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Vortex matter stabilized by many-body interactions
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This work investigates interactions of vortices in superconducting materials between standard types I and II, in
the domain of the so-called intertype (IT) superconductivity. Contrary to common expectations, the many-body
(many-vortex) contribution is not a correction to the pair-vortex interaction here but plays a crucial role in the
formation of the IT vortex matter. In particular, the many-body interactions stabilize vortex clusters that otherwise
could not exist. Furthermore, clusters with large numbers of vortices become more stable when approaching the
boundary between the intertype domain and type I. This indicates that IT superconductors develop a peculiar
unconventional type of the vortex matter governed by the many-body interactions of vortices.
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I. INTRODUCTION

It is well known that the textbook classification of the
superconductivity types [1–3] does not apply for materials
with the Ginzburg-Landau (GL) parameter close to the critical
value κ ∼ κ0 (κ0 = 1/

√
2) [4–18]. Such materials, that can

be broadly referred to as intertype (IT) superconductors,
demonstrate properties that cannot be described within the
type I/II dichotomy. Experimentally, the IT regime reveals
itself most obviously in a first-order transition between the
Meissner and mixed states, seen as an abrupt change (drop)
in the magnetization [4–13,17]. This discontinuity has been
observed in Ta (under doping by nitrogen), Nb (clean and
doped by nitrogen), V, LaAl2, and in alloys Pb-Tl, Pb-In, and
In-Bi [4–6,8,11]. Recently the same transition has also been
reported for ZrB12 [19–21].

The IT superconductivity regime can also be achieved by
varying geometry of a sample. For example, this can be done
for superconducting films made of a type I material (e.g., Pb,
Sn, or In) and placed in a perpendicular magnetic field. When
the film thickness decreases, superconductivity of type I is
replaced by that of type II [22–24], passing through the IT
regime [25–27]. A similar geometry induced type-II behavior
has been recently observed for arrays of superconducting wires
made of β-gallium [28].

In conventional single-band superconductors the interval of
κ , which corresponds to the IT regime, is rather narrow (see,
e.g., Refs. [8,11]). However, in multiband superconductors
the IT domain in the (κ,T ) plain has been predicted to
widen notably [29]. For example, a large IT domain can
be expected in so-called BCS-BEC superconductors, where
the BEC condensates of shallow bands coexist with the
BCS condensates of standard deep bands [30]. Evidences of
the BCS-BEC superconductivity and the related BCS-BEC
crossover have been recently reported for iron chalcogenides
FeSe and FeSexTe1−x [31–33]. Consequently, multiband
superconductors appear to considerably expand the class of
IT materials.

Magnetic properties of superconductors are closely related
with the mechanism of how the magnetic field penetrates a

superconductor. Therefore, details of this mechanism have a
direct influence on fundamental superconducting characteris-
tics such as, e.g., the critical magnetic fields and the critical
current.

Most of experimental evidences suggest that the magnetic
field penetrates IT superconductors in the form of Abrikosov
(single-quantum) vortices [4–6,8,14–16,18]. Until recently it
was assumed that the defining feature of the IT regime is a
spatially nonmonotonic vortex interaction [4–18]. Following
this view, Abrikosov vortices play a role of elementary “parti-
cles” of the mixed state in both IT and type-II superconductors
while their relatively weak interaction helps to arrange them
in a particular form of the Abrikosov lattice. Within this
picture all differences between IT and type II superconductors
are explained only in terms of the vortex interaction: it is
attractive at long ranges in the IT regime while fully repulsive
in type II. Acknowledging this similarity, the name “type
II/1” was coined for IT superconductors [8,17] while type
II was denoted as “type II/2”. It was believed that the vortex
interaction in IT superconductors is essentially of the two-body
character, i.e., the same as in type II, while the many-body
(many-vortex) interactions can contribute only in condensates
with multiple competing order parameters [34–37].

This concept of the IT superconductivity has been chal-
lenged in recent studies [29,30,38] that connected the physics
in the IT domain with the self-duality of the GL theory
at κ0 [39,40] and the related infinite degeneracy of the
condensate state in the Bogomolnyi point (κ0,Tc) (Tc is the
critical temperature). This point separates types I and II at
T = Tc, while at T < Tc the degeneracy is removed and
the Bogomolnyi point unfolds into a finite IT domain in
the (κ,T ) plane with a variety of unconventional properties.
The degeneracy can also be removed by other factors, e.g., by
the contribution of stray fields in finite samples [38].

