larkin and Ovchin-
nikov in Ref. [14] for a periodic pinning model describing
large defects; the regularization introduced in their analysis
follows from our derivation.

1. Very strong pinning with κ � 1

Making use of the universal solution for the static strong
pinning force in Sec. III C, we can find the sign of the small-
velocity behavior of 〈δfp(v)〉. We replace the force gradient by
the (negative) effective elasticity −C̄ ≈ −fp/κσ in the first
term and set the forces to zero and to −fp on the free and
pinned branches in the second term to arrive at

〈δfp(v)〉 ≈ −fp

a0

[∫ x
p
s

−x
f
s

dx
δx

[
u

p
s

]
(x)

κσ
−δx

[
up

s

](
xp

s

)]

= −fp

a0

[
δx

[
u

p
s

]
(x) − δx

[
up

s

](
xp

s

)]
, (74)

where · · · denotes the average over the interval [−x
f
s ,x

p
s ].

Finally, we use again the linear form −C̄x for the effective
pinning force and the expression (67), G↑ ∝ 1/

√
x (valid in

the limit v → 0) for the integrated Green’s function, in the
calculation of the coordinate shift δx[up

s ](x),

δx
[
up

s

]
(x) ≈ −C̄∂x

∫ x

0
dx ′G↑(x − x ′) x ′

∼ −σ
a0

λ

√
v x

vσ σ
. (75)

Here, we have ignored the part of δx describing the jump into
the pin by starting the integration from x = 0. Making use of
Eq. (75) in (74), the dynamical pinning force correction then
assumes a negative value,

〈δfp(v)〉 ∼ −a0

λ
fc

√
v

vp

. (76)

This negative correction can be easily understood by noting
that −δx[up

s ](x) is a monotonically increasing positive func-
tion and hence the second (boundary) term in (74) always
dominates over the average in the first term.
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The above result applies to the very strong pinning situation
with κ � 1. On the other hand, we have seen in Sec. IV B 1
that the pinning-force density is positive, 〈Fp(v)〉 ∝ √

v/vσ

when pinning is weak and Fc = 0. The question arises about
the origin of the sign change in 〈δfp(v)〉 and for which value
of κ this sign change occurs.

2. Moderately strong pinning with κ � 1

In order to understand the sign change in 〈δfp(v)〉, we
have to be more accurate in our description of fp[up

s (x)] near
depinning at x

p
s , as it is the last term in Eq. (74) that is strongly

modified when κ decreases, while the first term remains
unchanged. Indeed, as κ decreases, the decrease fp/2κ2 in
the magnitude of fp[up

s (x)] before the jump at x
p
s increases,

see Eq. (A3), leaving a smaller jump at x
p
s . Furthermore, the

coordinate shift δx[up
s ](x) starts decreasing before the jump

such that x
p
s − xp becomes small. These modifications lead to

a reduction of the second term in Eq. (74), which is nothing
but the signature of a decreasing critical force average fc.

More precisely, we can use the result Eq. (A3) for the
static pinning force fp[us(x)] = fp[up

s (x)] to obtain a more
accurate expression for the coordinate shift. We make use of the
expression (67) for the integrated Green’s function, G↑(x −
x ′) ∝ √

vtth/(x − x ′) for x − x ′ > vtth, cut the integral at x ′ =
x − vtth, and concentrate on the leading terms which are large
close to x ≈ x

p
s to obtain

δx[u](x) ≈ δx
[
up

s

]
(x) ≈ ∂

∂x

∫ x

−∞
dx ′G↑(x − x ′) fp

[
up

s (x ′)
]

≈ −
√

2σ

π

a0

λ

√
v

vσ

×
(√

x

σ
−

√
σC̄

8fp

ln

√
x

p
s + √

x√
x

p
s −√

x − vtth

)
. (77)

As expected, the coordinate shift is small in
√

v and increases
in magnitude ∝√

x, see Eq. (75). However, due to the decrease
in the magnitude of the pinning force on approaching x

p
s , a

logarithmic correction appears, leading to a sharp collapse of
δx at x

p
s , which is cutoff (due to the transition to the single-

vortex response) by the term vtth. Inserting the result (77) into
the expression (74), we find that the velocity correction to the
average pinning force assumes the form

〈δfp(v)〉 ≈
√

2
(
x

p
s + x

f
s

)
3πλ

fp

√
vtth

x
p
s + x

f
s

×
(

−1 + 3

8
√

2

σC̄

fp

ln
4vp

v

)

∼ κσ

λ
fp

√
v

vp

(
−1 + 3

8
√

2

σC̄

fp

ln
4vp

v

)
. (78)

This more accurate analysis shows that 〈δfp(v)〉 always
increases with v at very small velocities v, however, the
corresponding velocity range is exponentially small in κ ∼
fp/σ C̄, v < vp exp(−νκ) with ν = (2

√
2/3) 4 ≈ 4, and there-

fore irrelevant at very strong pinning with κ � 1. Indeed,
the small upturn predicted by Eq. (78) is not visible in
Fig. 6. The result Eq. (78) straightforwardly provides the

pinning-force density 〈Fp(v)〉 when combined with the result
for the transverse trapping length t⊥(v) derived in the next
section.

E. Dynamical transverse trapping length t⊥

The transverse trapping length t⊥ has been found for the
two limits of static pinning at vanishing velocity v = 0 and
in the perturbative high-velocity regime v > κvp. The static
limit has been discussed in Sec. III B, providing us with the
result t⊥ = R

f
s , the asymptotic position where the free-branch

minimum of the total pinning energy et (R; r) in Eq. (31)
vanishes; for a very strong pin with tails, R

f
s ∼ σκ1/(n+2).

This result is parametrically larger than the one we found at
very large velocities v > κvp using perturbation theory where
t⊥ ∼ σ , see Sec. IV B 2. The question then poses itself, how
the transverse trapping length shrinks from t⊥ ∼ σκ1/(n+2) to
t⊥ ∼ σ as the velocity v increases.

