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Nematic superconductivity in CuxBi2Se3: Surface Andreev bound states
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We study theoretically the topological surface states (TSSs) and the possible surface Andreev bound states
(SABSs) of CuxBi2Se3, which is known to be a topological insulator at x = 0. The superconductivity (SC)
pairing of this compound is assumed to have broken spin-rotation symmetry, similar to that of the A-phase
of 3He as suggested by recent nuclear-magnetic resonance experiments. For both spheroidal and corrugated
cylindrical Fermi surfaces with the hexagonal warping terms, we show that the bulk SC gap is rather anisotropic;
the minimum of the gap is negligibly small as compared to the maximum of the gap. This would make the
fully gapped pairing effectively nodal. For a clean system, our results indicate the bulk of this compound to
be a topological superconductor with the SABSs appearing inside the bulk SC gap. The zero-energy SABSs,
which are Majorana fermions, together with the TSSs not gapped by the pairing, produce a zero-energy peak
in the surface density of states (SDOS). The SABSs are expected to be stable against short-range nonmagnetic
impurities, and the local SDOS is calculated around a nonmagnetic impurity. The relevance of our results to
experiments is discussed.
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I. INTRODUCTION

CuxBi2Se3, the first superconductor (SC) realized in a
doped topological insulator, has attracted great interest since
its discovery [1,2]. After early gathering of experimental and
theoretical evidence trying to imply the superconductivity
(SC) pairing in this compound to be topologically nontrivial
[3–8], several later experiments seem to conclude that the
actual pairing symmetry is the conventional s-wave and
topologically trivial [9,10]. However, initiated by a recent
nuclear magnetic resonance (NMR) experiment [11,12], a
new surge of research on this material and its several variants
(e.g., SrxBi2Se3 [13–15], NbxBi2Se3 [16–18], and TlxBi2Se3

[19]) revived the possibility that the SC phase realized in this
group of materials is topologically nontrivial. In the NMR
experiment, a prominent in-plane uniaxial anisotropy in the SC
order parameter is observed in the Knight shift measurement
[11]. The above twofold in-plane rotational symmetry is
confirmed further by field-angle dependent specific heat
measurement [20]. These new experiments indicate that the
SC pairing in CuxBi2Se3 might be the first example of a
pairing breaking spontaneously the spin rotation symmetry
of the parent material, from the threefold rotational sym-
metry of the normal phase to the uniaxial twofold in-plane
symmetry [11,12].

Amazingly, the new NMR experiment is claimed to be
explainable by an odd-parity pairing proposed earlier [21].
The alluded pairing, with a salient in-plane anisotropy, has
also been called a nematic SC [22]. For a simplified model
with spheroidal Fermi surface, this SC pairing is known
to be equivalent to the A phase of 3He and has two bulk
nodes [23,24]. However, by including in the model the terms
responsible for hexagonal warping of the Fermi surface,
this SC was argued to have a full pairing gap [22]. If
confirmed, this could be the first three-dimensional topological
superconductor with a fully gapped bulk ever discovered.
However, a hallmark of the topological SC is the presence
of surface Andreev bound states (SABSs) within the bulk SC

gap, and its robustness against nonmagnetic impurities and
interactions. In early studies in terms of simplified models
based on spheroidal Fermi surface without the hexagonal
warping terms, the SC is known to support novel SABSs
which are flat along one direction [i.e., (kx,0)] and linearly
dispersive in the perpendicular direction [i.e., (0,ky)] [3,25,26].
In addition, the topological surface states (TSSs) are well
defined at the chemical potential and well separated from the
bulk states [2]. The SC pairing would not open a gap in the
TSSs and, thus, the TSSs coexist with the SABSs [25,27]. If
the hexagonal warping term is incorporated, then on one hand
the two bulk nodes would be gapped out [22], whereas, on the
other hand, the TSSs will remain gapless [27]. In addition, the
odd-parity topological SC pairing should still support SABSs,
independent of the model parameters [23,24]. As a result, it
seems natural to expect the existence of the nontrivial spectral
features related to the two types of surface states.

Previous experiments, on the other hand, have made con-
flicting statements on the surface states in the SC phase. In sev-
eral point contact spectroscopy (PCS) studies, a pronounced
zero-bias peak appeared and was ascribed to the existence
of SABSs [3–5]. Later, a scanning tunneling spectroscopy
study reported a standard BCS-like spectrum (BCS represents
Bardeen-Cooper-Schrieffer) [9]. Moreover, a detailed PCS
experiment arrived at the same conclusion that no SABSs
existed [10]. However, recent experiments clearly indicated
that the Fermi surface of the CuxBi2Se3 compound changes
from spheroidal to corrugated-cylindrical surfaces as the
doping x increases [28]. As a result, and without detailed
investigations, there exist works [22,28,29] arguing that the
absence of SABSs in the odd-parity (e.g., nematic) SC state of
CuxBi2Se3 is consistent with a (corrugated) cylindrical Fermi
surface.

Inspired by the above experimental observations and
theoretical arguments, in this paper we explore whether
the corrugated cylindrical Fermi surface would or would
not support the SABSs in the CuxBi2Se3 compound with

2469-9950/2017/96(14)/144512(11) 144512-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.144512


LEI HAO AND C. S. TING PHYSICAL REVIEW B 96, 144512 (2017)

the nematic SC pairing proposed for explaining the recent
experiments [11,20]. Using the band parameters, which fit
qualitatively the experimental Fermi surfaces and the TSSs,
we find that the SC is fully gapped, and the bulk gap is
rather anisotropic. The minima of the bulk SC gap is smaller
than the maximum of the bulk gap by two to three orders of
magnitude. The bulk quasiparticle spectrum, while in principle
is fully gapped, appears to be nodal-like from the point of
view of measurements. The SABSs are shown to exist in the
clean system for both spheroidal and corrugated cylindrical
Fermi surfaces, and the zero-energy Majorana bound state is a
characteristic of the SABSs. In addition, we verify the stability
of the SABSs against short-range nonmagnetic impurities,
both for uniformly distributed bulk impurities and for dilute
impurities doped only to the surface layer. As to whether
the SABSs could be observed experimentally may depend
on the condition of the sample surfaces. For instance, the
excessive magnetic Cu2+ (3d9) ions or Cu (3d104s1) atoms on
the surfaces could very much suppress the SABSs. On a clean
and perfect surface, the SABSs should be detectable. Recently,
the possible existence of surface states in superconducting
SrxBi2Se3 is inferred from the Shubnikov-de Hass oscillation
measurement [30]. In combination with the results of the
present paper, it is therefore highly desirable to reexamine
the existence of the SABSs in CuxBi2Se3 as a crucial test for
the relevancy of the proposed SC pairing [11,22,31].