It has been demonstrated [29] that the nonmonotonic
vortex interaction is only one example of the unconventional
properties in the mixed state of IT superconductors. Its
appearance determines the upper boundary of the IT domain
[8,11,29]. Other nonstandard properties, e.g., stable isolated
multiquantum vortices [29], emerge sequentially when the
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FIG. 1. Considered vortex configurations; solid circles denote
positions of vortices and r is the distance between the nearest
neighbors.

system “moves” across the IT domain to its lower boundary,
where the mixed state finally disappears [8,11,29]. Recent
theoretical studies have shown that the IT regime in supercon-
ducting films reveals itself via a manifold of highly unusual
spatial condensate-field patterns [38].

The findings of Refs. [29,30,38] paint a much more complex
picture than that of the type II/1,2 concept. In particular, the
view on Abrikosov vortices as elementary “particles” of the
mixed state is questioned by the observation [29] that isolated
vortices (both single and multiquantum) are unstable in a large
part of the IT domain referred to as IT/I (the subdomain with
stable isolated vortices is referred to as IT/II). This raises a
question of whether the mixed state in the IT/I regime can still
be formed by vortices or the mixed state has a totally different
nature here. The vortex matter can still appear if stabilized by
the vortex interaction.

In this work we show that contrary to common expectations,
vortex interactions in the IT/I subdomain are essentially
of the many-body character. Furthermore, the number of
vortices contributing to the many-body interactions increases
in superconductors that are closer to type I. In this case
the many-body interactions stabilize the vortex matter which
otherwise could not exist. It is, therefore, demonstrated that the
mixed state in the IT/I subdomain differs qualitatively from
that in type-II and IT/II, representing an atypical vortex matter,
where vortices cannot be considered as weakly two-body
interacting.

II. FORMALISM

A many-body component of the vortex interaction is
evaluated for N -vortex clusters with N = 2, 3, and 4 (see
Fig. 1). We take the 3-vortex cluster in the form of an
equilateral triangle, while for 4-vortex clusters we consider
the rhombic or hexagonal h-configuration (a part of the
hexagonal lattice) and also the square s configuration. The
vortex interaction potential can be extracted from the free
energy of the superconducting condensate with the chosen
positions of the vortex centers, from which the energy of
isolated (infinitely separated) vortices is subtracted.

In practical calculations it is more convenient to work with
the Gibbs free energy G with the density g = f − (H · B)/4π ,
where B is the magnetic field (induction) and H is the external
(uniform) field, both directed along the z axis. One notes that
the volume integral of (H · B)/4π depends only on the total
number of vortices but not on their positions, implying that
the free energy and the Gibbs free energy are equivalent for
the analysis of the vortex interaction. Though this interaction
does not depend on the external magnetic field, the related
calculations are significantly simplified by assuming a nonzero

FIG. 2. Phase diagram of the superconductivity types in the (κ,T )
plane. The outer and internal boundaries of the IT domain at T >

0.4–0.5Tc are given by Eq. (13). At lower temperatures the linear
dependence of the boundaries on τ is not applicable (see Ref. [29]);
the dashed lines serve as a guide to an eye.

value of H and choosing H = Hc (Hc is the thermodynamic
critical field). Finally, we subtract the Gibbs free energy GM

of the uniform Meissner state at H = Hc so that the Gibbs free
energy difference G = G − GM is analyzed.

We note that the calculations should employ the approach
beyond the GL theory. Within the GL theory the IT domain is
reduced to the single point κ = κ0, where the superconducting
state at H = Hc is degenerate due to the Bogomolnyi self-
duality [39,40]. This degeneracy means that G = 0 for any
vortex configuration, i.e., vortices do not interact. However, in
the exact (BCS) theory the superconducting state is degenerate
only in the limit T → Tc, while at T < Tc the degeneracy is
removed due to nonlocal effects. This leads to the formation of
a finite IT domain (see Fig. 2) between conventional types I and
II in the (κ,T ) plane [8,11,29]. Solving the microscopic BCS
formalism for an arbitrary multivortex configuration (with
arbitrary separations between vortices) is not practical as it
requires huge computational efforts.

