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Spinor polariton condensates under nonresonant pumping: Steady states and elementary excitations
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We theoretically investigate a spinor polariton condensate under nonresonant pumping, based on driven-
dissipative Gross-Pitaevskii equations coupled to the rate equation of a spin-unpolarized reservoir. We find the
homogeneous polariton condensate can transit from the spin-unpolarized phase, where it is linearly polarized,
to the spin-polarized phase, where it is elliptically polarized, depending on the cross-spin versus same-spin
interactions and the linear polarization splitting. In both phases, we study elementary excitations using Bogoliubov
approach, in a regime where the decay rate of total exciton density in reservoir crosses over from the slow to
the fast limit. Depending on reservoir parameters, the global-phase mode can be either diffusive or gapped. By
contrast, the relative-phase mode always possesses a gapped energy, undamped in the spin-unpolarized phase
but weakly damped in the spin-polarized phase. In the spin-unpolarized phase, both modes are linearly polarized
despite pumping and decay. However, in the spin-polarized phase, the mode polarization can be significantly
affected by the reservoir and depends strongly on the circular polarization degree of the condensate. Interestingly,
we demonstrate that the “ghost” branch of the Bogoliubov spectrum of the relative-phase mode can be visualized
in the photoluminescence emission, distinguishable from that of the global-phase mode and thus allowing for
experimental observation, when the spinor polariton condensate is elliptically polarized.
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I. INTRODUCTION

At present, there are significant research interests in spinor
exciton-polariton condensates in semiconductor microcavities
[1–4]. Formed from strong couplings between excitons and
photons, polaritons possess peculiar spin properties [1]: the
Jz = ±1 (spin-up or spin-down) spin projections of the total
angular momentum of excitons along the growth axis of the
structure directly correspond to the right- and left-circularly
polarized photons absorbed or emitted by the cavity, respec-
tively. The motivation behind the interests in spinor polariton
condensates is twofold. First, a spinor polariton condensate
is intrinsically nonequilibrium, with coherent and dissipative
dynamics occurring on an equal footing [3,5]. This has resulted
in numerous intriguing phenomena even in one-component
polariton condensates [6–14]. Further account of the polariton
spin degree of freedom and their dynamics have revealed
exceptionally rich physics in polariton systems [1], such as the
stimulated spin dynamics of polaritons [15,16], spin Meissner
effect [17–20], optical spin Hall effect [21–24], spontaneous
spin bifurcation [25], and ferromagnetic-antiferromagnetic
phase transitions [26,27] in spinor polariton Bose-Einstein
condensate (BEC). Second, owing to the inherent spin
multistabilities [28,29] and fast spin dynamics, semicon-
ductor microcavities bring prospects of implementing novel
solid-state optoelectronic spin-logic architectures [30]. First,
demonstration of polariton condensates as optical switches
in state-of-the-art microcavity structure has been reported
in recent experiments [31,32]. Building on this theoretical
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and experimental progress, polariton-based systems [33] may
promise a novel platform for realization and investigation of
many-body systems.

Due to the spin structure of polaritons, the polariton-
polariton interaction is strongly spin anisotropic [1]. In
particular, the strength of the interaction constant g12 for
polaritons with opposite spin is typically much smaller than
the interaction constant g for same-spin polaritons [34,35].
As a result, the polariton condensate is generally expected to
be linearly polarized [36,37] in the absence of mechanisms
that explicitly break the symmetry between the spin-up and
-down components, such as magnetic field or spin-polarized
pump. Still, a spontaneous magnetization of spinor polariton
condensate has been observed which is induced by different
loss rate of the linear polarizations [25].

Recently, several experiments have demonstrated the pos-
sibility to tune the interaction constants using biexcitonic
Feshbach resonance [38–40] in resonantly created polariton
condensate and single quantum well. Theoretically, this in-
spires an interesting question as regards the behavior of spinor
polariton BEC formed under nonresonant pumping when
the relative strength between cross-spin versus same-spin
interactions can be varied in a wide range, although tuning
interactions in this case remain experimentally challenging.

In this work, we theoretically investigate a spinor polariton
BEC under nonresonant excitations in presence of linear polar-
ization energy splitting denoted by �, assuming tunability of
the spin-anisotropic interactions. First, we study properties of a
homogeneous polariton condensate having a uniform density
n0. We find that there exist two steady-state phases, a spin-
unpolarized phase and a spin-polarized phase, depending on
the parameter η = g12/[g + 2�/n0]: for η < 1, the polariton
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condensate is in the spin-unpolarized phase, exhibiting a
pinned linear polarization; for η > 1, the condensate transits
into the spin-polarized phase, where it becomes elliptically
polarized. For the latter, whether the circular polarization is left
or right handed is spontaneously chosen by the system. We note
that our model assumes a spin-independent reservoir resulting
from rapid spin relaxation, hence excludes the polarization
transfer from the spin-polarized pump to the condensate
as discussed in Refs. [41,42] using spin-polarized reservoir
models. Moreover, the spontaneous creation of an elliptically
polarized condensate in this work is induced by an interplay
between interaction effects and linear polarization energy
splitting, and occurs for η > 1 which is beyond the typical
experimental regime at present. This is different from Ref. [25]
in the regime |g12| � g, where the elliptical polarization is
induced by different energy and dissipation rates of the linear
polarizations.

Second, we study elementary excitations in both phases
of the spinor polariton condensate with the Bogoliubov–de
Gennes (BdG) approach. Different from Refs. [17,37,43] in
the context of equilibrium case and Ref. [44] for resonantly
created condensate, we study elementary excitations in a
nonequilibrium polariton BEC, where the reservoir effect
can significantly modify the energy and polarization of the
collectively excited modes. Different from previous work (see,
e.g., Ref. [45]) which assumes fast relaxation [46] of the
incoherent reservoir density, here we consider the effect of
reservoir in the entire regime where the decay rate of the
reservoir density crosses over from the slow to fast limit
compared to the system dynamics.

We present detailed results on the energy spectrum and
polarization of the global-phase mode and the relative-phase
mode, corresponding to the global- and relative-phase excita-
tions of the spinor components of the condensate, respectively.
For energy spectra of excitations, we find that the global-phase
mode is significantly affected by the reservoir. Depending
on the reservoir parameters, the real part of the global-phase
mode can be diffusive, gapped, even gapless. By contrast, the
relative-phase mode always has a gapped real part of the energy
spectrum, being undamped in the spin-unpolarized phase but
weakly damped in the spin-polarized phase. For polarization
of modes, we find that in the spin-unpolarized phase, both
the global- and relative-phase modes are linearly polarized at
all momenta, one copolarizing and the other cross polarizing
with the linearly polarized condensate. This is similar as the
equilibrium case [37], and is a consequence of symmetry
properties of BdG equations in the spin-unpolarized phase
regardless of effects of dissipation. However, different from the
equilibrium case, the mode polarization in the spin-polarized
phase can be significantly affected by reservoir particularly
at low momenta, and how it varies with momenta also
depends strongly on the circular polarization degree of the
condensate.

Finally, we discuss how to probe the presented Bogoli-
ubov dispersions of the spinor polariton BEC. Exploiting
the photoluminescence (PL) emission, we show that both
the negative-energy ghost dispersion branches of the spin
mode and density mode can be directly observed in the
PL spectrum, well distinguished from each other, when the
polariton condensate is in the polarized phase.