We start from the static situation and consider the spher-
ically symmetric total energy of Eq. (31) at the critical
radius R

f
s where the first and second derivatives vanish,

∂ret (R; r)|
R

f
s ,r

f
s

= 0 and ∂2
r et (R; r)|

R
f
s ,r

f
s

= 0, and the free
branch disappears. We consider the limit of very strong pinning
(otherwise t⊥ ∼ σ follows trivially) and assume a pinning
potential with long tails, ep(r) ∼ −ep (σ/r)n, n = 2 for a
Lorentzian-shape defect potential. The critical asymptotic
(Rf

s ) and tip (rf
s < R

f
s ) positions where the free branch

terminates then can be estimated to be located at the radii
R

f
s � r

f
s ∼ σκ1/(n+2), where we have dropped numericals and

set κ ∼ ep/σ 2C̄. The expansion of the total potential at R
f
s in

the vicinity of r
f
s then is given by the cubic parabola [we drop

a constant of order C̄ (rf
s )2]

et

(
Rf

s ; r
) = α

3

(
r − rf

s

)3
, α ∼ C̄

r
f
s

. (79)

The vortex tip (in the form of a segment of length a0) then fol-
lows the equation of motion ηla0 ṙ = −∂ret = −α(r − r

f
s )2;

in the static limit, every vortex approaching the defect with
an impact parameter b < R

f
s will fall to the center, having an

infinity of time available to overcome the flat potential around
r

f
s . In the dynamical situation, the vortex passes the pin with

a finite velocity v and we have to include an additional force-
term −C̄[Rf

s − R(t)] in the equation of motion; here, R(t) =
(−Xf + vt,Y f ) denotes the moving asymptotic position of
the vortex entering the critical radius R

f
s around the defect at

t = 0 from the left. Assuming an impact parameter b close to
R

f
s , we can expand R(t) ≈ R

f
s (1 − X

f
s vt/(Rf

s )2), where we
follow the trajectory over a time t � X

f
s /v ≡ ttra to X = 0,

half the time to traverse the defect potential. The equation of
motion

ηla0 ṙ = −α
(
r − rf

s

)2 − C̄
(
Xf

s

/
Rf

s

)
vt (80)

then picks up an additional force-term that is linear in time
t and independent on position r . Therefore, Eq. (80) can be
brought to the form of Riccati’s equation [37], ˙̄r = r̄2 + t̄ ,
where we have introduced the dimensionless variables r̄

and t̄ via r = r
f
s (1 − β1/3r̄) and t = tthβ

−1/3 t̄ with β =
(Xf

s /R
f
s ) vtth/r

f
s . Starting from r̄(t̄ = 0) = 0, the radius r̄
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starts out small and we can drop the r̄2 term to find the solution
r̄(t̄ ) ≈ t̄ 2/2. When r̄ is large, we can drop the t̄ term and obtain
the solution r̄(t̄ ) ≈ 1/(t̄∗ − t̄) with t̄∗ an integration constant
of order unity. In order to find the precise location of the
divergence, one has to perform a numerical integration that
provides the result t̄∗ ≈ 1.986, see Ref. [37]. Thus we find
that the vortex tip falls to the center within the time window
(we use t̄∗ ≈ 2)

tfall � 2tth

(
r

f
s R

f
s

X
f
s vtth

)1/3

. (81)

The vortex tip has to fall to the center within a time smaller
than ttra ≈ X

f
s /v, from which we find the condition (Xf

s )2 �
R

f
s vtth (we approximate r

f
s ≈ R

f
s ). We thus obtain an upper

limit on the impact parameter b = [(Rf
s )2 − (Xf

s )2]1/2 of
vortices that can be trapped, what provides us with a result
for the transverse trapping length t⊥(v) at small velocities,

Rf
s − t⊥(v) ∼ vtth

R
f
s

. (82)

The above analysis applies to impact parameters b close to
R

f
s (or small X

f
s ) where the tip trajectory is dominated by the

slow motion near r
f
s . At small impact parameters b of order a

fraction of R
f
s , the elastic term in et is no longer relevant and

we have to consider the motion of the vortex tip in the radial
pinning potential ep(r). The equation of motion then has to be
replaced by ηla0 ṙ ∼ −fp(σ/r)n+1 and its integration leads to
the trajectory

r(t) = r0(1 − t/tfall)
1/(n+2), tfall ∼ tth

(
r0

R
f
s

)n+2

, (83)

where r0 denotes the starting radius at t = 0. The fastest fall
to the center appears at the closest approach to the defect and
hence we choose r0 ∼ b. Again, the time to fall to the center
has to be smaller than the traversing time which we estimate
as ttra ∼ b/v as given by the geometry of the problem. We thus
find that trajectories with an impact parameter

b < t⊥(v) ∼ Rf
s

(
R

f
s

vtth

)1/(n+1)

(84)

fall into the pin. The above result applies for velocities such
that t⊥ � σ , i.e., for v > vp.

Combining the results (82) and (84), we find that the
trapping length t⊥(v) decreases with increasing velocity v

on the velocity scale R
f
s /tth ∼ vp/κ (n+1)/(n+2), first with a

correction factor ∝ 1 − κ (n+1)/(n+2)v/vp and then with a power
law ∝ [vp/(κ (n+1)/(n+2)v)]1/(n+1). Hence the transverse length
t⊥(v) decreases from R

f
s at v = 0 to σ at a velocity vp.

The two trapping lengths t⊥(v) and t‖(v), see Eq. (59),
define the trapping area Strap(v) = 2t⊥(v)t‖(v) which decreases
smoothly from Strap ∼ κ (n+3)/(n+2)σ 2 at v = 0 to Strap ∼ σ 2 at
v ∼ κvp and remains constant thereafter. Within the region
0 < v < vp, this decrease is due to the reduction of t⊥ from
κ1/(n+2)σ to σ , while for velocities vp < v < κvp it is the
longitudinal length t‖ that shrinks from κσ to σ .

We note that the velocity scale vσ κ1/(n+2) can also been
obtained from a perturbative analysis: for a vortex with

asymptotic position −x < 0 passing the pin’s center at t = 0,
the pinning-induced correction (46) can be estimated as

up ∼ κσn+2

tth

[∫ tth

0
dt

(
tth

t

)1/2

+
∫ ∞

tth

dt

(
tth

t

)3/2]

× x + vt

[σ 2 + (x + vt)2](n+2)/2
. (85)

For small velocities v < x/tth, the integral assumes its main
contribution from t ∼ tth and we find that up ∼ κσ (σ/x)n+1,
while for larger velocities the integral is cut at v/x and
up ∼ κσ (σ/x)n+1(x/vtth)1/2. The perturbation theory breaks
down when up ∼ x, i.e., at the distance x

f
s at small velocities

and at x
f
s (vσ κ1/(n+2)/v)1/2(n+3/2) at high velocities, implying

a reduction of the large-distance perturbative region on the
velocity scale vσ κ1/(n+2).