II. MODEL

We consider a two-orbital tight-binging model for the low-
energy degrees of freedom of the material:

H0(k) = ε(k)I4 + M(k)�5 + B0cz(k)�4 + A0[cy(k)�1

− cx(k)�2] + R1d1(k)�3 + R2d2(k)�4. (1)

The basis vector is taken as φ
†
k = (a†

k↑,a
†
k↓,b

†
k↑,b

†
k↓), where

the two orbitals (a and b) are mainly from the two pz

orbitals on the top and bottom Se layers of each Bi2Se3

quintuple unit [32–34]. I4 is the 4 × 4 unit matrix. �1 =
σ3 ⊗ s1, �2 = σ3 ⊗ s2, �3 = σ3 ⊗ s3, �4 = −σ2 ⊗ s0, and
�5 = σ1 ⊗ s0 [3,21,25,32–35]. si and σi (i = 1,2,3) are Pauli
matrices for the spin and orbital degrees of freedom. The parity
operator is defined as P = σ1 ⊗ s0 [36]. The above model
was obtained previously based on symmetry and comparison
with an existing k · p model [32,37]. The lattice of Bi2Se3

and CuxBi2Se3, which belong to the D5
3d space group, is

mapped to a hexagonal lattice in the tight-binding model. The
in-plane (labeled as the xy plane) and out-of-plane (labeled as
the z direction) lattice parameters, a and c, are taken as a =
4.14 Å and 3c = 28.64 Å [38]. ε(k) = C0 + 2C1[1 − cos(k ·
δ4)] + 4

3C2[3 − cos(k · δ1) − cos(k · δ2) − cos(k · δ3)]. M(k)
is obtained from ε(k) by making the substitutions Ci →
Mi(i = 0,1,2). cx(k) = 1√

3
[sin(k · δ1) − sin(k · δ2)], cy(k) =

1
3 [sin(k · δ1) + sin(k · δ2) − 2 sin(k · δ3)], and cz(k) = sin(k ·
δ4). Finally, d1(k) = − 8

3
√

3
[sin(k · a1) + sin(k · a2) + sin(k ·

a3)] and d2(k) = −8[sin(k · δ1) + sin(k · δ2) + sin(k · δ3)].
Here, the four nearest-neighboring bond vectors of the
hexagonal lattice are δ1 = (

√
3

2 a, 1
2a,0), δ2 = (−

√
3

2 a, 1
2a,0),

δ3 = (0, − a,0), and δ4 = (0,0,c). The three in-plane second-

TABLE I. Three parameter sets for the tight-binding model, in
units of electron volts (eV). “Spheroidal” and “cylindrical” refer to
the shape of the Fermi surface, which is realized with a chemical
potential μ = 0.32 eV, for example. Two different cylindrical Fermi
surfaces (labeled by 1 and 2) are considered.

C0 C1 C2 M0 M1

Spheroidal -0.008 0.06 1 -0.26 0.3
Cylindrical 1 -0.008 0.02 0.5 -0.26 0.12
Cylindrical 2 -0.008 0.02 0.5 -0.26 0.1

M2 A0 B0 R1 R2

Spheroidal 1.2 0.8 0.35 0.2 -0.3
Cylindrical 1 0.6 0.6 0.22 0.2 -0.3
Cylindrical 2 0.6 0.6 0.19 0.2 -0.3

nearest-neighboring bond vectors in d1(k) are a1 = δ1 − δ2,
a2 = δ2 − δ3, and a3 = δ3 − δ1. The last two terms in H0(k)
induce hexagonal warping of the Fermi surface and the
topological surface states (TSSs) [32,33].

Before doping with copper, the Fermi surface of Bi2Se3

is spheroidal. After intercalating copper to inter-quintuple-
layer positions, the material becomes more two-dimensional.
According to the experiments [28], the Fermi surface for
certain CuxBi2Se3 becomes (corrugated) cylindrical, although
the details of the evolution are still unclear. On the other hand,
a common feature of the normal phase of superconducting
CuxBi2Se3 is that the TSSs are well defined and coexist with
the Fermi surface [2,28]. In this paper, we consider three sets
of parameters shown in Table I. The Fermi surface contours
(on the ky = 0 plane) and the surface spectral functions for
the three sets of parameters are shown in Fig. 1. The surface
spectral functions are calculated in terms of the iterative
Green’s function method [25,35,37], for the upper xy surface
of a sample that can be regarded as consisting of an infinite
number of layers. The parameters are chosen here to fit
qualitatively three different shapes of the Fermi surfaces and
the coexisting TSSs. The second corrugated cylindrical Fermi
surface is less corrugated compared to the first corrugated
cylindrical Fermi surface. Therefore, the material described
by Cylindrical 2 is more two-dimensional than the material
described by Cylindrical 1. With the three typical sets of
parameters, we can study the qualitative evolution of the
property of a pairing as the Fermi surface turn from spheroidal
to corrugated cylindrical and then becomes even more two-
dimensional.