The rest of the paper is structured as follows. In Sec. II,
we present our theoretical model, based on which we solve
for the stationary homogeneous state in Sec. III. There, we
identify two phases of the spinor polariton BEC and discuss
polarization properties of condensates. In Sec. IV, we present a
comprehensive study on elementary excitations in both phases
using the BdG theory, providing analytical and numerical
results for the excitation spectrum and polarization properties
of the excited modes. Then, in Sec. V we discuss how to exper-
imentally probe the presented excitation spectrum exploiting
PL emission. We conclude with a summary in Sec. VI.

II. MODEL

We consider a spinor exciton-polariton BEC created under
nonresonant pumping in presence of linear polarization energy
splitting. The order parameter for the condensate is described
by a two-component time-dependent wave function � =
[ψ1(r,t),ψ2(r,t)]T , written in the basis of left- and right-
circular polarized states [1]. For the excitonic reservoir, we
assume that the spin relaxation of the reservoir is sufficiently
fast so that the reservoir on the relevant time scales can
be modeled by a scalar density denoted by nR(t). This
way, we consider a situation when the reservoir does not
explicitly affect the condensate polarization. Note that in
realistic situations, the spin relaxation time of the reservoir
is typically finite (see, e.g., Ref. [47]), which can be accounted
with a reservoir model in terms of occupations of the left-
and right-circular polarized components [41,42] rather than
the total density.

The dynamics of the polariton condensate can be described
by the driven-dissipative two-component Gross-Pitaevskii
equation [41,42,45,48], i.e.,

ih̄
∂ψ1

∂t
=

[
− h̄2∇2

2m
+ g|ψ1|2 + g12|ψ2|2 + gRnR

]
ψ1

−�ψ2 + ih̄

2
(RnR − γC)ψ1, (1)

ih̄
∂ψ2

∂t
=

[
− h̄2∇2

2m
+ g|ψ2|2 + g12|ψ1|2 + gRnR

]
ψ2

−�ψ1 + ih̄

2
(RnR − γC)ψ2. (2)

Here, m is the mass of the polariton, g (g12) is the interaction
constant between polaritons with same (opposite) spins, γC is
the decay rate of condensate polaritons, and gR characterizes
the (spin-independent) interaction between the condensate and
reservoir. The coherent spin-flipping term � usually arises
from the anisotropy-induced splitting of linear polarizations
in the microcavity, as has been experimentally evidenced
[49–51]. For concreteness, we assume � > 0. We note that
going beyond the Gross-Pitaevskii equations (1) and (2) to
fully include the quantum and thermal fluctuations of the
quantum field (e.g., Keldysh path-integral method [52–55])
is beyond the scope of this work. Furthermore, in writing the
above equations, we have assumed the situation where the
transverse-electric and transverse-magnetic splitting [37,56]
vanishes.
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We consider Eqs. (1) and (2) are coupled to a (scalar)
incoherent reservoir as mentioned earlier, described by a rate
equation [57], i.e.,

∂nR

∂t
= P − γRnR − R(|ψ1|2 + |ψ2|2)nR. (3)

Here, P is the rate of an off-resonant continuous-wave (cw)
pumping, γ −1

R describes the lifetime of reservoir polaritons,
and R is the stimulated scattering rate of reservoir polaritons
into the spinor condensate.

The properties of the spinor polariton BEC as stationary
solutions to Eqs. (1)–(3) are determined by the rich interplay
among the effects of pumping and decay, linear polarization
energy splitting, and the spin-dependent interaction. In typical
polariton systems, one has g > 0, g12 < 0, and g � |g12|
[1,34,35]. In this case, polaritons driven by an off-resonant
unpolarized pump tend to condense into a linearly polarized
condensate [1,58]. Its polarization direction is random for
� = 0 as has been experimentally observed [59], whereas
a nonvanishing � will result in pinning of polarization
[49,51]. Inspired by recent experimental progress in realizing
tunable cross-spin interaction properties [38,40], below we
are theoretically interested in the polariton BEC governed
by Eqs. (1)–(3) assuming g12/g can be flexibly controlled
in a wide range, i.e., extends also into regimes that remain
experimentally challenging to access.

III. HOMOGENEOUS STEADY STATES

Our goal is to seek the spatially homogeneous stationary
solutions to Eqs. (1)–(3). We will use the pseudospin rep-
resentation of the condensate because the condensate pseu-
dospin vector �S = 1

2 (�† · σ · �) with σx,y,z the Pauli matrices
provides an experimentally measurable quantity [1]. Sub-
stituting an ansatz of the form �i(r,t) = e−iμT t (ψ0

1 ,ψ0
2 )T =

e−iμT t (
√

S+Sz,
√

S − Sz)T and nR(r,t)=n0
R into Eqs. (1)–(3),

we obtain

Ṡx = −(γC − RnR)Sx + 2δgSzSy, (4)

Ṡy = −(γC − RnR)Sy − 2�Sz + 2δgSzSx, (5)

Ṡz = −(γC − RnR)Sz − �Sy, (6)

Ṡ = −(γC − RnR)S, (7)

ṅR = P − {γR + 2RS}nR. (8)

Here, we denote δg = g − g12. Setting the left side of Eqs. (4)–
(8) to zero for stationary solutions, it follows from Eqs. (7) and
(8) that a condensate can spontaneously form, i.e, S �= 0, if
P > Pth with Pth = γRγC/R and n0

R = γC/R. For condensate
polarization, we see Sy = 0 from Eq. (6), but there exist two
sets of stationary solutions for Sx and Sz according to Eq. (5),
i.e., Sz(� − δgSx) = 0.

Depending on whether Sz is zero or not in the stationary
state, we identify two steady-state phases of the condensate,
which we shall hereafter refer to as the spin-unpolarized phase
and spin-polarized phase, respectively:

(i) Spin-unpolarized phase: Sz = 0, Sy = 0, and Sx =
S = n0/2, corresponding to an X-linearly polarized conden-
sate [1], which exists under the condition g12 < g + 2�/n0

with n0 = (P − Pth)/(2γC). Correspondingly, we find μT =
(g + g12)n0/2 + gRn0

R − �.
(ii) Spin-polarized phase: Sz �= 0, Sy = 0, and Sx =

�/(g12 − g), corresponding to an elliptically polarized con-
densate, which exists under the condition g12 > g + 2�/n0.
Moreover, we obtain Sz = ±(n0/2)

√
1 − [2�/(g − g12)n0]2,

the sign being chosen randomly upon Bose condensation.
Clearly, the circular polarization degree sz = |Sz/S| is given
by

√
1 − [2�/(g − g12)n0]2. In addition, we find μT = gn0 +

gRn0
R .

We emphasize that, in our model, the form of Eqs. (1)–(3)
maintains the symmetry between the spin-up and -down po-
laritons, contrasting to Refs. [17,41,42] where such symmetry
is explicitly broken in some fashion. The transition from the
spin-unpolarized to spin-polarized phases occurs at a critical
interaction g12 = g + 2�/n0. There, if a perturbation δSz is
applied to the system Hamiltonian in form of λσze

(ikx−ωt)+ηt ,
with η → 0+, the linear response of the system, i.e., the
spin-density response function, can be obtained as χs ∝
1/(g − g12 + 2�/n0), which diverges at the phase transition.
We emphasize that while the spinor polariton condensate pos-
sesses a critical condition formally resembling the equilibrium
counterpart [60], there is a fundamental difference due to the
open-dissipative nature of our system where the condensate
density n0 is determined by the balance of pumping and decay.