In this work we employ the extended GL formalism [41–43]
that goes to one order beyond the standard GL theory in the
expansion of the microscopic equations over τ = 1 − T/Tc.
Since we are focused on superconductors with κ ∼ κ0, we
also employ the expansion in δκ = κ − κ0 retaining its leading
contribution [13,29].

Using earlier results for the model of a clean s-wave single-
band superconductor with the spherical Fermi surface [29,42]
we obtain the Gibbs free-energy difference as

G =
∫

dV
[
g(0) + g(1)

κ δκ + g(1)
τ τ

]
. (1)

Here the GL contribution at κ = κ0 is given by

g(0) = 1
2 (B − 1)2 + |D�|2 − |�|2 + 1

2 |�|4, (2)

where � is the order parameter, D = ∇ + iA is the gauge
invariant gradient, and all quantities are scaled using the

144515-2



VORTEX MATTER STABILIZED BY MANY-BODY . . . PHYSICAL REVIEW B 96, 144515 (2017)

characteristic units of the GL theory [see Eq. (15) of Ref. [29]].
The contribution ∝δκ is also given by the GL theory and reads

g(1)
κ = −

√
2B(B − 1) − 2

√
2|D�|2. (3)

The leading correction in τ follows from the τ expansion of
the BCS free energy and is given by

g(1)
τ = (B − 1)

(
1

2
+ c

)
− 1

2
|�|2 + 2|D�|2 + |�|4

+ Q
{
|D2�|2 + 1

3
(rot B · i) + B2|�|2

}

+ L
2

{8|�|2|D�|2 + [�2(D∗�∗)2 + c.c.]} + c |�|6,
(4)

with the GL supercurrent density i = 2 Im[�D∗�∗]. The
coefficients c = −0.227, L = −0.454, and Q = −0.817 in
Eq. (4) are material independent for the chosen model [29].
The order parameter and the magnetic field are found from the
GL equations

�(1 − |�|2) + D2� = 0, rotB = i, (5)

which can be represented as the two self-duality Bogomolnyi
equations [39,40]

B = 1 − |�|2, (∂y + i∂x)� = (Ax − iAy)� (6)

(a solution to this system is also refereed to as the Sarma
solution [2]). Using a solution to these equations, one can
represent G (per unit length in the field direction) in the form

G = −
√

2Iδκ + (cJ J − cII)τ, (7)

with the constants cI = 0.407 and cJ = 0.681 and

I =
∫

dV |�|2(1 − |�|2), J =
∫

dV |�|4(1 − |�|2).

(8)

The GL contribution at κ = κ0 disappears in Eq. (7), reflecting
the Bogomolnyi degeneracy, so that the final result contains
only the terms ∝δκ,τ . It is of importance that G defined by
Eqs. (7) and (8) depends only on a solution to Eq. (5) [or
Eq. (6)], demonstrating that properties of the vortex matter
in the IT domain are fully determined by the Bogomolnyi
self-duality.

We note that a similar expression for G can be obtained
for multiband superconductors provided that the system does
not have a special symmetry in addition to U (1) [29]. In this
case the coefficients cI,J become material dependent and
have contributions of all bands as well as of the interband
coupling. This leads to considerable quantitative changes while
the qualitative picture remains the same [29].

Solutions to the Bogomolnyi equations are conveniently
found by introducing a new scalar field as Ax = −∂yφ,
Ay = ∂xφ, so that B = 
φ, with 
 = ∂2

x + ∂2
y . Using the

substitution � = exp(−φ)�, we recast Eq. (6) in the form


φ = 1 − e−2φ |�|2, (∂y + i∂x)� = 0. (9)

The solution that describes N vortices with the centers at ri

is obtained as follows. We first find �1(r) that describes an

FIG. 3. Solid (blue) curve: the interaction potential Gint (per
vortex and per unit length) for the 2-vortex configuration versus the
distance r between vortices. Panels (a), (b), (c), and (d) correspond
to δκ = 1 (type II), 0.2 (IT/II), 0.1 (IT/II), and −0.5 (type I). The
dashed (black) curve represents Gint for the same configuration but
calculated from the GL theory.

isolated Abrikosov vortex with the center at r = 0. Then we
represent the N -vortex solution in the form

�(r) = e−θ

N∏
i=1

�i, �i = �1(r − ri). (10)

Substituting this into Eq. (9) and taking into account that �1

is also a solution of the Bogomolnyi equations, we obtain


θ = 1 +
∑

i

(|�i |2 − 1) − e−2θ
∏

i

|�i |2. (11)

Solving this equation and substituting the obtained � into
Eqs. (7) and (8), we find the Gibbs free energy difference
G for the N -vortex cluster in question and then extract the
corresponding interaction energy (interaction potential) by
subtracting the energies of N isolated vortices. The interaction
potential (per vortex) is given by

Gint = G/N − G1, (12)

where the Gibbs free energy difference for an isolated vortex
G1 is found by using the single vortex solution.