Note that these parameter sets are chosen to reflect the evo-
lution of the Fermi surface and the coexistence with the TSSs,
which are most crucial for the low-energy physics in the
superconducting phase. A completely two-dimensional model
with zero hopping along the z direction is unsuitable because
it cannot give the TSSs observed in experiments [2,28]. In
addition, the relative magnitudes of the various parameters in
Table I are in agreement with the set of parameters obtained
previously by fitting the first-principle band structures for
Bi2Se3 [32,37]. By increasing the value of R1 artificially (e.g.,
to 2 eV) and keeping other parameters unchanged, the topology
of the Fermi surface and the coexisting TSSs can still be
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FIG. 1. (a), (c), (e) Cross-sections of the Fermi surface with the
ky = 0 plane. (b), (d), (f) The surface spectral functions on the upper
xy surface of a thick film. (a) and (b) are for the first set of parameters
(spheroidal) in Table I. (c) and (d) are for the second set of parameters
(”Cylindrical 1”) in Table I. (e) and (f) are for the third set of
parameters (“Cylindrical 2”) in Table I. The energy E is in unit
of electron volts. μ = 0.32 eV. The horizontal dotted lines in (b), (d),
and (f) mark the Fermi level.

retained qualitatively. We will discuss the effects of increasing
R1 at the end of Section V B.

III. PSEUDOSPIN BASIS

The full model contains the complete information of the
electronic structures, but it is hard to work with analytically.
On the other hand, it is the states close to the Fermi level that are
most important to the superconducting phase. By introducing
the pseudospin basis, the full model containing both of the two
bands of the model in the normal phase can be projected to a
simplified model containing only the band contributing to the
Fermi surface [23,39–44]. By making this reduction, the low-
energy properties of the superconducting phase, in particular
the gap structure of the bulk quasiparticle spectrum and the
SABSs, can be understood more easily. Here, we follow the
approach of Yip, which was originally applied to a simplified

version of the model, to construct the pseudospin basis for our
tight-binding model [23,40]. This method makes use of the
time-reversal symmetry (T ) and inversion symmetry (P ) of
the model, which lead to the Kramers degeneracy of each state.
The two pseudospin bases for each Kramers doublet are thus
required to be related by the combined action of PT operation.
Throughout this paper, we assume the chemical potential to lie
within the conduction band. The eigenbasis can be constructed
by first diagonalizing the model in the spin subspace and then
in the orbital subspace. One basis can be taken as

|k,α′〉 = 1

D̃kNk

(
Ẽk

M̃−(k)

)(
A0c+(k)
D−(k)

)
, (2)

where the first and second vectors are separately
spinors in the subspaces of the original orbital and
spin degree of freedom. For notational simplicity, here
and later in this paper, we will use the follow-
ing abbreviations c±(k) = cy(k) ± icx(k), M̃±(k) = M(k) ±
i[B0cz(k) + R2d2(k)], Dk =

√
A2

0[c2
x(k) + c2

y(k)] + R2
1d

2
1 (k),

Ek =
√

|M̃±(k)|2 + D2
k, Ẽk = Ek + Dk, Nk =

√
2EkẼk,

D±(k) = Dk ± R1d1(k), D̃k = √
2DkD−(k). The other pseu-

dospin basis is related to the one listed above by symmetry

|k,β ′〉 = PT |k,α′〉 = 1

D̃kNk

(
M̃+(k)

Ẽk

)(−D−(k)
A0c−(k)

)
, (3)

For the pseudospin basis to have the correct P and T

symmetries in the whole Brillouin zone (BZ), we fix the wave
vectors in |k,α′〉 and |k,β ′〉 to lie on the northern hemisphere
(kz > 0). States on the southern hemisphere are obtained
by symmetry, namely | − k,α′〉 = P |k,α′〉 and | − k,β ′〉 =
P |k,β ′〉 = T |k,α′〉.

The naive choice of the pseudospin basis defined above are
not guaranteed to have the correct rotational property of the
original model. As a result, they may not be the suitable basis
set for studying the symmetry of a specific pairing channel.
As has been shown in Ref. [40], a good set of the pseudospin
basis can be constructed as a linear combination of |k,α′〉
and |k,β ′〉 that make the magnetic moment operator expressed
under this basis to have the proper transformation property
under rotation [23]. For the model defined by Eq. (1), the
magnetic moment is a linear combination of s and σ1s. Here,
following the method in Ref. [40], we choose to focus on the
component m1α = g1α

σ0+σ1
2 sα of the magnetic moment [40].

α = x,y,z, and g1x = g1y = g1p are assumed. In the space of
{|k,α′〉,|k,β ′〉}, m1z has the following matrix form:

m1z(k)

g1z|Wk|2 =
(

cos θk iei(ϕk+2φk) sin θk

−ie−i(ϕk+2φk) sin θk − cos θk

)
,

(4)

where the three phase factors, ϕk, φk, and θk, are defined by

c+(k) = i

√
c2
x(k) + c2

y(k)e−iϕk = ic(k)e−iϕk , (5)

Wk = Ẽk + M̃+(k)√
2Nk

= |Wk|eiφk , (6)

R1d1(k) + iA0c(k) = Dke
iθk . (7)
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m1z(k) in the basis of {|k,α′〉, |k,β ′〉} clearly does not have
the desired form of the z component of an axial vector. The
new basis |k,α〉 and |k,β〉 are constructed such that m1z(k) is
proportional to the z component of the Pauli matrix, namely
they are the eigenbasis of m1z [23,40]. We take

|k,α〉 = h(k)[(1 + cos θk)|k,α′〉 − ie−i(ϕk+2φk) sin θk|k,β ′〉] .

(8)

From |k,β〉 = PT |k,α〉, we get the other basis

|k,β〉 = h∗(k)[(1 + cos θk)|k,β ′〉 − iei(ϕk+2φk) sin θk|k,α′〉].
(9)

Normalization of the eigenbasis requires

|h(k)|2 = 1

2(1 + cos θk)
= 1

4 cos2 θk
2

. (10)

In this basis, we have m1z(k) = g1z|Wk|2ρz, where ρz is
the conventional z component of the Pauli matrices. The x

component of m1 in the new basis has a purely off-diagonal
form with the two off-diagonal elements:

[m1x(k)]αβ

g1p|Wk|2 = [m1x(k)]∗βα

g1p|Wk|2 =
[

2ih∗(k) cos
θk

2
ei(ϕk+φk)

]2

.