IV. ELEMENTARY EXCITATIONS

The goal of this section is to investigate elementary
excitations in the above two phases using the Bogoliubov
approach [6,61–63]. We start from the standard decomposition
of the wave function (ψ1,ψ2,nR)T into the steady-state solution
(ψ0

1 ,ψ0
2 ,n0

R)T and a small fluctuating term [6,61–63], i.e.,

(
ψ1(r,t)
ψ2(r,t)

)
= e−iμT t

(
ψ0

1

ψ0
2

)[
1 +

∑
k

{(
u1k
u2k

)
ei(kr−ωt) +

(
v∗

1k
v∗

2k

)
e−i(kr−ω∗t)

}]
(9)

and

nR(r,t) = n0
R

[
1 +

∑
k

{
wke

i(kr−ωt) + w∗
ke

−i(kr−ω∗t)}]. (10)

Substituting Eqs. (9) and (10) into Eqs. (1)–(3) and retaining only first-order terms of fluctuation, we obtain at each momentum
k the Bogoliubov–de Gennes (BdG) equation LkUk = h̄ωkUk. Here, Uk = (u1k,v1k,u2k,v2k,wk)T and the operator Lk in the
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matrix form reads as

Lk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 gn0
1 g12n

0
2 − �

√
n0

2/n0
1 g12n

0
2 gRn0

R + i
2Rn0

R

−gn0
1 −h1 −g12n

0
2 −g12n

0
2 + �

√
n0

2/n0
1 −gRn0

R + i
2Rn0

R

g12n
0
1 − �

√
n0

1/n0
2 g12n

0
1 h2 gn0

2 gRn0
R + i

2Rn0
R

−g12n
0
1 −g12n

0
1 + �

√
n0

1/n0
2 −gn0

2 −h2 −gRn0
R + i

2Rn0
R

−iRn0
1 −iRn0

1 −iRn0
2 −iRn0

2 −i[Rn0 + γR]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

with h1(2) = ε0
k + gRn0

R + 2gn0
1(2) + g12n

0
2(1) − μT , where ε0

k = h̄2k2/2m. Solutions to Eq. (11) provide full specifications of the
elementary excitations in the spinor polariton BEC.

As a consequence of dissipation, the Liouvillian matrix is non-Hermitian, and Eq. (11) yields five complex dispersion
branches: ωj = Re(ωj ) + i Im(ωj ) (j = 1,2,3,4,5), where the imaginary part represents the damping spectrum. Below, we
present a detailed analysis on the energy of the Bogoliubov excitation modes, and their polarizations which may be accessed
experimentally [1,64], for the spin-unpolarized phase (see Sec. IV A) and spin-polarized phase (see Sec. IV B), respectively. We
will focus, in particular, on the different behavior of modes in two phases, and the effects of reservoir in the crossover regime
from γR � γC to γR � γC .

A. Elementary excitations from the linearly polarized condensates

For the linearly polarized condensate formed in the regime g12 < g + 2�/n0, we substitute the corresponding stationary
values (see Sec. II) into the BdG (11), giving

Lk =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1
gn0

2
g12n0

2 − �
g12n0

2 gRn0
R + i

2Rn0
R

− gn0

2 −h1 − g12n0

2 −g12n
0
2 + � −gRn0

R + i
2Rn0

R
g12n0

2 − �
g12n0

2 h2
gn0

2 gRn0
R + i

2Rn0
R

− g12n0

2 − g12n0

2 + � − gn0

2 −h2 −gRn0
R + i

2Rn0
R

−iRn0/2 −iRn0/2 −iRn0/2 −iRn0/2 −i[Rn0 + γR]

⎞
⎟⎟⎟⎟⎟⎟⎠

, (12)

with h1 = h2 = ε0
k + gn0/2 + �.

Our main findings for elementary excitations in this case are as follows: (i) The global-phase mode is strongly affected by
reservoir, such that its dispersion can be diffusive, gapped, or gapless, depending on γC/γR . By contrast, the relative-phase
mode is always undamped with a gapped real energy. (ii) The global-phase mode copolarizes with the condensate while the
relative-phase mode cross polarizes with it, similar as that of the equilibrium condensate [37] despite effects pumping and
decaying. In the following, we will first present our results on the excitation spectrum for various reservoir parameters, before
discussing polarization of collective modes.

1. Excitation spectrum

Two limiting cases. In the limit of vanishing reservoir when n0
R ≈ 0 and R ≈ 0, by disregarding the reservoir effect in Eq. (12)

in the leading order we find

Lk =

⎛
⎜⎜⎜⎝

h1
gn0

2
g12n0

2 − �
g12n0

2

− gn0

2 −h1 − g12n0

2 − g12n0

2 + �
g12n0

2 − �
g12n0

2 h2
gn0

2

− g12n0

2 − g12n0

2 + � − gn0

2 −h2

⎞
⎟⎟⎟⎠.

The Bogoliubov excitation spectra are found as

h̄ωD =
√

ε0
k

[
ε0
k + (g + g12)n0

]
, (13)

h̄ωS =
√

ε0
k

(
ε0
k + δgn0 + 4�

) + 2�(δgn0 + 2�), (14)

where δg = g − g12, and ωD and ωS correspond to energies of global-phase and relative-phase excitations, respectively. The
global-phase mode is gapless at k = 0, while the relative-phase mode exhibits an energy gap

√
2�[δgn0 + 2�] due to linear

polarization splitting (� �= 0), which closes at the critical interaction strength g12 = g + 2�/n0. For small momenta, the
global-phase mode exhibits a linear dispersion while the relative-phase mode has an effective mass and a quadratic dispersion
∼k2. We note that Eqs. (13) and (14) are formally similar to the excitation spectra in an atomic coupled spinor BEC in equilibrium
(see, e.g., Refs. [60,65]), except that n0 here is determined by the open-dissipative nature of polariton fluid.
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In the opposite limit of fast reservoir, when 1/γR is the shortest time scale, an adiabatic elimination of the fast dynamics of
reservoir in lowest order of the perturbation theory reduces Eq. (12) to the following matrix form:

Lk =

⎛
⎜⎜⎜⎜⎝

h1 − g�

2R
− (

i
4� + ω

)
gn0

2 − g�

2R
− i

4�
g12n0

2 − g�

2R
− � − i

4�
g12n0

2 − g�

2R
− i

4�

− gn0

2 + g�

2R
− i

4� −h1 + g�

2R
− (

i
4� + ω

) − g12n0

2 + g�

2R
− i

4� −g12n
0
2 + g�

2R
+ � − i

4�
g12n0

2 − g�

2R
− � − i

4�
g12n0

2 − g�n0

2R
− i

4� h2 − g�

2R
− (

i
4� + ω

)
gn0

2 − g�

2R
− i

4�

− g12n0

2 + g�

2R
− i

4� − g12n0

2 + g�

2R
+ � − i

4� − gn0

2 + g�

2R
− i

4� −h2 + g�

2R
− (

i
4� + ω

)

⎞
⎟⎟⎟⎟⎠

with � = Rn0γC/(γR + Rn0). The resulting excitation spectra
are found as

h̄ωD = − i�

2
+

√
ε0
k

[
ε0
k + (g + g12)n0

] − �2

4
, (15)

h̄ωS =
√

ε0
k

(
ε0
k + δgn0 + 4�

) + 2�[δgn0 + 2�]. (16)

Comparisons of Eqs. (14) and (16) show ωS(k) of the relative-
phase mode stays the same in the two limits. However, ωD(k) is
strongly modified by the reservoir [see Eqs. (13) and (15)], with
the low-lying global-phase mode transforming from the sound
mode to diffusive mode [6], whose energy is purely imaginary
with the imaginary part behaves as ∼k2 [see Eq. (15)].