F. Summary of force densities

We conclude this section with a summary of results for the
dynamic pinning force density 〈Fp(v)〉(= Fc + 〈δFp(v)〉) on
the level of dimensional estimates. For small and intermediate
velocities v < κvp, more accurate expressions are obtained by
combining the results for the average pinning force 〈fp(v)〉,
Eqs. (30), (62), and (78), with those for the transverse trapping
length t⊥(v), Eqs. (82) and (84), and using Eq. (16). At high
velocities v > κvp, the perturbative result Eq. (55) for 〈Fp(v)〉
can be used.

Starting out at v = 0, we have the critical force density

Fc ∼ κσx
f
s

a2
0

npfp

(κ − 1)2

κ2
(86)

in a form that is valid for all values κ � 1. The correc-
tions at small velocities v < vp are given by 〈δFp(v)〉 =
(2t⊥(v)/a0)np〈δfp(v)〉 with

〈δfp(v)〉 ∼
⎧⎨
⎩

− κσ
λ

fp

(
v
vp

)1
2 , v

vp
<

a2
0

λ2 ,

− κσ
a0

fp
v
vp

,
a2

0
λ2 < v

vp
< 1,

(87)

and

t⊥(v) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x
f
s

(
1 − vκ

n+1
n+2

vp

)
, v

vp
� κ− n+1

n+2 ,

x
f
s

(
vp

vκ
n+1
n+2

) 1
n+1

, κ− n+1
n+2 < v

vp
< 1,

σ, 1 < v
vp

.

(88)

The corresponding results for moderate values of κ remain
unchanged up to a sign change in 〈δfp(v)〉, i.e., 〈fp(v)〉
increases with v. Increasing the velocity beyond vp, we have
the following results for the pinning-force density 〈Fp(v)〉, see
Eqs. (62) and (55),

〈Fp(v)〉 ∼ κσ 2

a2
0

npfp

{ vp

v
, 1 < v

vp
< κ,√

vp

κv
, κ < v

vp
.

(89)

Again, these results remain valid as κ is reduced towards the
Labusch point. Note that all of the above results smoothly join
at the respective boundaries.
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FIG. 9. Illustration of the force-velocity curve in the dilute limit
for npa0σ

2κ = 0.05. In the absence of pinning, the velocity is given
by v = FL/η (dotted line). In the presence of pinning, this line is
shifted to Fc ∝ np (solid line) and closely follows a shifted straight
line of equal slope for velocities v � vp . Corrections to this linear
excess-force characteristic appear at velocities beyond vp , which does
not depend on the small pin density np , or at small velocities ∝ n2

p

(see insets, the arrows refer to the hysteretic switching). Original
figure published in Ref. [29].

V. FORCE-VELOCITY CHARACTERISTIC
AT STRONG PINNING

We are now ready to find the force-velocity or current-
voltage characteristic of the strong pinning superconductor in
the dilute pin regime. The final task is to solve the dynamical
equation (1), which we have already written in the convenient
form Eq. (2). The analysis of Sec. IV has provided us with
the velocity scale vp for the average pinning-force density
〈Fp(v)〉. In the limit of small pin densities np, we find that
the dissipative motion of the bulk vortex system involves the
velocity vc = Fc/η, which is much smaller than the typical
depinning velocity vp characteristic of the strong pinning
physics; interpolating the results (40) and (42) for the critical
force Fc, we find that the ratio

vc

vp

∼ npa0σ
2 (κ − 1)2

κ
� 1 (90)

in the small pin-density limit at fixed κ > 1 [38]. The pinning-
force density 〈Fp(v)〉 then remains essentially unchanged,
〈Fp(v)〉 ≈ Fc for a large region of velocities including vc and
limited only by vp � vc. Hence the characteristic takes the
generic form of a shifted (by Fc) linear (flux-flow) curve,

v ≈ (FL − Fc)/η, v � vp, (91)

see Fig. 9. The free dissipative flow

v ≈ FL/η, vp � v, (92)

is approached only at very high velocities v � vp � vc.
The simple excess-force characteristic is a consequence

of the separation of velocity scales vc and vp; the latter
merge at strong pinning with increasing density np when
strong 3D pinning goes over into 1D strong pinning at [17]
npa0σ

2κ ∼ 1. Using qualitative arguments, a similar excess-
force characteristic has been found in Ref. [12].

The roughly constant behavior of the pinning-force density
〈Fp(v)〉 ≈ Fc over a large velocity region v < vp is the analog

to Coulomb’s law of dry friction for the problem of strong
vortex pinning. Hence although we have invested a large effort
in the calculation of the velocity dependence of the pinning-
force density 〈Fp(v)〉, the most important statement is that
about the largeness of the scale vp in comparison to vc. The
detailed dependence of 〈Fp(v)〉 on v in Eqs. (87) and (89) only
manifests itself very close to and far away from Fc, e.g., when
investigating the approach to the free flux flow at large drives
FL � Fc.

Besides the corrections at high velocities v > vp due to
the velocity dependence of 〈fp(v)〉, additional changes show
up close to Fc and at very low velocities due to the square-
root dependence 〈Fp(v)〉 − Fc ∝ ±√

v/vp. The force balance
equation then can be written in the form

FL

Fc

− 1 = v

vc

±
√

v

v±
p

, (93)

with the small-velocity pinning scales v±
p deriving from

Eq. (87),

v−
p ∼ λ2

a2
0

vp, κ � 1, (94)

v+
p ∼ λ2

a2
0

(κ − 1)4 vp, κ → 1. (95)

For strong pinning κ � 1, the negative (nonlinear) correction
in the average pinning-force density generates a bistability
(and hence hysteretic jumps [14]) on the scale vnl = v2

c /v
−
p ∝

n2
p. The unstable branch increases below Fc, according to v ≈

v−
p (1 − FL/Fc)2, turns around reaching a finite value v = vnl

at FL = Fc, and approaches the linear excess characteristic
v ≈ vc(FL/Fc − 1) > vnl for FL > Fc. On the other hand,
approaching the Labusch point κ → 1, the correction changes
sign and the velocity increases quadratically,

v ∼ v+
p (FL/Fc − 1)2 < v2

c

/
v+

p = vnl, (96)

reaches the value vnl at FL/Fc = 1 + 2vc/v
+
p , and crosses over

to the linear regime v ≈ vc(FL/Fc − 1) > vnl at larger drive
FL > Fc. While these features are illustrated in the insets of
Fig. 9 (showing an expanded view of the characteristic near
onset), we have to caution the reader that these results, residing
in the regime vnl ∝ n2

p, may get modified due to collective
pinning effects.