(11)

Taking

h(k) = i

2 cos θk
2

ei(ϕk+φk), (12)

we have

m1x(k) = g1p|Wk|2ρx, (13)

m1y(k) = g1p|Wk|2ρy, (14)

where ρx and ρy are the conventional x component and y

component of the Pauli matrices. Therefore, we have shown
that the new basis {|k,α〉, |k,β〉} defined by Eqs. (8), (9),
and (12) can ensure the correct transformation property of
the magnetic moment operator, and are thus proper choices
in discussing symmetry properties of the system. This basis,
employed in the present paper, is shown [40] to coincide with
the so-called manifestly covariant Bloch basis introduced by
Fu [45–48].

IV. PAIRING AND GAP STRUCTURE OF THE BULK
QUASIPARTICLE SPECTRUM

In the Nambu basis, ψ
†
k = [φ†

k,(φ−k)T], and denoting the
pairing term generically as �(k), the model for a bulk
superconducting topological insulator is written as

Ĥ = 1

2

∑
k

ψ
†
k

(
H0(k) − μI4 �(k)
−�∗(−k) μI4 − H ∗

0 (−k)

)
ψk

= 1

2

∑
k

ψ
†
kH (k)ψk, (15)

where μ is the chemical potential. The 1
2 factor accounts

for the particle-hole redundancy introduced by the Nambu
representation.

The twofold in-plane rotation symmetry in the Knight
shift and field-angle dependent specific heat experiments
indicate that the pairing must belong to a multidimensional
representation of the symmetry group. Because the pairing
order parameter for a one-dimensional representation should
necessarily respect the threefold rotational symmetry of the
D5

3d space group. Presently, most of attention has been paid
to the two-dimensional Eu representation of the D5

3d space
group. One set of the two bases for the Eu representation is
�4a(k) = i�aσ2 ⊗ s0 and �4b(k) = �bσ2 ⊗ s3, with �a and
�b the pairing amplitudes. For a simplified model without the
hexagonal warping terms (i.e., R1 = R2 = 0), both of the two
components are known to lead to bulk spectrum with point
nodes [21,25]. However, it was shown by Fu that the bulk
nodes for �4a(k) are gapped out by including the hexagonal
warping term proportional to R1 of Eq. (1) [22]. It seems that
the fully gapped �4a(k) provides a most natural explanation
to the Knight shift and field-angle dependent specific heat
experiments.

Here, we study more carefully the excitation gap of the
bulk quasiparticle spectrum. Since only the conduction band
contributes to the Fermi surface, the gap structure of the
quasiparticle spectrum is understood more easily from the low-
energy effective model obtained by projecting the full model
defined by Eq. (15) to the conduction band [23]. The dispersion
of the conduction band is ε(k) + Ek. The projection is thus
achieved by replacing H0(k) − μI4 with (ε(k) + Ek − μ)I2

and transforming the pairing term expressed in the spin-orbital
basis to the pseudospin basis derived in the last section. For an
arbitrary pairing denoted as �(k) in the original spin-orbital
basis, its expression in the new pseudospin basis of the
conduction band is

�̃(k) = U
†
k�U ∗

−k, (16)

where the transformation matrix is Uk = [|k,α〉,|k,β〉].
For �4a(k) = i�aσ2 ⊗ s0, we have [49]

�̃4a(k) = �a

Ek
[−R1d1(k)ρ1 − (B0cz(k) + R2d2(k))ρ2

+A0cy(k)ρ3]iρ2. (17)

On the Fermi surface, ε(k) + Ek − μ = 0, the quasiparticle
spectrum is determined only by the pairing term

E(k) = ±|det[�̃4a(k)]| = ±|�a|
√

1 − M2(k) + A2
0c

2
x(k)

E2
k

.

(18)

Up to slight hexagonal warping induced by terms proportional
to R1 and R2, both M(k) and Ek are approximately symmetri-
cal in the kxky plane. As a result of the cx(k) term in Eq. (18),
the size of the superconducting gap is smaller along the ky = 0
contour of the Fermi surface than that along the kx = 0 contour
of the Fermi surface. Therefore, the bulk energy spectrum for
�4a(k) has a strong anisotropy between the kx direction and
the ky direction.
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Let us focus on the contour of the Fermi surface on the
ky = 0 plane, where the minimum of the superconducting gap
is attained. Eq. (18) is written as

E(k) = ± |�a|
μ − εk

√
R2

1d
2
1 (k) + B2

0c2
z (k), (19)

where ε(k) + Ek − μ = 0 has been used. For clarity, we have
d1(k) 
 (kxa)3 for ky = 0 and kx small, and cz(k) = sin(kzc).
Notice that for both spheroidal and corrugated cylindrical
Fermi surfaces, including those shown in Fig. 1, d1(k) and
cz(k) do not attain zero simultaneously. While for R1 = 0
there are point nodes on the ky = 0 Fermi surface contour
determined by cz(k) = 0, a finite R1 removes all these nodes
[22]. One exception is a spheroidal Fermi surface with a
point k = (0,0,π ) on it, which marks the transition between
a spheroidal Fermi surface and a corrugated cylindrical Fermi
surface. For practical purposes, however, we will ignore this
special case, and so the bulk spectrum of �4a(k) is always
fully gapped for R1 �= 0.