III. RESULTS

Since the focus of this study is the properties of super-
conductors in the IT domain, we first specify its boundaries
recalling earlier results [7,29,44]. Its lower boundary κmin(T )
is obtained from the condition Hc = Hc2 (Hc2 is the upper
critical field), which determines the appearance of the mixed
state, while the upper boundary κmax(T ) marks the onset of the
long-range attraction between vortices. Subdomains IT/I and
IT/II are separated by κs(T ) determined by the condition of
a vanishing surface energy of the flat superconducting-normal
domain wall. Using the extended GL formalism for a clean
s-wave single-band superconductor with a spherical Fermi
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FIG. 4. Vortex interaction potential Gint as a function of the distance r between neighboring vortices, calculated for the N -vortex
configurations (N = 2,3,4), shown in Fig. 1, and for δκ = −0.11,−0.08,−0.05, that correspond to the IT/I subdomain, and δκ = 0, that
is in the vicinity of the boundary between the IT/I and IT/II subdomains. The units are the same as in Fig. 3.

surface, we obtain [29]

κmin = κ0 − 0.41τ, κmax = κ0 + 0.95τ, κs = κ0 − 0.03τ.

(13)

In Fig. 2, a simplified phase diagram of the superconductivity
types is shown in the (κ,T ) plane, with the outer and internal
boundaries of the IT domain determined by Eq. (13) (a more
detailed diagram can be found in Ref. [29]). We note that,
although the linear τ dependence of κmin, κmax, and κs is
obtained in the vicinity of Tc, it has been demonstrated [29]
that the applicability of Eq. (13) extends down to temperatures
0.4–0.5Tc.

We note that due to the linear dependence of the energy Gint

in Eq. (12) on both τ and δκ , the characteristic boundaries that
control changes in the interaction energy are linear functions of
τ . Thus it is possible to choose τ = 1 for convenience; results
for τ < 1 are simply obtained by the corresponding rescaling.

A. 2-vortex cluster

We first consider the interaction potential between two
vortices, which is plotted in Fig. 3 as a function of the
intervortex distance r (in units of

√
2λ, with λ the magnetic

penetration depth). Panels (a) and (d) represent, respectively,
type-II (δκ = 1) and type I (δκ = −0.5) superconductivity;
panels (b) and (c) are calculated for the IT/II regime (δκ =
0.2,0.1). For type II superconductors the interaction potential
is a monotonically decreasing function [see Fig. 3(a)] so that
vortices are repulsive at all distances. For type I materials the
potential is a monotonically increasing function [see Fig. 3(d)],

vortices attract each other, and the 2-vortex configuration is
unstable.

In the IT domain the interaction potential is no longer
monotonic, as illustrated in Figs. 3(b) and 3(c) for δκ = 0.2
and 0.1, respectively. In both cases vortices are repulsive at
short and attractive at large intervortex distances, with the
potential minimum achieved at some finite distance rmin. This
agrees with the earlier results and is in line with the type
II/1,2 picture. For comparison, the dashed curve in each panel
of Fig. 3 represents the corresponding GL result given by the
first term ∝δκ in Eq. (7).

Figures 4(a)–4(d) show the two-vortex interaction potential
calculated at δκ = 0 (near the boundary between the IT/I
and IT/II subdomains) and at δκ = −0.11, − 0.08, − 0.05
(all in the IT/I subdomain). The results confirm the trend,
seen in Fig. 2, that the two-vortex interaction becomes
more attractive at smaller δκ . The transformation from the
nonmonotonic dependence to the full attraction takes two
steps: the minimum at rmin (1) becomes local and (2)
disappears. It is important that the full-attraction regime is
reached before type I is achieved (i.e., before crossing the
lower boundary of the intertype domain): Fig. 4(b) shows
an attractive potential for δκ = −0.08, which is still far
from the lower boundary of the IT interval at τ = 1, i.e.,
δκmin = κmin − κ0 = −0.41.