VI. MODEL PINS

In our discussion above, we have frequently made use of
the Lorentzian-shaped pinning potential Eq. (4) in order to
gain insights into the strong-pinning features of the dynamical
vortex response. This specific example of a pinning potential
is quite appropriate when performing a numerical analysis
but is less convenient for analytical studies. The latter can be
easily attacked for a bare pinning force fp(x) of polynomial
form, at least in the static limit where we have to solve
the self-consistency equation (23). It turns out, that for a
linear-force profile, the analytic solution can be pushed further
to finite velocities, motivating our study of pins with a trun-
cated quadratic (or parabolic) pinning potential, see Fig. 10.
However, the quadratic-potential pin formally describes a very
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(a)

(b)

FIG. 10. (a) Pinning-force density vs velocity for a linear-force
pinning model with strength κ̄ = 2 [the insets show a sketch of
the bare pinning potential ep(x) and bare force fp(x)]. The exact
result (solid) is plotted for comparison with the results from the low-
(dashed) and high-velocity (dotted) expansions. (b) Top to bottom:
displacement field u(x), force fp[u(x)], and effective coordinate
xeff [u](x) for a small velocity v/vp = 0.05. The exact displacement
field u(x) and force fp[u(x)] (solid lines) are compared to the static
quantities us(x) and fp[us(x)] (dashed) for vortex motion from left
to right. Also shown are the free [uf

s (x) and fp[uf
s (x)], light dashed]

and pinned branches [up
s (x) and fp[up

s (x)], light dashed], with the
multivalued static solution within the interval xf

s < |x| < xp
s . The

exact effective coordinate xeff [u](x) (solid line) is compared to the
approximation xeff [us](x) (dashed).

strong pin with a Labusch parameter κ → ∞, since the force
jumps to zero at the pin’s edges at x = ±σ . In order to study
pinning at intermediate values of κ and the approach to the
Labusch point κ → 1, a more regular potential is required
near the force maximum. The results of such an analysis for
a cubic pin (or quadratic-force model), although analytically
accessible in the static limit, are somewhat cumbersome and
we refer the interested reader to Ref. [39].

Parabolic pin, linear-force model

A simple model for a strong pin is provided by the parabolic
potential with the linear pinning-force restricted to a finite

interval [−σ,σ ] [see Fig. 10(a)]

fp(u) =
{−fp u/σ, |u| < σ,

0, otherwise. (97)

Given the jumps in the force at the boundaries ±σ , the Labusch
parameter κ = f ′

p(±σ )/C̄ → ∞ and the pin is strong for all
values of fp. As a consequence, any parabolic potential will
produce vortex pinning, e.g., in numerical simulations [28].
On the other hand, the properties of the pin are determined
by the dimensionless parameter [see Eq. (29) and the different
sign used here]

κ̄ = −∂xfp(x)/C̄ = fp/σ C̄, (98)

which is of the same scale as the Labusch parameter κ for
a similar smooth pin, but should not be confused with the
Labusch parameter itself. Piecewise linear models of this type
have been considered before in Ref. [13] using a simplified
description of the system’s elastic properties. Furthermore,
Larkin and Ovchinnikov [14] used a periodic version of
this model in a small-velocity analysis of the strong-pinning
physics for large defects.

In the static situation, we have to solve the self-consistency
equation (23) for the displacement field us(x) and we obtain
the result

uf
s (x) = x, |x| > xf

s = σ, (99)

up
s (x) = x

1 + κ̄
, |x| < xp

s = σ (1 + κ̄), (100)

with the jump points −x
f
s and x

p
s for a right moving vortex

separated by σ (2 + κ̄). The displacement field us(x) then
suddenly changes slope to generate the effective static force
fp[us(x)] = −C̄x/(1 + κ̄−1). Note that the jumps at −x

f
s [by

σ κ̄/(1 + κ̄)] and at x
p
s (by σ κ̄) do not disappear for any values

of κ̄ and hence the pin is always strong. The critical force
Eq. (24) assumes the value

Fc = npfp

2t⊥
a2

0

∫ x
p
s

−x
f
s

dx

σ

x

1 + κ̄

= 2κ̄σ 2

a2
0

npfp

1 + κ̄/2

1 + κ̄
, (101)

where we have used t⊥ = x
f
s = σ in the last equation. The

factor 2κ̄σ 2 should be interpreted as the trapping area Strap,
see also Refs. [15,17].

Next, we turn to the low-velocity dynamics (see Fig. 10)
and determine the coordinate shift δx[us](x) inside the pinning
interval [−x

f
s ,x

p
s ], see Eq. (77),

δx[us](x) = − 2

π

σ κ̄

1 + κ̄

1 + 2x/σ√
1 + x/σ

√
v

vσ

. (102)

The divergence at x = −σ is cut (at ∼ vtth) by the fast single-
vortex response at short times t ∼ tth where the 3D Green’s
function has to be replaced by the 1D one; the remaining
spike is relevant in transforming the static solution us(x) to the
dynamic one u(x). As compared with the result Eq. (77) above,
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FIG. 11. Displacement field u(x) and corresponding force
fp[u(x)] at a high velocity v/vp = 2 and for a pinning parameter
κ̄ = 2. The exact results (solid lines) are compared with the high-
velocity perturbative (dashed) and free (light dotted) results.

the coordinate shift for the linear force model does not exhibit
any logarithmic corrections and hence there will be no term
∝ √

v ln v in the pinning-force density 〈δFp(v)〉. In fact, using
the result Eq. (102) in the calculation of the pinning-force
density Eq. (73), we obtain

〈δFp(v)〉 ≈ −npfp

2t⊥
a2

0

{∫ x
p
s

−x
f
s

dx

σ

δx[us](x)

1 + κ̄
− δx[us]

(
xp

s

)}

= − 4

3π

κ̄σ t⊥
a2

0

npfp

5 + 5κ̄ + 2κ̄2

(1 + κ̄)2

√
v

vp

, (103)

with vp = vσ (2 + κ̄) deriving from the effective pin size σ (2 +
κ̄). As discussed above, the pinning force is reduced ∝√

v/vp

with respect to the static critical force in the strong pinning
situation discussed here. A result similar to Eq. (103) was
obtained by Larkin and Ovchinnikov [14] in a periodic linear
model for large defects.