On the other hand, kxa on the Fermi surface is small
for actual materials. The size of the gap for cz(k) = 0 and
ky = 0, which grows like (kxa)3 for small kx , is actually
much smaller than �a . In all cases studied, μ − ε(k) = Ek

has only a small variation on the Fermi surface. Therefore, the
numerator of Eq. (19) determines the qualitative behavior of
the superconducting gap. For simplicity and without losing
generality, we focus on the kx � 0 and kz � 0 portion of
the ky = 0 Fermi surface contours shown in Figs. 1(a), 1(c),
and 1(e). Each point on the chosen portion of the Fermi
surface contour can then by labeled by a unique kx . For
the spheroidal Fermi surface shown in Fig. 1(a), as we go
along the Fermi surface contour from (0,0,kz1) (kz1c 
 0.29π )
to (kx1,0,0) (kx1a 
 0.077π ), cz(k) decreases monotonously
and we have |B0cz(0,0,kz1)| � |R1d1(kx1,0,0)|. The size of
the gap is thus expected to decrease monotonously as we go
along the contour from (0,0,kz1) to (kx1,0,0). For the two cases
with corrugated cylindrical Fermi surfaces, the Fermi surface
contour is bounded by two points, (kxi,0,π ) and (kxf ,0,0).
kxia 
 0.039π (kxia 
 0.074π ) and kxf a 
 0.103π (kxf a 

0.103π ) for Fig. 1(c) [Fig. 1(e)]. As we increase kx from
kxi to kxf , kz changes from π to 0. As a result, we have
a nonmonotonous variation of cz(k), which first increases
towards 1 as kz approaches π/2 and then decreases to 0
afterwards. Because we have |R1d1(kx,0,kz)/B0|  1 along
the Fermi surface contour, we expect to get a nonmonotonous
variation of the superconducting gap for corrugated cylindrical
Fermi surfaces, which first increases and then decreases, with
two minima at (kxi,0,π ) and (kxf ,0,0). In comparison to the
case for Fig. 1(a), the number of gap minima is doubled
when the Fermi surface evolves from spheroidal to corrugated
cylindrical.

To have a more quantitative understanding on the
evolution of the superconducting gap explained above,
in Fig. 2 we simultaneously plot three functions f1 =
4
√

R2
1d

2
1 (k) + B2

0c2
z (k), f2 = 4(μ − εk) = 4Ek, and f3 =

f1/f2 = |E(k)/�a| on the kz � 0 and kx � 0 portion of the
ky = 0 Fermi surface contours. The states are labeled uniquely
in terms of the value of kx . The value of f3 gives the magnitude
of the bulk gap, normalized by the pairing amplitude. For

)d()a(

0.00 0.05 0.10
0.0

0.5

1.0

f

k a/π

1
2
3

α

0.00 0.05 0.10

-2

-1

0

lo
g

(f
)

k a/π

1
2
3

α

)e()b(

0.00 0.05 0.10
0.0

0.5

1.0

f

k a/π

1
2
3

α

0.00 0.05 0.10

-3

-2

-1

0

lo
g

(f
)

k a/π

1
2
3

α

)f()c(

0.00 0.05 0.10
0.0

0.5

1.0

f

k a/π

1
2
3

α

0.00 0.05 0.10

-2

-1

0

lo
g

(f
)

k a/π

1
2
3

α

FIG. 2. The evolution of the normalized superconducting gap f3,
and two functions (f1 and f2) determining it, as a function of kx along
the kx � 0 and kz � 0 portion of the Fermi surface contour on the
ky = 0 plane. The three functions are defined in the accompanying
main text. (a), (b), and (c) are separate for the first (spheroidal),
second (Cylindrical 1), and third (Cylindrical 2) sets of parameters
in Table I. In (a), the minimal gap is f3 
 0.0103 for kxa 
 0.077π .
In (b), the minimal gaps include f3 
 0.0015 for kxa 
 0.039π and
f3 
 0.0245 for kxa 
 0.103π . In (c), the minimal gaps include f3 

0.0112 for kxa 
 0.074π and f3 
 0.0245 for kxa 
 0.103π . (d),
(e), and (f) are separately the log-scale plots of (a), (b), and (c),
which show more clearly the order of magnitude of the minimal
gaps. μ = 0.32 eV.

all three sets of parameters considered, the minimal values
of the bulk gap are much smaller than the corresponding
maximum values. For the experimental transition temperature
of about 3.8 K, the pairing amplitude (i.e., �a) is of the
order 1 meV. The minimal value of the bulk gap is two to
three orders of magnitude smaller than the pairing amplitude.
It is also interesting to notice that, when the smaller Fermi
momentum of the corrugated cylindrical Fermi surface along
kx [e.g., kxia 
 0.039π for Fig. 2(b)] is smaller than the Fermi
momentum of the spheroidal Fermi surface along kx [e.g.,
kx1a 
 0.077π for Fig. 2(a)], the minimum superconducting
gap for the corrugated cylindrical Fermi surface can be smaller
than the minimum superconducting gap for the spheroidal
Fermi surface. From a practical point of view, and for both
spheroidal and corrugated cylindrical Fermi surfaces, the
minimum of the superconducting gap acts effectively as point
node of the bulk spectrum. The above picture holds as long as

144512-5



LEI HAO AND C. S. TING PHYSICAL REVIEW B 96, 144512 (2017)

R1 is not extremely (e.g., two to three orders of magnitude)
larger than the value used. For the parameter set of Cylindrical
2 in Table I, a two-orders-of-magnitude-larger R1 (i.e., 20 eV)
is needed to increase the minimum of the bulk gap along kx

to the same order of magnitude to that along ky . A further
tenfold enhancement in R1 is required to achieve the same
increase in the bulk gap for the parameter set of Cylindrical 1
in Table I. These large values of R1 are not only inconsistent
with the magnitudes of other parameters but also will distort
strongly the Fermi surface and thus deviate qualitatively from
experiments. Therefore, the bulk spectrum for �4a(k) should
be nodal-like for realistic parameters.

For �4b(k) = �bσ2 ⊗ s3, the effective pairing is

�̃4b(k) = �b

Ek
[(B0cz(k) + R2d2(k))ρ1 − R1d1(k)ρ2

−A0cx(k)ρ3]iρ2. (20)

The minimum of the superconducting gap lies along the
kx = 0 plane, where d1(k) = cx(k) = 0. Along the intersection
contour of the Fermi surface with the kx = 0 plane, Ek =
μ − ε(k) is a smooth function of the wave vector. The
variation of the gap is thus determined by B0cz(k) + R2d2(k).
For R2 = 0, we reproduce the known result that �4b(k) has
bulk point nodes determined by cz(k) = kx = 0. The number
of the point nodes is two (four) for spheroidal (corrugated
cylindrical) Fermi surfaces. For R2 �= 0, the above point nodes
are gapped out, with the magnitude of the gap proportional to
|�bR2d2(0,kFy,0)|/Ek [and also |�bR2d2(0,k′

Fy,π )|/Ek for
corrugated cylindrical Fermi surface], where kFy (k′

Fy) is the
ky component of the Fermi momentum. The original point
nodes do not simply vanish. Instead, they are tilted away from
the (0,ky,0) axis [and also the (0,ky,π ) axis for the case with
corrugated cylindrical Fermi surfaces] into the kykz plane. If
we have |R2/B0| � 1, a fully gapped bulk spectrum can be
obtained. However, for realistic parameters, the point nodes
are still present. For the parameters considered in Table I, the
point nodes of �4b(k) are, in fact, still very close to the point
nodes for R2 = 0.