Generic case. For arbitrary parameter γR/γC , solutions to
Eq. (12) can be exactly cast into the following form:

[(h̄ω)2 − (h̄ωS)2] × {(h̄ω)3 + i(Rn0 + γR)(h̄ω)2

− [Rn0γC + (h̄ωD)2]h̄ω + ic(k)} = 0. (17)

Here, ωS and ωD are given by Eqs. (13) and (14), and

c(k) = −(Rn0 + γR)(h̄ωD)2 + gn0γCε0
k ,

which tends to zero for k → 0. We immediately see from
Eq. (17) the following:

(1) There always exist two real eigenenergy solutions
ω = ±ωS for the relative-phase modes, regardless of values
of γR/γC , i.e., the relative-phase modes are not damped due to
a decoupling from both the global-phase mode and reservoir
modes. Indeed, as confirmed by the numerical results in
Figs. 1(a) and 1(b), the relative-phase modes (black curves)
always exhibit a gapped real energy spectrum, and display
qualitatively similar features despite variations of γR/γC .
Although, the size of the gap can be tuned via variations of
g12/g [cf. Figs. 1(a1) and 1(a2)], as expected from Eq. (14).

(2) By contrast, the global-phase modes and reservoir
mode according to Eq. (17) display different behavior depend-
ing on γR/γC . In fact, decoupled from the relative-phase mode,
the global-phase and reservoir modes are expected to exhibit
similar properties as their counterpart in the one-component
polariton condensate [6], except for a modification by the
interspecies coupling g12 in ωD .
At k = 0, Eq. (17) becomes (h̄ω)3 + i(Rn0 + γR)(h̄ω)2 −
Rn0γCh̄ω = 0, yielding three solutions: ω

(0)
k=0 = 0 and

ω±
k=0 = −i

(
Rn0 + γR

2

)
±

√
Rn0γC − 1

4
(Rn0 + γR)2.

Obviously, when γC > (Rn0 + γR)2/(4Rn0), ω±
k=0 have finite

real components representing an energy gap, i.e., E� =
(1/2)

√
4Rn0γC − (Rn0 + γR)2. In this case, ω±

k=0 correspond

to gapped global-phase modes decaying at a rate [Rn0+γR]/2.
That the global-phase mode becomes massive has also been
discussed in Ref. [8] for the one-component polariton BEC tak-
ing into account the effect of the bottleneck polaritons. How-
ever, when γC � (Rn0 + γR)2/(4Rn0), in particular, when
γR � γC ∼ n0R, ω±

k=0 become purely imaginary with ω+
k=0 ≈

−i3γ 2
C/(2γR) and ω−

k=0 ≈ −iγR . While ω−
k=0 corresponds to

the fast decaying reservoir mode, both ω+
k=0 and ω

(0)
k=0 are

associated with the diffusive Goldstone modes.
At large momenta k � a−1 (a = h̄/

√
mgn0 is the usual

coherent length of BEC and we introduce E0 = h̄2/ma2),
Eq. (17) can be approximately solved as ω

(0)
ka�1 ∼ −i(Rn0 +

γR) and ω±
ka�1 ∼ ±ωD − igRn0γCh̄2ε0

k /ω
2
D , the former cor-

responding to the reservoir mode while the latter for the
global-phase modes. Since the imaginary part of ω±

k→∞ scales
as ∼1/k2 and thus vanishes at k → ∞, we see that the global-
phase modes with large momentum behave universally as free
particles without being damped, independent of γR and γC .
Moreover, comparing the damping rate of the reservoir modes
at k = 0 and k → ∞, we see that the reservoir modes exhibit
similar damping rate when γR � γC ∼ Rn0, as opposed to
the case γR � γC ∼ Rn0, where the damping rate of the
reservoir mode becomes obviously k dependent, increasing
from 0 (at k = 0) to a value ∼Rn0 (at k → ∞). Thus, whereas
the excitation modes almost decouple from each other in the
fast reservoir limit, the density excitation significantly mixes
with the reservoir if γC > γR instead.

The above analysis is corroborated by the numerical results
of excitation spectra for various parameters, as summarized
in Fig. 1. For the global-phase modes (see red curves), we
observe the characteristic Goldstone branch when γR � γC

[see Figs. 1(a1) and 1(a4)], which disappears for γR � γC

when an energy gap opens instead [see Figs. 1(a3) and 1(a5)].
Physically, the existence of the Goldstone mode in presence
of a fast decaying reservoir can also be understood from the
following perspective: when γR � γC , the (fast) reservoir
is able to adiabatically follow the slow rotation of the
condensate phase across the sample, i.e., adiabatically follow
the Goldstone mode. At large momenta, the global-phase
modes are seen to exhibit Re(ωk) ∼ k2 and a suppressed
damping for all parameters, consistent with earlier discussions.
Interestingly, in the crossover regime γR ∼ γC where the
reservoir effect strongly influences the global-phase excitation,
we observe emergence of a dispersion (real part) that possesses
a maxon-roton-like character [see Fig. 1(a2)], i.e., a softening
of an excitation mode occurs at intermediate momentum.

Stability analysis. For γR � γC ∼ Rn0 and g12 < 0, a
spatially homogeneous spinor polariton condensate can be-
come dynamically unstable, due to an exponential growth
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FIG. 1. Elementary excitations of a linearly polarized polariton BEC. (a1)–(a5) Real part and (b1)–(b5) imaginary part of the excitation
spectra associated with the global-phase modes (red curves), relative-phase modes (black curves), and the reservoir mode (blue curves),
respectively; (c1)–(c5) the corresponding Bogoliubov amplitude ratio |u1k|2/|v1k|2 for the eigensolutions of the matrix Lk in Eq. (12). The
solid and dashed curves in panels (a1)–(a5) depict the positive- and negative-energy spectrum of the excitation modes. In all plots, the
length, the energy, and the time are scaled in units of a = √

h̄/mγC , E0 = h̄γC , and τc = h̄/E0 with a being the experimental length scale
(e.g., in GaAs a = 2 μm, E0 = 0.66 meV, and τc = 3 ps), and we take �/E0 = 0.1. Other parameters [see Eq. (12)] are chosen as follows:
(a1)–(c1) γR/γC = 1.8, g12/g = 0.3, and P/E0 = 5; (a2)–(c2) γR/γC = 1, g12/g = 0.6, and P/E0 = 2; (a3)–(c3) γR/γC = 0.1, g12/g = 0.3,
and P/E0 = 2; (a4)–(c4) γR/γC = 1.8, g12/g = −0.1, and P/E0 = 5; (a5)–(c5) γR/γC = 0.1, g12/g = −0.3, and P/E0 = 2.

of reservoir modulations with time: the reservoir mode
shows Im[ωk] > 0 at small momenta [see black curves in
Fig. 1(b5)]. Such dynamical instability disappears if g12 > 0
is taken instead [see Fig. 1(b3)]. To understand this, we
seek the condition for a homogeneous spinor condensate
to be stable in the considered regime by solving Eq. (17)
at small momenta. Recall that in this case, the reservoir
mode has ω = 0 at k = 0, therefore, we expect ω(k) to
be small at k → 0. Retaining only the term linear in ω

in Eq. (17), we find h̄ωk→0 ≈ ic(k)/(Rn0γC + ω2
D), with

c(k)/E2
0 ≈ −2(ka)2[(1 + g12/g)(Rn0 + γR) − γC]. Thus, in

order for the low-lying reservoir mode to be stable requires
c(k) � 0, giving the stability condition

(
g + g12

g

)
Rn0 + γR

γc

> 1.