Going to the limit of high velocities v � κ̄vp, we first
determine the lowest-order correction to the displacement
field, see Eq. (54),

up(x) = −2 κ̄

π

∂

∂x

∫ x

−σ

dx ′x ′
√

x − x ′

vtth

= −2 κ̄σ

3π

√
vσ

v

(
2x

σ
− 1

)√
1 + x

σ
(104)

for −σ < x < σ , see Fig. 11. Using the perturbative expres-
sion Eq. (47) for the pinning force [note that f ′

p(x) includes a
δ function], we arrive at the result [cf. Eq. (55)]

〈Fp(v)〉 ≈ 12
√

2

5π

σ t⊥
a2

0

npfp

√
κ̄2vσ

v
. (105)

The linear-force model also allows for an exact solution
of the dynamical situation; within the interval u ∈ [−σ,σ ] the

FIG. 12. The exact force-density-velocity (current-voltage) rela-
tion for parabolic pins with strength κ̄ = fp/σ C̄ = 2. The pinning
velocity scale vp = 2vσ is much larger than the viscous velocity
scale vc = Fc/η. Note the bistability for values of the Lorentz force
density FL close to the critical force density Fc (inset), leading to the
appearance of jumps [14]. This bistable regime extends over a region
of size ∝ n2

p both in force and in velocity. For large values of FL, free
flux flow (dashed) is approached.

self-consistency equations (23) and (65) assume the form

u(x) = x − δx[u](x)

1 + κ̄
, (106)

δx[u](x) = −fp

σ

∂

∂x

∫ x

−σ

dx ′G↑(x − x ′)u(x ′). (107)

This problem can be solved exactly via a Laplace transform
and we obtain the solution [40]

u(z) = 1

z2(1 + κ̄g(z))
, (108)

g(z) = ezvtth erfc(
√

zvtth), (109)

with erfc(x) the complementary error function. Unfortunately,
the final solution involves an inverse Laplace transform which
cannot be done in closed form,

u(x) = x − κ̄σ

1 + κ̄
+ σ κ̄

∫ ∞

0

ds

π

(
v/vth

s2
+ 1

s

)

× (1 − e−s(1+x/σ )vσ /v)e−serfi(
√

s)

(1 + κ̄e−s)2 + κ̄2e−2serfi2(
√

s)
, (110)

where erfi(x) denotes the imaginary error function. The result
of the numerical evaluation of (110) is shown in Fig. 10,
together with the results of the fast- and the slow-velocity
analysis.

In the final step, we make use of the mean pinning-
force density 〈Fp(v)〉 in the solution of the force-balance
equation (1) and find the force-velocity characteristic, see
Fig. 12. For small velocities v � vp, the force balance
equation assumes the form

ηv + Fc(1 − β
√

v/vp) = FL, (111)

with

β = 4

3π

5 + 5κ̄ + 2κ̄2

(2 + κ̄)(1 + κ̄)
κ̄→∞−→ 8

3π
(112)

determined from Eq. (103). The pinning-force density, de-
creasing with velocity via a square-root law, outperforms the
linear behavior of the viscous force density ηv at small v. As
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a consequence, the force-velocity relation is bistable with (we
define the small parameter ν = β2vc/4vp ∼ npκ̄σ 2a0 � 1)

v

vc

≈ ν

(
1 ±

√
1 + 1

ν

FL − Fc

Fc

)2

. (113)

Equation (113) describes an unstable characteristic
v/vc ≈ (1/4ν)(1 − FL/Fc)2 at small v and a jump δv/vc ≈ 4ν

at FL = Fc, see Fig. 12, as also noted by Larkin and
Ovchinnikov in their pinning analysis of large defects
[14]. The bistability regime extends over a region of size
∝ n2

p both along the force- and along the velocity axes;
specifically, bistability appears within the force interval
1 − ν < FL/Fc < 1 and for velocities v/vc < 4ν. The electric
field Ec corresponding to the jump velocity 4νvc can be
expressed through the critical current density jc and the
flux-flow resisitivity ρff , Ec = 4νρffjc ∼ (κnpσ 2a0)ρffjc,
with κnpσ 2a0 � 1 assuring the dilute pinning limit.

Above the critical drive FL − Fc � Fc, we find the linear
shape v/vc ≈ FL/Fc − 1. Hence, the force-velocity relation is
dominated by the static pinning-force density Fc ∝ np and the
viscous force density ηv. For large velocities, we use 〈Fp(v)〉
from the expansion Eq. (105) and find the correction around
flux flow

v ∼ FL

η
− 4

√
2

3π

κ̄σ t⊥
a2

0

npfp

η

√
vσ

vc

Fc

FL

. (114)

The linear-force model always resides in the strong pinning
limit with κ = ∞. The most relevant point in the pinning
process, the point x

p
s = σ (κ̄ + 1) where the vortex jumps

out of the pin, then coincides with the point of maximal
(negative) force with us(x

p
s ) = σ at the pin boundary. In order

to analytically study the dynamical pinning force at smaller
values of κ including the approach to the Labusch point,
one has to choose a smooth shape for the pinning potential.
Demanding that the static limit is still analytically solvable,
one may choose a cubic potential with the quadratic force
profile

fp(x) = fp

{
−(x/σ )2 − x/σ, −σ < x < 0,

(x/σ )2 − x/σ, 0 < x < σ,
(115)

and zero otherwise. This model pin then comes with a tunable
Labusch parameter

κ = max
x

∂xfp(x)

C̄
= ∂xfp(±σ )

C̄
= fp

σ C̄
(116)

and can still be solved analytically in the static limit, that
provides the basis for an approximate solution of its dynamical
behavior. Since the results are rather cumbersome, we refer the
reader to the original solution in Ref. [39].

VII. CONCLUSION

We have analyzed the dynamics of the vortex lattice
in the presence of dilute strong pins characterized by a
Labusch parameter κ > 1 and have determined the strong-
pinning force-velocity (or current-voltage) characteristic in the
single-pin single-vortex limit. The basic task is the solution
of a nonlinear integral equation for the displacement field

u(x = vt) describing the vortex tip position when traversing
the pin, while the vortex ends at z ∼ ±∞ move with constant
velocity v. The average 〈fp(v)〉 over the individual pinning
forces fp[u(x)] and a proper determination of the velocity
dependence of the transverse trapping length t⊥(v) provide
the velocity-dependent mean pinning-force density 〈Fp(v)〉.
In a last step, we find the mean velocity v(FL) as a function
of the driving Lorentz-force density FL–the force-velocity or
current-voltage characteristic–by solving the force balance
equation ηv = FL − 〈Fp(v)〉.