In the Eu representation, with �4a(k) and �4b(k) as the
bases, the most general pairing is a linear combination of
the two pairing components. �4a(k) and �4b(k) constitute
examples of a nematic pairing. Another possibility is a chiral
combination of the two bases, for example �4a(k) ± i�4b(k).
For a cylindrical Fermi surface, the chiral pairing is propor-
tional to kx ± iky in the pseudospin basis. This chiral p-wave
pairing is believed to be realized in Sr2RuO4, which also
has a cylindrical Fermi surface [50]. The recently discovered
Nd doped Bi2Se3 is also considered as a candidate of chiral
superconductor [51,52]. CuxBi2Se3, however, appears to be a
nematic superconductor from the Knight shift experiment and
the field-angle dependent specific heat experiment [11,20].

V. SURFACE ANDREEV BOUND STATES

Since �4b(k) is nodal for practical model parameters,
we will focus on the fully gapped �4a in what follows.
For spheroidal Fermi surfaces, �4a was known to support
a peculiar surface Andreev bound states (SABSs) on the xy

surface of a sample, which is (almost) flat along the kx direction

of the surface BZ [25]. It was argued in later works that, when
the Fermi surface becomes two-dimensional-like with copper
intercalation, the SABSs for �4a would disappear [22,29]. This
conclusion is natural if the Fermi surface is purely cylindrical
with no dispersion along kz, because the existence of SABSs
on the xy surface is associated with a sign change in the pairing
term upon reflection from the surface, which requires, on one
hand, a finite dispersion along kz and, on the other hand, a
pairing component that changes signs with the reversal of kz.

However, there seems to be no reason why the Fermi
surface can turn from three-dimensional to completely two-
dimensional with copper intercalation. On one hand, one
experiment reports a corrugated cylindrical rather than a
completely cylindrical Fermi surface [28]. On the other hand,
CuxBi2Se3 is known to be superconducting in a wide range
of x values [1,6]. It is natural to expect that the Fermi surface
evolves continuously from spheroidal to corrugated cylindrical
as x increases. Finally, a completely two-dimensional Fermi
surface is inconsistent with the existence of the TSS, observed
experimentally [2,28]. Therefore, compared to completely
cylindrical Fermi surfaces, corrugated cylindrical Fermi sur-
faces with different degrees of corrugation [e.g., those shown
in Fig. 1] are better descriptions of the actual Fermi surface.
For these Fermi surfaces, the bulk gap for the �4a pairing
has minima along the kx direction, which is explained above
and illustrated in Fig. 2. Since the conduction band has a
finite dispersion along kz, and the gap is dominated by the
cz(k) term, which is odd in kz, it seems natural to expect the
prevalent existence of SABSs. As shown below, this is true. We
first give some analytical analysis, which is then followed by
numerical results. Finally, we study the stability of the SABSs
against surface and bulk nonmagnetic impurities.

A. Analytical analysis for a simplified model

To gain a qualitative understanding of the SABSs for a
Fermi surface in the shape of a spheroid or a corrugated
cylinder, we ignore the hexagonal warping in the Fermi surface
and consider a band with the following dispersion:

ξk = k2
x + k2

y

2m∗
1

− tz cos kz − μ, (21)

where m∗
1 is the effective mass in the kxky plane, and the

dispersion along kz is determined by tz. h̄ = 1 is assumed.
m∗

1 is assumed to be small so that the Fermi momenta
along directions in the kxky plane are small, i.e.,

√
2m∗

1μ is
small (m∗

1 > 0 and μ > 0). The Fermi surface is spheroidal
(corrugated cylindrical) when |tz/μ| � 1 (0 < |tz/μ| < 1).

For the pairing term, it is convenient to replace the factor
Ek with a constant. Equation (17) is thus reduced to

�̃4a(k) = �̃0[−R1d1(k)ρ1 − (B0cz(k) + R2d2(k))ρ2

+A0cy(k)ρ3]iρ2, (22)

where �̃0 is the pairing amplitude divided by the constant
representing Ek.

There are several available approaches that we can use to
derive the SABSs. Here, we follow the approach of mapping
the surface problem by an equivalent junction problem.
Namely, we consider a junction at z = 0 between the surfaces
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of two bulk samples; one is extended from z = 0 to ∞, and
the other is from z = 0 to −∞. The two bulk samples are both
described by Eq. (21). The problem of scattering off the surface
is mapped to a sign change in the components of the pairing
term odd in kz. The z < 0 part of the junction is described
simply by Eqs. (21) and (22). The z > 0 part of the junction
is described by Eqs. (21) and (22) with the sign of the term
proportional to cz(k) reversed. The model on either side of the
junction is a 4 × 4 model with two 2 × 2 block diagonals for
the bare bands and two 2 × 2 off-diagonal blocks representing
the pairing term.

To proceed, we adopt the quasiclassical approximation to
the ansatz for the wave function of the SABSs, to separate the
fast and slow degrees of freedom. The 4 × 4 eigenvector of
the SABSs is thus taken as

ϕ(kF ,r) =
(

u(r)
v(r)

)
= eikF ·r

(
f (r)
g(r)

)
. (23)

In the same spirit, we expand the bulk band around the Fermi
momentum kF as

ξk 
 vF (kF ) · (−i∇ − kF ), (24)

where the Fermi velocity is defined as

vF (kF ) = ∇kξk|k=kF
. (25)

We assume a perfect junction in which the translational
invariance within the junction plane is preserved. The problem
is thus reduced to a one-dimensional scattering problem along
the z direction. That is, the dependencies in the x and y

coordinates occur only through the exponential prefactor of
Eq. (23). f and g depend only on z. Consistent with this
assumption on the wave function, we replace in the pairing
term the kx and ky components of the wave vectors with kFx

and kFy . The cz(k) term is then expanded to linear order of
kz − kFz.