Obviously, for the parameter regime Rn0 ∼ γC � γR , the
above criterion sustains for g12 > 0 but is violated when
g12 < 0, explaining what we see in Fig. 1(b5). For g12 < 0,
c(k) can change its sign from positive to negative when
the momentum increases to values larger than kR �= 0,
where kR is determined by c(kR) = 0 giving kRa ≈√

2[γC/(Rn0 + γR) − (g + g12)/g], i.e., the stability condi-
tion is violated at momenta 0 < k < kR [see Fig. 1(b5)],
leading to growing perturbations.

2. Polarization of quasiparticles

Previous studies on equilibrium linearly polarized conden-
sates (see, e.g., [37]) have shown that both the global- and
relative-phase modes are linearly polarized, one copolarizing
and the other cross polarizing with the condensate. In the
presence of pumping and decay, as mentioned earlier, the
operator Lk governing the BdG equation for a nonequilibrium
condensate becomes non-Hermitian and involves coupling to
the reservoir excitations [see Eq. (12)]. However, the symmetry
properties of Lk matrix in the spin-unpolarized phase (see
details in the Appendix) dictate the following exact relations:
for the global-phase mode, we have

u1k = u2k, v1k = v2k, (18)

and for the relative-phase mode, one has

u1k = −u2k, v1k = −v2k. (19)

Thus, we conclude that for a X-linearly polarized open-
dissipative condensate, the global-phase mode remains copo-
larized with the condensate while the relative-phase mode
is cross poloarized with it. For later reference, here we
also present the analytical expressions for the Bogoliubov
coefficients from solving Eq. (12). For the global-phase mode,
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we obtain

u1k = h̄ωD + [
(g + g12)n0 + ε0

k

]
√

8h̄ωD

(
ε0
k + (g + g12)n0

) , v1k = h̄ωD − [
ε0
k + (g + g12)n0

]
√

8h̄ωD

(
ε0
k + (g + g12)n0

) ,

and for the relative-phase mode, we find

u1k = (g + g12)n0/2√
(g+g12)2n2

0
2 − 2

[
ε0
k + n0

2 (g − g12) + 2� − h̄ωS

]2
, v1k = h̄ωS − [

ε0
k + n0(g−g12)

2 + 2�
]

√
(g+g12)2n2

0
2 − 2

[
ε0
k + n0(g−g12)

2 + 2� − h̄ωS

]2
.

As |u1k| = |u2k| and |v1k| = |v2k| apply for both modes, we plot |u1k|2/|v1k|2 in Figs. 1(c1)–1(c5) for various reservoir
parameters. For γR � γC , we see that the eigenvectors of the global-phase mode show the usual infrared divergence v1k → k−1/2

and u1k → −v1k at k → 0, giving rise to |u1k/v1k| = 1 at k = 0. By contrast, for γR/γC � 1 when the global-phase modes
become gapped, we see that |u1k/v1k| > 1 for momenta k → 0 [see red curves in Figs. 1(c3) and 1(c5)]. Similar behavior is also
observed in the plot of |u2k/v2k| for the gapped relative-phase mode at small momenta [see black curves in Fig. 1(c)].

B. Elementary excitations from the elliptically polarized condensates

We now turn to the spin-polarized phase where the condensate is elliptically polarized in the regime g12 > g + 2�/n0. The
BdG equation (11) now takes the form (we choose Sz > 0 in our calculation)

Lk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1
gn0(1+�)

2
g12n0(1−�)

2 − �

√
1−�
1+�

g12n0(1−�)
2 gRn0

R + i
2Rn0

R

− gn0(1+�)
2 −h1 − g12n0(1−�)

2 − g12n0(1−�)
2 + �

√
1−�
1+�

−gRn0
R + i

2Rn0
R

g12n0(1−�)
2 − �

√
1+�
1−�

g12n0(1−�)
2 h2

gn0(1−�)
2 gRn0

R + i
2Rn0

R

− g12n0(1−�)
2 − g12n0(1−�)

2 + �

√
1+�
1−�

− gn0(1−�)
2 −h2 −gRn0

R + i
2Rn0

R

−i n0
2 (1 + �)R −i n0

2 (1 + �)R −i n0
2 (1 − �)R −i n0

2 (1 − �)R −i[Rn0 + γR]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(20)

with � =
√

1 − [2�/(g − g12)n0]2, h1 = ε0
k + gn0� + g12n0(1 − �)/2, and h2 = ε0

k − gn0� + g12n0(1 + �)/2.
Compared to the spin-unpolarized phase, our main findings on the elementary excitations from an elliptically polarized

condensate are as follows: (i) The relative-phase mode becomes weakly damped. (ii) Polarization properties of the modes are
determined by interplay among the parameter γR/γC of reservoir, momentum k of the mode, and the circular polarization degree
sz = 2Sz/n0 of the condensate. Following, we present a detailed analysis on energy spectrum and polarization of modes in
regimes of fast and slow reservoirs, respectively, as well as for elliptical polariton condensates with different circular polarization
degree sz.

1. Excitation spectrum

Figures 2(a) and 2(b) illustrate the excitation spectra for various parameters. Different from the spin-unpolarized phase, the
relative-phase modes in the spin-polarized phases show a very weak damping [see black curves in Fig. 2(b) and insets], along
with a gapped (real part) energy spectrum. In addition, the global-phase modes and the reservoir modes exhibit similar features
as that of the spin-unpolarized phase.

To gain more understanding on the excitation spectra illustrated in Figs. 2(a) and 2(b), consider first the limit of vanishing
reservoir, where Eq. (20) reduces to

Lk =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1
gn0(1+�)

2
g12n0(1−�)

2 − �

√
1−�
1+�

g12n0(1−�)
2

− gn0(1+�)
2 −h1 − g12n0(1−�)

2 − g12n0(1−�)
2 + �

√
1−�
1+�

g12n0(1−�)
2 − �

√
1+�
1−�

g12n0(1−�)
2 h2

gn0(1−�)
2

− g12n0(1−�)
2 − g12n0(1−�)

2 + �

√
1+�
1−�

− gn0(1−�)
2 −h2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Solutions of the eigenenergies are found as

(h̄ωS/D)2 = ε0
k

(
ε0
k + g12n0

) + 1

2
β − 2�2

±
√[

ε0
k (g12 − 2g)n0 + 1

2
β

]2

+ �2

[
h̄4k4(3g − g12)

m(g12 − g)
+ 2

h̄2k2

m
n0(2g − g12) − 2β

]
+ 4�4, (21)
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FIG. 2. Elementary excitations in elliptically polarized polariton BEC. (a1)–(a4) Real part and (b1)–(b4) imaginary part of the excitation
spectra associated with the global-phase modes (red curves), relative-phase modes (black curves), and reservoir modes (blue curves); ratios
of Bogoliubov amplitudes (c1)–(c4) |u1k|2/|u2k|2 and (d1)–(d4) |v1k|2/|v2k|2 for eigensolutions of the matrix Lk in Eq. (11). For parameters
in Eq. (11), we take P/E0 = 3, R/E0 = 1, and (a1)–(d1) γR/γC = 1.8, g12/g = 1.5 and �/E0 = 0.1; (a2)–(d2) γR/γC = 1.8, g12/g = 1.85,
and �/E0 = 0.5; (a3)–(d3) γR/γC = 0.1, g12/g = 1.5, and �/E0 = 0.1; (a4)–(d4) γR/γC = 0.1, g12/g = 1.35, and �/E0 = 0.5. In all plots,
the length, the energy, and the time are scaled in units of a = √

h̄/mγC , E0 = h̄γC , and τc = h̄/E0 with a being the experimental length scale
(e.g., in GaAs a = 2 μm, E0 = 0.66 meV, and τc = 3 ps). Solid and dashed curves correspond to normal and ghost branches of excitations,
respectively.