The self-consistent dynamical integral equation for the
displacement field u(x) can be solved numerically by simple
forward integration due to causality. Such a numerical solution
has been carried out for the Lorentzian-shaped pinning poten-
tial in order to determine the dynamical effective pinning force
fp[u(x)] and the dependence of the pinning force 〈fp(v)〉 on
the velocity v. In the static limit, the integral can be separated
and the problem simplifies to an algebraic one. The appearance
of a multi-valued static solution characterizes a strong pin
and allows for a finite static critical force fc = 〈fp(v = 0)〉;
the latter is a consequence of the asymmetric occupation
of free and pinned branches as the moving vortex jumps
into and out of the pin. At finite velocities, the jumps in
the static solution us(x) give way to a unique smooth and
asymmetric solution u(x) and the force fp[u(x)] derives
from a direct integration without invoking an asymmetric
occupation.

The velocity dependence of the dynamical pinning force
〈fp(v)〉 is governed by the elastic properties of the vortex
system as expressed through the Green’s function. Its velocity
scale is given by vp = κvσ = κσ/tth, where κ and σ encode
properties of the pins and tth is the timescale for the dissipative
relaxation of an elastic deformation. At small velocities, a
perturbative treatment away from the static solution provides
a decrease 〈δfp(v)〉 ∝ −√

v/vp of the mean pinning force
at large values of κ � 1 and an increase 〈δfp(v)〉 ∝ √

v/vp

for small values κ � 1. Indeed, a correction of positive sign
〈δfp(v)〉 ∝ √

v/vp log(vp/v) shows up in a small region as
v → 0 for any value of κ , however, this region is exponentially
small at large κ . Increasing the velocity beyond (a0/λ)2vp,
the 3D bulk response gives way to a region of 4D dispersive
behavior and 〈δfp(v)〉 ∝ v/vp changes linearly with velocity.
At high velocities v > vp, the rapid motion is dominated by
the 1D single-vortex response; furthermore, a self-consistent
analysis of the problem shows that the longitudinal trapping or
pinning length decreases from ∼ κσ to ∼ σ , producing a rapid
drop in the pinning force 〈fp(v)〉 ∝ vp/v. The vp/v decay of
〈fp(v)〉 extends over a large velocity regime vp < v < κvp

and has not been known before. Finally, perturbation theory
away from free flux flow can be performed at high velocities
v � κvp where pinning is always effectively weak and which
provides a force decaying as 〈fp(v)〉 ∝ (κvp/v)1/2.

The pinning-force density 〈Fp(v)〉 ≈ np(2t⊥(v)/a0)
〈fp(v)〉 follows from simple averaging via direct summation
over independent pins, once the dynamical transverse pinning
length t⊥(v) has been determined. The latter can be found by
studying the trapping process for a vortex approaching the
defect with a finite impact parameter and at finite velocity;
it turns out that the trapping length decreases from its static
value t⊥ ∼ σκ1/(n+2) to t⊥ ∼ σ as the velocity increases to vp.
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Our study provides access to several types of results: (i)
exact ones deriving from numerical integration for specific
defect potentials ep(r) and (ii) perturbative analytic results
in the static- and high-velocity limits. Quite remarkable
are (iii) the universal results obtained in the large-κ limit,
with a linear force fp[us(x)] ≈ −C̄x appearing in the static
limit and a square-root force fp[u(x)] ≈ −(2/π )C̄

√
vtthx

in the intermediate velocity regime vp < v < κvp. Finally,
(iv) dimensional estimates provide us with simple qualitative
results for the evolution of 〈Fp(v)〉 with changing velocity v

and for all values of κ . (v) Numerical and analytic calculations
for a parabolic model-potential give additional insights into
the pinning dynamics. Such parabolic pins have often been
used in numerical simulations of vortex dynamics in disorder
landscapes [28] and always reside in the strong-pinning limit
due to their sharp boundary.

The analysis of the velocity-dependent pinning-force den-
sity 〈Fp(v)〉 provides us with the velocity scale vp governing
the relaxation of the vortex motion across the pinning centers.
In the limit of a dilute density np of pins (where pinning
centers act individually) this velocity is much larger than
the velocity scale vc = Fc/η describing the overall motion
of the vortex system after depinning. It is this separation of
velocities that produces a simple force-velocity or current-
voltage characteristic in the strong pinning situation with
a dilute density of pins: after depinning at Fc (or jc), the
characteristic evolves first in parallel to free flux flow [excess-
force characteristic v ∼ (FL − Fc)/η] and approaches the free
flow behavior v ∼ FL/η only at very high velocities v > vp �
vc. With our derivation of the excess-force characteristic for
the strongly-pinned vortex system in the dilute-pin limit, we
have derived the analogue of Coulomb’s law of dry friction
for strong vortex pinning—it would be interesting to see if the
ideas leading to this result could be applied to other problems of
dry friction. Additional nonlinear corrections (corresponding
to corrections of Coulomb’s law), a jump at very strong pinning
with κ � 1 and a smooth onset for κ � 1 appear in a narrow
region of size ∝ n2

p near depinning; however, a word of caution
is in place as results in this regime may get modified by
collective pinning effects.

Our theoretical results compare well to a number of exper-
imentally measured current-voltage characteristics [23–27].
The linear excess-current characteristic reported in early
experiments was discussed by Campbell and Evetts [7] and
by Campbell [12], however, no microscopic derivation of this
basic result has been provided so far. In these experiments, the
excess current-voltage characteristic could be observed over a
large drive interval without suffering from thermal breakdown
effects. Indeed, observing this type of characteristic requires
to push the current up to roughly twice its critical value in
order to reach a velocity of order vc. In order to avoid heating,
samples with low values of jc, consistent with our small np

condition, are beneficial, see e.g., Ref. [25].
Unfortunately, one has to admit that even today, no sys-

tematic studies of experimental current-voltage characteristics
are available: given a specific material, the defect structure
is usually nontrivial and may include a variety of pin types.
Furthermore, the parameters characterizing the defects are
difficult to find. Experiments with superconductors where
defects could be designed, tuned, and properly characterized

would provide a great help and motivation in further devel-
oping the theory of pinning and allow a better comparison
between theory and experiment. Numerical studies based on
the time-dependent Ginzburg-Landau theory and aiming at
optimizing the pinning landscape have been performed very
recently [36] and it will be interesting to compare our results
with this type of numerical effort.