The interface localized states are solved by imposing the
following boundary conditions to the wave function:

ϕ(kF ,x,y,z = 0+) = ϕ(kF ,x,y,z = 0−), (26)

ϕ(kF ,x,y,z = −∞) = ϕ(kF ,x,y,z = +∞) = 0. (27)

0+ and 0− are positive and negative infinitesimals. Focusing
on the direction of kFy = 0, where the minima of the
superconducting gap are attained, we indeed find solutions
satisfying the above boundary conditions, with energies

|E(kFx,0,kFz)| = |�̃0R1d1(kFx,0,kFz)|. (28)

From the discussions on the bulk superconducting gap in the
previous section, the energy of the above bound states are well
below the bulk gap in a large part of the bulk gap. Therefore,
they are well-defined in-gap states.

B. Numerical results for clean system

Inspired by the existing experiments, we consider the three
sets of parameters in Table I, which result, separately, in
a spheroidal Fermi surface and two corrugated cylindrical
Fermi surfaces with different degrees of corrugation. Besides
the shape of the Fermi surface, these parameters allow the
simultaneous presence of a bulk conduction band and the
topological surface states (TSSs) at the Fermi level. Shown in

FIG. 3. Surface spectral functions of the system with �4a pairing,
for a clean system. (a) and (b) correspond to the first (spheroidal)
set of parameters in Table I. (c) and (d) correspond to the second
(Cylindrical 1) set of parameters in Table I. (e) and (f) correspond to
the third (Cylindrical 2) set of parameters in Table I. �a = 0.02 eV.
The energy E is in unit of electron volts. μ = 0.32 eV.

Fig. 3 are the surface spectral functions for the three parameter
sets, for clean systems. The surface spectral function for a
wave vector in the surface BZ are defined as summation over
the imaginary part of the particle Green’s function, which
are obtained in terms of standard iterative Green’s function
method [25,35,37]. From Fig. 3, the SABSs exist for both
spheroidal and corrugated cylindrical Fermi surfaces. One
essential feature is the existence of a nearly flat band of
Andreev bound states along kx at the center of the SC gap. The
magnitude of the bulk gap depends sensitively on the model
parameters and can be vanishingly small for the parameters
with a (corrugated) cylindrical Fermi surface, consistent with
the previous section. A qualitative difference from previous
results obtained for simplified models without the hexagonal
warping terms is that [3,25,26] the SABSs are not exactly flat
along (kx,0), which becomes increasingly clear as the size of
the (larger) gap minimum increases from Fig. 3(a) to Fig. 3(c)
and Fig. 3(e).

The surface spectral functions can be probed by ARPES [2].
The integrated surface spectral function, the surface density
of states (SDOS), can be probed by tunneling spectroscopy
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FIG. 4. The density of states in the bulk (BDOS) and on the
surface (SDOS), for a clean system. �a = 0.02 eV. (a), (b), and (c)
are separate for the first (spheroidal), second (Cylindrical 1), and third
(Cylindrical 2) sets of parameters in Table I. μ = 0.32 eV.

[3,9,10]. In Fig. 4, we have shown the SDOS together with
the corresponding bulk density of states (BDOS). A common
characteristic of the results for all three parameter sets is the
appearance of a prominent zero-energy peak corresponding
to the midgap Majorana bound states plus a continuum of
low-energy states filling up the bulk superconducting gap. As
is explained in Sec. IV, the minimum of the bulk gap scales
linearly with R1. We have made test calculations by increasing
R1 artificially to 2 eV and 20 eV, for the third set of parameters
(“Cylindrical 2” in Table I). The minimal size of the bulk gap
along kx increases linearly with R1, and the BDOS becomes
increasingly U shaped with a flat bottom of zero DOS. The
SABSs, on the other hand, persist and traverse the bulk gap for
all parameters considered. The zero-energy TSSs also persist.
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FIG. 5. Bulk density of states (BDOS) and surface density of
states (SDOS) in the presence of short-range nonmagnetic impurities
uniformly distributed in the bulk. V0 = 10 eV. Three impurity
concentrations are considered, including nimp = 0.001, 0.01, and
0.02. (a) and (b) correspond to the first (spheroidal) set of parameters
in Table I. (c) and (d) correspond to the second (Cylindrical 1) set of
parameters in Table I. (e) and (f) correspond to the third (Cylindrical
2) set of parameters in Table I. μ = 0.32 eV and �a = 0.02 eV are
used for all calculations.

As a result, the SDOS is still featured by the existence of in-gap
states with a peak at or close to zero energy.

C. Stability against nonmagnetic impurities

Having verified the presence of SABSs and having seen
their peculiar dispersions in clean systems, we proceed to test
their stability against various imperfections. From a practical
point of view relevant to CuxBi2Se3, it is plausible to focus
on the effect of short-range nonmagnetic impurities. We
study the effect of the nonmagnetic impurities at two levels,
impurities uniformly distributed in the whole sample and
separate pointlike impurities situating on the surface.