where β = (g − g12)2n2
0 and, as before, h̄ωS and h̄ωD represent energies of the relative-phase mode and the global-phase

mode, respectively. As in the spin-unpolarized phase, the global-phase mode is gapless while the spin mode has an energy gap
ωS(k) →

√
(g − g12)2n2

0 − 4�2 .
In the opposite limit γR/γC � 1 [see Figs. 2(a1) and 2(a2), 2(b1) and 2(b2)], Eq. (20) at the lowest order of 1/γR reads as

Lk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 g̃n0
1 g̃12n

0
2 − �

√
n0

2

n0
1

g̃12n
0
2

−g̃∗n0
1 −h∗

1 −g̃∗
12n

0
2 −g̃∗

12n
0
2 + �

√
n0

2

n0
1

g̃12n
0
1 − �

√
n0

1

n0
2

g̃12n
0
1 h2 g̃n0

2

−g̃∗
12n

0
1 −g̃∗

12n
0
1 + �

√
n0

1

n0
2

−g̃∗n0
2 −h∗

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with g̃ = g − γ (g + i
2R), g̃12 = g12 − γ (g + i

2R), γ = γC/(n0R + γR), h1 = ε0
k + g12n

0
2 + [g − γ (g + i

2R)]n0
1 − gn0

2, and
h2 = ε0

k + g12n
0
1 + [g − γ (g + i

2R)]n0
2 − gn0

1. The eigenenergy is solution to the following equation:

[(h̄ω)2 − a2] × [(h̄ω − ib)2 − c2] + d = 0, (22)
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with

b = −1

2
n0Rγ, a2 = [

ε0
k + (g12 − g)n0

][
ε0
k + (g12 − g)

(
n0

1 − n0
2

)]
,

c2 = −gn0ε
0
kγ + (

ε0
k

)2 − 1

4
n2

0R
2γ 2 + ε0

k (g12 − g)
(
n0

1 − n0
2

) + ε0
kn0(g + g12), d = −4ε0

k�
2
[
n0(g12 − g) + ε0

k

]n0
1 − n0

2

n0
.

At k = 0, Eq. (22) allows easy solutions: (i) solutions ωs =
±

√
(g12 − g)2n2

0 − 4�2 correspond to the energy gap of the
relative-phase modes [see black curves in Figs. 2(a1) and 2(a2),
2(b1) and 2(b2)]; (ii) solutions ω

(1)
D = 0 and ω

(2)
D = −in0R�/2

are associated with the global-phase excitation at k = 0, near
which the imaginary part scales as ∼k2 [see red curves in
Figs. 2(b1) and 2(b2)], indicating the existence of diffusive
Goldstone mode [see also red curves in Figs. 2(a1) and 2(a2)].
Noticing that the energy gap of the relative-phase mode is
formally the same as the equilibrium counterpart [see Eq. (21)
at k = 0], we anticipate the real part of the energy of the
relative-phase mode is qualitatively similar for all reservoir
parameters as in the linearly polarized condensate, consistent
with what we see in Fig. 2(a).

For arbitrary value of γR/γC , one can show that Eq. (20)
yields the following equation:

[(h̄ω)2 − (h̄ωD)2][(h̄ω)2 − (h̄ωS)2][i(Rn0 + γR) + h̄ω]

+ i(n0γC)

(
g

h̄2k2

m
+ iR(h̄ω)

)
[(h̄ω)2 + F (k)] = 0. (23)

Here, F (k)=4�2 − [n0(g12 − g)+ε0
k ]

2 + 2�2k2/(g12 − g),
and ωS/D are defined in Eq. (21). Importantly, Eq. (23)
suggests that the relative-phase mode solutions are no
longer decoupled from the other modes and, therefore, a
damping in the relative-phase mode is generically expected
[see black curves in Fig. 2(b) and insets]. In addition, at
k = 0, Eq. (23) admits solutions ω = 0, ω = −i(Rn0 +
γR)/2 ±

√
Rn0γC − (Rn0 + γR)2/4, and ω=±ωS (evaluated

at k = 0). Indeed, the energy gap of the relative-phase modes
stays the same without modification from the reservoir, as
confirmed by our numerical results in Fig. 2(a). Moreover, a
diffusive mode exists as long as γC � (Rn0 + γR)2/(4Rn0)
holds, whereas an energy gap opens in the spectrum of the
density excitation for γC > (Rn0 + γR)2/(4Rn0), agreeing
with the results in Fig. 2(a) (see red curves).

2. Polarization of quasiparticles

We have shown in Sec. IV A 2 that, in the spin-unpolarized
phase, the global- and relative-phase modes are copolarized
and cross polarized with the condensate, respectively, just
as the equilibrium counterpart. As we will show, situations
are significantly different for the spin-polarized phase. In
analyzing mode polarization, we are interested in the quantities
|u1k|2/|u2k|2 and |v1k|2/|v2k|2, as motivated by Ref. [64].
There, it is proposed that the degree of polarization of the
collective modes can be partially probed through the measure-
ment of normal polar polarization angle of the eigenvector
defined by cos(2θ ) = (|u1k|2 − |u2k|2)/(|u1k|2 + |u2k|2) or,
equivalently, |u1k|2/|u2k|2 = [cos(2θ ) + 1]/[cos(2θ ) − 1]. In

Figs. 2(c) and 2(d), we plot |u1k|2/|u2k|2 and |v1k|2/|v2k|2 as
functions of momenta, respectively, for both the global- and
relative-phase modes (only those with positive real energies
are shown). We note, however, that detailed discussions on the
measurement of polarization of quasiparticles of the spinor
polariton condensate are beyond the scope of this paper.

To see how the reservoir affects the polarization of modes
in general, we first consider a strongly circularly polarized
condensate (sz ≈ 0.9), and compare polarization of [u1k,u2k]T

of both modes in the regime of a fast reservoir [see Fig. 2(c1)]
and a slow reservoir [see Fig. 2(c3)], respectively. In both
regimes, the relative-phase mode (black curves) is seen to be
circularly polarized at all momenta with a circular polarization
opposite to the condensate. By contrast, [u1k,u2k]T of the
global-phase mode (red curves) is elliptically polarized, whose
polarization direction in particular at small momenta is
strongly influenced by the reservoir: it exhibits a dramatic,
even irregular, variation near k = 0 in the fast reservoir regime
[see Fig. 2(c1)], as opposed to a more regular and smooth
behavior in the slow reservoir case [see Fig. 2(c3)]. This can be
understood by noticing the different energy spectra in the two
reservoir regimes: the global-phase mode exhibits diffusive
dispersion in the limit of fast reservoir, whereas being gapped
for a slow reservoir. At large momenta where the reservoir
effect becomes unimportant, the global-phase mode in both
plots exhibits similar polarization properties.