Further work is required on the theoretical side. With
our analysis, we have provided an important step in the
understanding of the static and dynamical strong pinning
behavior and its crossover to weak pinning. However, our study
is limited to the single-pin single-vortex situation and one has
to include effects of other vortices and correlations between
pins in order to arrive at a complete picture. Correlations
between pins will generate higher-order corrections in np both
in the static and the low-velocity dynamic behavior and their
inclusion is a crucial element in the full understanding of the
weak to strong pinning crossover.
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APPENDIX A: CORRECTIONS TO THE UNIVERSAL
STATIC SOLUTION

In this appendix, we improve the accuracy of the universal
static solution in Sec. III C and further investigate the behavior
of the vortex near depinning. In order to find the static force
profile fp[us(x)] near depinning at xp

s , we make use of Eq. (23)
and expand the bare potential fp(x) in the relevant region
around its minimum (near the maximal pinning force pointing
along −x). We characterize the minimum in the bare pinning
force fp(x) (i.e., its largest negative value) through its position
σm, the maximum (negative) pinning force −fp, and the
(positive) curvature f ′′

p = fp/σ 2,

fp(x) ≈ −fp + fp

2σ 2
(x − σm)2. (A1)

Note that, here, the parameter σ ≡ (f ′′
p (σm)/fp)1/2 is a pre-

cisely defined model parameter that agrees with the previous
(loose) definition as the pin size for the situation where
the defect potential involves only one length scale. In order
to relate the static displacement field us to the asymptotic
coordinate x, we combine the above ansatz for the bare pinning
force fp(x) with the static self-consistency equation (23).
Replacing x → us in Eq. (A1) and using (23), C̄(us − x) =
f (us), we find the static displacement field

us(x) ≈ σm + σ

κ̄
−

√
2σ

κ̄

(
x

p
s − x

)
(A2)

with κ̄ ≡ fp/σ C̄ and x
p
s ≡ κ̄σ + σm + σ/2κ̄ ≈ κ̄σ the depin-

ning point, see Fig. 5. Making use of Eq. (23) once more, we
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obtain the static pinning force

fp[us(x)] ≈ −C̄x + fp

us(x)

κ̄σ
, (A3)

with the last term a correction of order ∼ fp/κ̄ . This force
profile decreases linearly with slope C̄ up to x ≈ κ̄σ , reaches
its minimum −fp (the maximum backward force fp) at x =
κ̄σ + σm and increases by fp/2κ̄2 when x increases further by
σ/2κ̄ in order to diverge upwards at x = x

p
s , see Fig. 5.

In summary, at very strong pinning (by a defect with tails),
we find a universal static solution where the vortex jumps into
the pin at −x

f
s ∼ −κ1/(n+2)σ and then is deformed linearly in

x, with the vortex tip remaining trapped in the pin. The elastic
energy of this deformation balances the effective pinning force
−C̄x. The backward pointing tip remains fixed onto the defect
until reaching the largest force −fp with the vortex stretched
by ∼ κσ , see Fig. 5. When the force decreases again in
magnitude, the vortex remains attached to the pin over the
short distance ∼ σ/2κ and then depins with a sharp forward
jump in us(x) at x

p
s , from us ∼ σ before to us ∼ κσ after

depinning. With this jump, the vortex tip depins and ends on
the free branch where it experiences a small residual force
fp(xp

s ) ∼ −fp/κn+1 < 0. For a vortex with a finite impact
parameter and a radially symmetric defect potential, the above
scenario is still valid, with the vortex jumping into and out
of the pin at the radii R

f
s = x

f
s and R

p
s = x

p
s . Note that at

very strong pinning, jumping into and out of the pin are very
asymmetric processes, with the vortex jumping into the pin
anywhere along the semicircle with radius R

f
s , while it jumps

out of the pin in a narrow, forward directed angle, see Fig. 2.
Hence the depinning process [that determines 〈fp(v)〉] does
not depend much on the impact parameter b.

APPENDIX B: WEAK COLLECTIVE
VERSUS SINGLE PINS

Here, we comment on the relation between weak collective
pinning theory and our single-pin approximation pertinent to
the strong pinning paradigm. The perturbative result (48) for
the average pinning-force density 〈Fp(v)〉 obtained within our
single-pin (SP) analysis coincides, to lowest order in κ and
in the pin density np, with the result obtained from weak
collective pinning theory [10] (WCP). On a first glance, this
result may appear as a surprise, however, the correlations
manifest in Eq. (48) arise quite naturally when constructing
a pinning landscape with a finite density np of randomly
distributed pins with a pinning potential εp(r), see Eq. (4). The
pinning energy density Ep[r,u] of such a disorder landscape
can be written as

Ep[r,u] =
∑
μ,i

ep(Rμ + uμ(z) − R) δ3(r − ri)

=
∑

μ

ep(Rμ + uμ(z) − R) ρp(r) (B1)

with the pin density

ρp(r) =
∑

i

δ3(r − ri). (B2)

The corresponding force field Fp[r,u] relates to Eq. (5) via∫
d2R

a2
0

Fp[r,u] =
∑

μ

Fp(rμ,uμ). (B3)

Assuming self-averaging, the average pinning-force density
〈Fp〉 in Eq. (5) then can be written as the volume average

〈Fp〉 = − 1

V

∫
d3r Fp[r,u]. (B4)

Rewriting u = vt + up and expanding in up one obtains (for
a drive along x)

〈Fp,x〉 = − 1

V

∫
d3r

∫
d3r ′

∫ t

dt ′ ∂α∂xEp(r,vt)

×Gαβ(r − r′,t − t ′) ∂βEp(r′,vt ′). (B5)

Inserting the form (B1) of the pinning energy landscape and
assuming small and weak pinning defects, the sums over pairs
of vortices ν and μ and pairs of pins i and j reduce to those
terms with μ = ν and i = j ; expressing the sums over vortices
and pinning centers as integrals over d2R/a2

0 and npd3rp, we
arrive at

〈Fp,x〉 = −np

∫ t

dt ′ G(0,t − t ′)

×
∫

d2R

a2
0

∂α∂xep[R + vt] ∂αep[R + vt ′], (B6)

which, choosing the time t = 0, is easily reduced to the result
Eq. (48). Alternatively, one may take the average over disorder
realizations on the right hand side of Eq. (B5), represent the
pinning energy density Ep through Eq. (B1), and use the
density-density correlator

〈ρ(r)ρ(r′)〉 = n2
p + npδ3(r − r′). (B7)

The pinning energy correlator then is easily reduced to the
usual form (the reducible term n2

p in Eq. (B7) is irrelevant in
the present discussion)

〈Ep(r,u)Ep(r′,u′)〉 = δ3(r − r′)K(u − u′) (B8)

with the K(u) given by Eq. (49) (again, we use that individual
pins are small and weak, such that the sum over vortex pairs
reduces to a single sum over μ = ν). Hence the single-pin
result (48) contains all the correlations present in the disorder
landscape described by Eq. (B1).