B. 3- and 4-vortex clusters

We now turn to the 3- and 4-vortex clusters, where the
interaction potential contains many-body contributions. The
interaction potential for the 3-vortex cluster is illustrated in
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Figs. 4(e)–4(h). One sees that, in the vicinity of the boundary
between the IT/I and IT/II subdomains, at δκ = 0, the 2-
and 3-vortex interaction potentials are qualitatively similar
[cf. Figs. 4(d) and 4(h)]. In fact, this similarity holds for any
δκ > 0, i.e., for the IT/II and type II regimes. It also extends
to the case of the 4-vortex clusters [cf. Fig. 4(l)]. This leads us
to the conclusion that in the IT/II subdomain the many-body
contributions do not lead to qualitative changes in the total
vortex interaction. Furthermore, for type II superconductors
the many-body corrections to the vortex interaction are
negligible, as expected. This is the reason why only results
for δκ < 0 are given in Fig. 4.

On the contrary, in the IT/I subdomain the situation
changes dramatically. For example, for δκ = −0.05 the global
minimum of the 3-vortex potential is found at rmin � 2.3
[see Fig. 4(g)]. However, for the two-vortex configuration the
global minimum is at r = 0 [see Fig. 4(c)]. At δκ = −0.08
the global minimum of the 3-vortex potential slightly shifts
to r � 2.2 [see Fig. 4(f)] while the 2-vortex interaction
is already fully attractive [see Fig. 4(b)]. The interaction
potentials for 2- and 3-vortex clusters become both fully
attractive only at δκ = −0.11 [Figs. 4(a) and 4(e)]. This
qualitative difference between the interaction in the 2- and
3-vortex clusters indicates an increased role of the many-body
interactions. We stress that in some parameter range the
3-vortex configuration is stable while the 2-vortex cluster
collapses.

The results for the 4-vortex configurations are shown in
Figs. 4(i)–4(k) and further confirm the increased role of the
many-body interactions in superconductors closer to type I.
At δκ = −0.05 the potentials for both h and s clusters are
qualitatively similar to that of the 3-vortex configuration [see
Figs. 4(k) and 4(g)]. However, at δκ = −0.08 the quantitative
difference between the 3- and 4-vortex interaction potentials
is already notable [see Figs. 4(f) and 4(j)]. Finally, at δκ =
−0.11 the 3- and 4-vortex potentials become qualitatively
different: the interaction is fully repulsive for the 3-vortex
cluster [see Fig. 4(e)] while both potentials for the 4-vortex
case are still nonmonotonic [see Fig. 4(i)]. Furthermore, at
δκ = −0.11 the interactions in the h and s configurations
of the 4-vortex cluster become significantly different: in
the h configuration the absolute minimum of the potential
is found at r = 0 but the s cluster still favors a finite
distance between vortices rmin � 2.1. One sees that there is
an interval of δκ , where 4-vortex clusters are stable due to

four-body interactions while 3- and 2-vortex configurations
collapse.

Finally, in order to illustrate relations between the vortex
interaction and the IT subdomains we superimpose the results
for the vortex interaction on the phase diagram given in
Fig. 2.

IV. CONCLUSIONS

Our analysis of the vortex interactions in IT superconduc-
tors has revealed that contrary to the standard type II/1,2
picture, vortex-matter configurations are not determined by
the 2-vortex interactions in the entire IT domain. The cal-
culations have demonstrated qualitative differences between
the IT/I and IT/II subdomains. In the IT/II subdomain the
vortex interaction potential has the two-body character and a
nonmonotonic spatial dependence with long-range attraction
and short-range repulsion, which agrees with the concept of
type II/1,2 superconductivity. However, in the IT/I subdomain
many-body interactions play a crucial role, and the spatial
dependence of a many-body potential differs qualitatively
from that of the two-body one. For example, many-body
interactions in large vortex clusters remain repulsive at
short distances even when the two-body interaction is fully
attractive. An important consequence is that many-body
interactions in the IT/I subdomain stabilize large vortex
clusters.

This observation supports the general conclusion that a
superconductor in the IT/I regime can develop a very peculiar
vortex matter, where vortices would not exist without many-
body interactions.

Finally, we note that the universality of the EGL formalism
for systems with an arbitrary number of bands ensures
that qualitatively similar conclusions can be expected for
multiband superconductors.
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