Similar features as above also appear for the global-phase
modes of the condensate with sz ≈ 0.1, i.e., only a small
asymmetry exists between the spin-up and -down components,
as illustrated in Figs. 2(c2) and 2(c4). In particular, [u1k,u2k]T

of the global-phase mode in the fast reservoir regime [see
red curve in Fig. 2(c2)] exhibits rich variations near k = 0,
contrasting to a more flattened behavior in the slow regime [see
Fig. 2(c2)]. However, [u1k,u2k]T of the relative-phase mode is
significantly affected by sz. When the condensate is highly
circular (sz ∼ 1), |u1k|2/|u2k|2 ≈ 0 at all momenta [see black
curve in Fig. 2(c1)], i.e., [u1k,u2k]T always has a strong circular
polarization which is opposite to the condensate. Instead, for
sz � 1 counterpart [see black curve in Fig. 2(c2)], [u1k,u2k]T

is strongly circular at k = 0 and becomes elliptical away from
it, with some strong variation near k = 0. In the limit of large
momenta, |u1k|2/|u2k|2 saturates to a constant smaller than 1,
which corresponds to an elliptical polarization whose circular
polarization is opposite to the condensate.

Compared to [u1k,u2k]T in Fig. 2(c), we see that the circular
polarization of [v1k,v2k]T of the relative-phase mode is always
opposite to [u1k,u2k]T at k = 0 (same as the condensate),
but is same as [u1k,u2k]T at large momenta, as illustrated by
the black curves in Figs. 2(d1)–2(d4). For strongly circularly
polarized condensate [see Figs. 2(d1) and 2(d3)], [v1k,v2k]T is
highly circularly polarized at all momenta, flipping its circular
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polarization rapidly from the left to the right when k changes
from k = 0. Such flip is more steep when the condensate has
sz � 1 [see black curves Figs. 2(d2) and 2(d4)]. In this case,
[v1k,v2k]T of the relative-phase mode is elliptically polarized
at large momenta. For the global-phase mode (red curves),
the corresponding [v1k,v2k]T is always elliptically polarized,
displaying a more uniform behavior in the slow reservoir
regime [see Figs. 2(d3) and 2(d4)] and smaller ellipticity for
small sz [see Figs. 2(d2) and 2(d4)].

V. PHOTOLUMINESCENCE OF A SPINOR
POLARITON CONDENSATE

In this section, we discuss how to experimentally probe
the various Bogoliubov dispersions of a spinor polariton
condensate presented in this work. Recently, significant exper-
imental progress has been achieved on measuring elementary
excitations of a one-component polariton condensate, aiming
particularly at observing two features: (1) the diffusive modes,
which originate from the driven-dissipative character of the
system [6,7]; (2) the negative-energy ghost branch (GB) of the
Bogoliubov dispersion, which arises from the hole component
of excitations and thus mirror images the normal positive-
energy branch (NB). In experiments reported in Refs. [66,67],
while NB has been directly observed in the photoluminescence
(PL) of a nonresonant polariton condensate [68,69], no
fingerprints of GB were spotted. Since the GB signal may
be easily masked by strong emission, whether it is possible to
detect GB in a nonresonant polariton BEC was subjected to
debate. On the other hand, the GB dispersion was detected in a

resonantly pumped polariton condensate using the four-wave
mixing technique, as reported in Ref. [70]. Remarkably,
the first successful observation of the PL signal reflecting
GB in a nonresonant polariton condensate was reported in
Ref. [71]. Motivated by these experimental advances, below
we are interested in studying the PL spectra of a spinor
polariton BEC under nonresonant pumping, in particular, the
visibility of the ghost branches of dispersions of both the
global- and relative-phase modes, extending relevant work on
one-component polariton BECs [8,72].

At the heart of the measurement of the excitation spectrum
with PL is the measurement of two-time correlation function of
the spinor polariton condensate. Denoting the PL spectrum by
PL(k,ω), we exploit the approach in Refs. [8,73] and calculate
as follows. Defining a matrix V −1 in the form

V −1 =

⎛
⎜⎜⎜⎝

u11 u12 u13 u14 u15

u21 u22 u23 u24 u25

u31 u32 u33 u34 u35

u41 u42 u43 u44 u45

u51 u52 u53 u54 u55

⎞
⎟⎟⎟⎠, (24)

we diagonalize the Bogoliubov’s matrix [see Eq. (11)] as
V −1LkV = (E1, − E∗

1 ,E1, − E∗
2 ,E3). Here, the eigenvalues

E1, E2, and E3 correspond to the density mode, spin-density
mode, and reservoir mode, respectively. The PL spectrum can
then be derived as

PL(k,ω) ∝ |Ck|2Re

{
in1k(u11u22 + u31u42)

h̄ω − E1
+ i(n1k + 1)(u12u21 + u32u41)

h̄ω + E∗
1

+ in2k(u13u24 + u33u44)

h̄ω − E2

+ i(n2k + 1)(u14u23 + u34u43)

h̄ω + E∗
2

}
, (25)

where Ck is called the Hopfield coefficient for the photonic
component of the polaritons, and n1k (n2k) is the thermal pop-
ulation of quasiparticles associated with the density mode (spin
mode). Different from the PL spectrum of a one-component
poariton condensate, Eq. (25) involves contributions from both
the global- and relative-phase excitations: the first (last) two
terms correspond to the global-phase (relative-phase) mode,
with the negative branch contained in the second (fourth) term,
respectively. In Fig. 3, we present the PL spectrum of a spinor
polariton condensate for various parameters.

Let us first compare the PL spectrum in the spin-unpolarized
phase and the spin-polarized phase considering, for example,
the parameter regime γR � γC and high temperature (larger
than the relevant energy gap). As illustrated in Figs. 3(a1) and
3(c1), both plots show the positive and negative branches of the
dispersions, due to large populations at high temperatures. Yet,
a prominent feature of Fig. 3(c1) for the spin-polarized phase,
as compared to Fig. 3(a1) for the spin-unpolarized phase, is
the appearance of two separated sectors of dispersions, both
in the positive and negative branches. This second dispersion
sector, with a very narrow linewidth, corresponds to the spin

mode which is weakly damped in the spin-polarized phase.
Instead, the dispersion of the relative-phase mode does not
appear in the spin-unpolarized phase [see Fig. 3(a1)], as
the relative-phase mode there only has real energy and is
undamped [see Fig. 1(b)]. Thus, for the spin-unpolarized phase
in the present setup, only the global-phase excitation sector
of dispersions are revealed by PL spectrum [see Figs. 3(a)
and 3(b) for various parameters]. As illustrated in Fig. 3(c2),
at low temperatures, only the negative-energy ghost branch
of the relative-phase mode becomes visible, due to strongly
suppressed thermal population of the gapped positive-energy
relative-phase mode. In contrast, the relative-phase excitation
sector cannot be distinguished in Fig. 3(c3) corresponding to
a fast reservoir regime. This can be attributed to the fact that,
for this particular parameter choice, the real part of the spectra
of the global-phase mode is very close to the relative-phase
mode [see Fig. 2(a2)]. To conclude, the negative-energy ghost
branch of the relative-phase mode can be clearly distinguished
from that of the global-phase mode in the PL spectra of a
spinor polariton condensate in the spin-polarized phase, where
the relative-phase mode is weakly damped. Its resolution is
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FIG. 3. PL spectrum log10(PL/PLmax) [see Eq. (25)] of a spinor polariton condensate for different parameters. (a), (b) PL spectrum of
an unpolarized spinor polariton condensate with (a) g12 > 0 and (b) g12 < 0. (c) PL spectrum of a polarized spinor polariton condensate.
For other parameters, we take (a1) g12/g = 0.3, γR/γC = 0.1, and kBT /E0 = 2; (a2) g12/g = 0.3, γR/γC = 0.1, and kBT /E0 = 0.1; (a3)
g12/g = 0.3, γR/γC = 1.8, and kbT /E0 = 2; (b1) g12/g = −0.3, γR/γC = 0.1, and kBT /E0 = 2; (b2) g12/g = −0.3, γR/γC = 0.1, and
kBT /E0 = 0.1; (b3) g12/g = −0.3, γR/γC = 1.8, and kbT /E0 = 0.1; (c1) g12/g = 2.5, γR/γC = 0.1, and kBT /E0 = 2; (c2) g12/g = 2.5,
γR/γC = 0.1, and kBT /E0 = 0.1; (c3) g12/g = 2.5, γR/γC = 1.8, and kBT /E0 = 0.1. In all plots, the length, the energy, and the time are
scaled in units of a = √

h̄/mγC , E0 = h̄γC , and τc = h̄/E0 with a being the experimental length scale (e.g., in GaAs a = 2 μm and τc = 3 ps)
and E0 = 0.68 meV and �/E0 = 0.1.

optimal when the (real part) energy of the relative-phase mode
is sufficiently separated from the global-phase mode, such that
it is still resolvable after taking into account the finite linewidth
of the spectrum of the global-phase mode.