First, we consider the effect of impurities distributed
uniformly throughout the whole sample. We first obtain
the self-energy correction to the bulk Green’s functions in
terms of the self-consistent T -matrix approximation [31]. We
consider the simplest case of uniformly distributed short-range
nonmagnetic impurities, V (r) = V0δ(r − r0). In this case, the
self-energy is k-independent and is determined by a set of three
self-consistent equations: (1) G(k,ω) = [ω + iη − H (k) −
�(ω)]−1, (2) �(ω) = nimp[T (ω) − Ṽ ], and (3) T (ω) = [I8 −
Ṽ
N

∑
k G(k,ω)]−1Ṽ . Here, nimp is the concentration of the

nonmagnetic impurity, Ṽ = V0τ3 ⊗ σ0 ⊗ s0, k denotes a wave
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FIG. 6. The surface local density of states (SLDOS) at the
impurity site (r − r0 = 0) and in the nearest-neighboring sites
(r − r0 = δα , α = 1,2,3) of a strong (V0 = 1000 eV) pointlike
nonmagnetic impurity. �a = 0.02 eV. (a), (b), and (c) are separate for
the first (spheroidal), second (Cylindrical 1), and third (Cylindrical
2) sets of parameters in Table I. μ = 0.32 eV.

vector in the 3D BZ, and N is the number of wave vectors
in the 3D BZ. After obtaining the self-energy �(ω) from
the above self-consistency loop, we add it as an energy
correction to H (k) and obtain the surface Green’s function
in terms of the iterative Green’s function method [25,37]. The
resulting surface Green’s function is then the proper Green’s
function for the surface layer in the presence of short-range
nonmagnetic impurities uniformly distributed in the bulk. The
bulk density of states (BDOS) and surface density of states
(SDOS) obtained by this method are as shown in Fig. 5. Three
concentrations of the impurities (nimp = 0.001, 0.01 and 0.02)
are considered. As the bulk superconducting gap of the cases
with a corrugated cylindrical (spheroidal) Fermi surface is
filled up for nimp = 0.01 (nimp = 0.02), the fine structures

in the SDOS beyond E = 0 disappear, but the zero-energy
surface states are still quite robust and manifest as a single
zero-energy peak in the SDOS.

Second, we consider the effect of individual pointlike
impurities on the surface of an otherwise clean sample. This
is achieved by keeping the bulk of the material clean, and
adding impurities only to the surface layer in a manner that
different impurities are far away from each other. For this case,
we study the changes in the surface Green’s functions for the
clean system induced by the surface impurities. The effect of
the impurities is taken into account in terms of the T -matrix
approximation [35,53]. For a single short-range nonmagnetic
impurity, V (r) = V0δ(r − r0), the T -matrix is k-independent:

T (ω) =
[
I8 − Ṽ

Nxy

∑
k

G0(k,ω)

]−1

Ṽ , (29)

where Nxy is the number of unit cells (wave vectors) in the
xy plane (surface BZ), and G0(k,ω) is the retarded surface
Green’s function obtained in terms of the iterative Green’s
function method for a clean system [25,37]. Ṽ = V0τ3 ⊗ σ0 ⊗
s0 is the impurity potential in the Nambu space. In terms of the
unperturbed Green’s function G0(k,ω) and the T -matrix, the
perturbed Green’s function is obtained in term of the T -matrix
approximation as

G(r,r′,ω)

= G0(r − r′,ω) + G0(r − r0,ω)T (ω)G0(r0 − r′,ω),

(30)

where G0(r,ω) is the Fourier transformation of G0(k,ω).
The local Green’s function at r under the influence of the
nonmagnetic impurity at r0 is defined as G(r,r,ω). We
consider the effect of a strong unitary impurity and take
V0 = 1000 eV. The results of the surface local density of states
(SLDOS) at the impurity site and its six nearest-neighbor sites
for the three sets of parameters in Table I are shown in Fig. 6.
The SLDOS on the nearest-neighbor site r − r0 = δα is equal
to the SLDOS on the nearest-neighbor site r − r0 = −δα (α =
1,2,3), so only results for three of the six nearest-neighbor sites
are shown. Albeit quantitative differences from the SDOS on
Fig. 4 and Fig 5, the in-gap surface states persist. On the other
hand, the SLDOS for r − r0 = δ1 and r − r0 = δ2 are identical
but are different from the SLDOS for r − r0 = δ3, which is
consistent with the twofold anisotropy of the superconducting
pairing between the x and y directions. It is also noted that the
zero-energy surface states are also very robust at and near the
impurity site for the three types of Fermi surfaces (see Fig. 6).

VI. CONCLUSION

In conclusion, extensive analyses for the bulk and surface
spectra have been made for the �4a(k) nematic pairing,
suggested to be the correct SC pairing for the CuxBi2Se3 com-
pound, based on recent Knight shift and field-angle dependent
specific heat measurements [11,20]. The purpose of the present
paper is to explore the consequences deduced from this type of
pairing, taking into account the evolution of the Fermi surface
from spheroidal to corrugated cylindrical [28]. We show that
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CuxBi2Se3 with �4a(k) pairing should be a topological super-
conductor with topological surface states and the SABSs, even
if the Fermi surface has changed from spheroidal [3,25,26] to
the corrugated cylindrical case studied in the present paper.
The bulk SC spectrum, while fully gapped, shows prominent
twofold anisotropy with vanishingly small gap minima along
kx . One of the essential features of the SABSs is the exhibition
of the zero-energy Majorana bound states regardless of the
shape of the Fermi surface. The SABSs are shown to be robust
against short-range bulk and surface nonmagnetic impurities.
This is consistent with recent works, which show that the
surface states of class DIII topological superconductors are
stable against weak disorder and interaction [54,55]. On
the other hand, there are experimental controversies on the
existence of SABSs [3–5,9,10]. As to whether the SABSs
could be observed experimentally may depend critically on the
condition of the sample surfaces. For instance, the randomly
distributed magnetic Cu2+ (3d9) ions or Cu (3d104s1) atoms
on the surfaces or inside the bulk could very much suppress
the SABSs. For a clean and perfect surface, on the other
hand, the SABSs should be detectable. The present pair-
ing model, an odd-parity spin-triplet pairing, yields a very
anisotropic bulk SC gap while the STM experiment detected

an almost isotropic s-wavelike bulk gap [9]. It appears that
the present nematic pairing model, which has successfully
explained recent Knight shift and field-angle dependent
specific heat measurements, are apparently having difficulty
accounting for other experimental measurements like the SC
density of states [9]. Therefore, it is necessary to develop a
revised pairing model that includes the essential physics as
discussed here, and to be able to explain other experiments.
This will definitely constitute a challenging topic for future
study.
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