The single-pin approach predicts a vanishing critical force
Fc for κ < 1, while the weak collective pinning scheme pro-
vides a finite result. This difference arises due to the different
handling of the small velocity limit in the two approaches. In
the weak pinning scenario, we stop decreasing the velocity v

when perturbation theory breaks down as the pinning-induced
correction δv becomes of order of the velocity v itself; the
criterion δv ∼ v ≡ vc defines a finite (critical) pinning-force
density F WCP

c ≡ 〈Fp(vc)〉. In the strong pinning scenario,
instead, we take v all the way to zero and obtain a vanishing
critical force density F SP

c = 0. On the other hand, using the SP
result, Eq. (47), and adopting the WCP cutoff scheme, we find
a finite critical current density jc as well: with the estimate
〈Fp(v)〉SP ∼ np(σ/λ)(f 2

p /ε0)(v/vσ )1/2 from Eq. (53), valid at
low velocities, and the conditions 〈Fp(vc)〉SP ∼ ηvc ∼ jcB/c,
we obtain the critical current density (with j0 ∼ cε0/�0ξ
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denoting the depairing current density and using σ ∼ ξ )

jc ∼ j0(ξ 2/λ2)
(
npa3

0f
2
p

/
ε2

0

)2 ∝ n2
p, (B9)

in agreement with the results obtained from weak collective
pinning theory [17]. This result is quite remarkable: first, the
critical current (B9) is proportional to n2

p, the square of the
pin density np, i.e., its origin is in the correlations between
pins. Second, the result is still consistent with the standard SP
result 〈Fp(v = 0)〉SP = 0, as the latter is an order np result and
corrections ∝ n2

p are beyond the standard SP approach. For
strong pinning κ > 1, we already obtain a finite critical force
〈Fp(v = 0)〉SP ∝ np, linear in pin density. In this situation,
pin-pin correlations are expected to provide corrections o(np),
which vanish faster than linear, allowing us to approach the
critical force parametrically closer than in the WCP situation.

APPENDIX C: AVERAGE PINNING FORCE
AT SMALL VELOCITIES

In this appendix, we bring the expression (71) for the
average pinning force to a manageable form. Out of the five
terms in Eq. (71), we can drop the first and last integrals. For a
compact pin, the force is small, of order fp/κ just before −x

f
s

and negligible on the free branch at x
p
s , see the discussion in

Sec. III C above. The first integral then is small by the factor
κ−3/2 as compared to the main terms, while the last integral is
exponentially small. For a Lorentzian pin with large tails, the
force is of order fp/κ3/4 at −x

f
s ; it contributes a term smaller

by κ−9/8 as compared to the leading terms. In the last integral,
the force starts at a value of order −fp/κ3 and its contribution
is small by the factor κ−6.

The second term describes the part of the jump into the
pin when the dynamic solution has not yet responded to
the presence of the pin, while the static solution has already
jumped. This term scales the same way as the first integral; for
a compact pin of size σ , the pinning force fp/κ is still small
and the term is small by a factor κ−3/2, while for a Lorentzian
pin its contribution is small by the factor κ−9/8 and can be
safely ignored as well.

The important terms are the third and fourth ones describing
the change in the pinning force as the vortex moves through
the pin and the force difference arising from the substantial
change in the location of depinning, respectively,

〈δfp(v)〉 ≈ − 1

a0

[∫ xp

−xf

dx δfpp(x) +
∫ x

p
s

xp

dx δffp(x)

]
. (C1)

In order to analyze this expression further, we have to
investigate the behavior of the coordinate shift δx[u](x), see
Eq. (65). This shift is small, ∝ √

v, over most of the pinning
interval [−xf ,xp], where the (small) velocity parameter arises
from the integrated Green’s function G↑(x = vt), see the third
line of Eq. (67). A notable exception are the two spikes at −xf

and at xp where the vortex jumps into and out of the pin. These
spikes are large, of size x

p
s − x

f
s ∼ σκ , but extend only over

a small interval ∼vtth, see (61).
Away from these spikes, we can approximate the coordinate

shift δx[u](x) by δx[us](x). In fact, the difference δx[u](x) −
δx[us](x) involves the force difference fp[u(x)] − fp[us(x)]
as it appears in the correction 〈δfp(v)〉 given by Eq. (70)
above, multiplied with the Green’s function G↑(x) ∝ √

v/vσ ,
see Eq. (67). Taking the coordinate x through the various
regimes, one can show that δx[u](x) ≈ δx[us](x) to order v

away from the jumps (with one factor
√

v originating from the
force difference and another from the Green’s function G↑)
and to order

√
v in a region of order

√
v near the jumps (we

ignore the region of size vtth at the jumps where the difference
is of order σκ). Furthermore, we can replace (to precision

√
v)

the positions −xf and xp by their static counterparts,

xf
s − xf = δx[u](−xf ) ≈ δx

[
uf

s

](−xf
s

) ∝ √
v, (C2)

and similarly (note that we have to make sure that we always
stay on well-defined, continuous branches)

xp
s − xp = −δx[u](xp) ≈ −δx

[
up

s

](
xp

s

) ∝ √
v. (C3)

In simplifying Eq. (C1), we make use of the smallness of
δx[u](x) in the interval [−xf ,xp] and expand the integrand
δfpp(x) ≈ ∂xfp[up

s (x)] δx[u](x). Next, we replace (to lowest
order in v) the unknown dynamical quantities u(x), xf ,
and xp by the known static expressions us(x), x

f
s , and

x
p
s . Finally, we replace the second integral by the product

of force difference δffp(x) ≈ fp[uf
s (xp

s )] − fp[up
s (xp

s )] times
the width x

p
s − xp ≈ −δx[up

s ](xp
s ) of the integration region,

exploiting the sharp decay of both fp[us(x)] and fp[u(x)] at
the boundaries. While the former is a property of the static
solution, that latter is guaranteed by the smallness of the
depinning length xdp ∝ v, see Eq. (61). We then arrive at the
closed expression (73) that we use in the main text to derive
the ∝√

v/vp corrections to the average pinning force.
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