Turning back to the spin-unpolarized phase, as discussed
above, here only dispersions of the global-phase mode can be
visualized in the PL spectrum. In general, the width of the
spectrum exhibits a significant broadening for γR � γC [see,
e.g., Fig. 3(a1)] reflecting a strong damping of the global-phase
mode [see also Fig. 1(b3)]. Instead, a much narrower spectrum
is shown in the fast reservoir limit [see Fig. 3(a3)], where
the global-phase mode only weakly decays. Notice that in
Fig. 3(a3), despite high temperature, no fingerprints of the
negative-energy dispersion of global-phase mode is observed.
This is due to the fact that the corresponding Bogoliubov
coefficients in Eq. (25) nearly vanish for this specific parameter

choice. Considering experimental relevant parameters, we plot
the corresponding PL spectrum in the spin-unpolarized phase
in Fig. 3(b). Compared to Figs. 3(a), we see that the sign of g12

does not qualitatively change the features of the PL spectrum
in the spin-unpolarized phase.

VI. CONCLUSION

Summarizing, we have theoretically studied the steady
phases and elementary excitations of a spinor polariton
condensate created by nonresonant excitation, assuming that
g12/g can be widely tuned, and fast spin-relaxation in reservoir.
In the regime g12 < g + 2�/n0, the polariton condensate is
in the spin-polarized phase, exhibiting a linear polarization
whose direction is pinned by the � term. In the regime g12 >

g + 2�/n0, the condensate is in the spin-polarized phase,
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exhibiting an elliptical polarization. The transition occurs at the
critical interaction, where the spin-density response function
diverges and the energy gap of the relative-phase mode closes.
We have compared behavior of elementary excitations in two
phases, taking into account reservoir effects in the crossover
from γR � γC to the limit of γR � γC . We have shown that
the gapped relative-phase modes are long lived in both phases
and are robust to reservoir effects. The energy spectrum of
the global-phase modes, by contrast, are strongly tailored by
the reservoir effect, being gapped in the slow reservoir limit
but diffusive in the opposite fast reservoir regime. In the spin-
unpolarized phase, the mode polarization is always linear, one
copolarizing with the condensate and the other cross polarizing
with it. However, in the spin-polarized phase, the reservoir
effect has a particular strong impact on polarization of the
global-phase mode at small momenta. While the polarization
of relative-phase mode is weakly influenced by reservoir, it is
sensitive to the circular polarization degree of the condensate.
In addition, we have demonstrated that the energy dispersions
presented in this work can be directly observed in the PL
emission. In particular, we show that the negative-energy
ghost branch of the dispersion of the relative-phase mode can
be clearly visualized in the spin-polarized phase, exhibiting
a very narrow linewidth and distinguishable from that of
global-phase mode. That the relative-phase mode is undamped
in the spin-unpolarized phase, leading to its absence in the
corresponding PL spectrum, may be related to the fact that in
our model the reservoir excitons are assumed to be coupled to
the total density, rather than the spin density, of the spinor
polariton condensate [see Eq. (3)]. Hence, an interesting
subject of investigation in the future consists of cases with
asymmetric couplings to reservoir polaritons or asymmetric
decay rates of condensate polaritons.
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APPENDIX: SYMMETRY ANALYSIS
OF BOGOLIUBOV MATRIX (12)

In this Appendix, we analyze the symmetry properties of
Bogoliubov matrix Lk in Eq. (12) in the linearly polarized
case. We notice that Lk is invariant under the following two
transformations:

U1 =

⎛
⎜⎜⎜⎝

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠,

U2 =

⎛
⎜⎜⎜⎝

0 0 1 0 0
0 0 0 −1 0
1 0 0 0 0
0 −1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠. (A1)

The consequence of this symmetry property is, if V =
(u1k v1k u2k v2k wk)T is an eigenvector of Bogoli-
ubov matrix (12), the action of U1 (U2) on V realizes a simul-
taneous exchange: u1k ↔ u2k and v1k ↔ v2k (u1k ↔ −u2k
and v1k ↔ −v2k), such that U1V (U2V) is also an eigenvector
of Lk with the same eigenvalue.
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Phase Transition in a Two-Dimensional Driven Open Quantum
System, Phys. Rev. X 5, 041028 (2015).

[11] V. N. Gladilin and M. Wouters, Normal and superfluid fractions
of inhomogeneous nonequilibrium quantum fluids, Phys. Rev.
B 93, 134511 (2016).

[12] J. Marino and S. Diehl, Driven Markovian Quantum Criticality,
Phys. Rev. Lett. 116, 070407 (2016).

[13] M. Biondi, E. P. L. van Nieuwenburg, G. Blatter,
S. D. Huber, and S. Schmidt, Incompressible Polari-
tons in a Flat Band, Phys. Rev. Lett. 115, 143601
(2015).

144511-12

https://doi.org/10.1088/0268-1242/25/1/013001
https://doi.org/10.1088/0268-1242/25/1/013001
https://doi.org/10.1088/0268-1242/25/1/013001
https://doi.org/10.1088/0268-1242/25/1/013001
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.82.1489
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nphys3143
https://doi.org/10.1038/nphys3143
https://doi.org/10.1038/nphys3143
https://doi.org/10.1038/nphys3143
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1088/0034-4885/79/9/096001
https://doi.org/10.1103/PhysRevLett.99.140402
https://doi.org/10.1103/PhysRevLett.99.140402
https://doi.org/10.1103/PhysRevLett.99.140402
https://doi.org/10.1103/PhysRevLett.99.140402
https://doi.org/10.1103/PhysRevLett.96.230602
https://doi.org/10.1103/PhysRevLett.96.230602
https://doi.org/10.1103/PhysRevLett.96.230602
https://doi.org/10.1103/PhysRevLett.96.230602
https://doi.org/10.1103/PhysRevB.85.075130
https://doi.org/10.1103/PhysRevB.85.075130
https://doi.org/10.1103/PhysRevB.85.075130
https://doi.org/10.1103/PhysRevB.85.075130
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevLett.112.216401
https://doi.org/10.1103/PhysRevX.5.041028
https://doi.org/10.1103/PhysRevX.5.041028
https://doi.org/10.1103/PhysRevX.5.041028
https://doi.org/10.1103/PhysRevX.5.041028
https://doi.org/10.1103/PhysRevB.93.134511
https://doi.org/10.1103/PhysRevB.93.134511
https://doi.org/10.1103/PhysRevB.93.134511
https://doi.org/10.1103/PhysRevB.93.134511
https://doi.org/10.1103/PhysRevLett.116.070407
https://doi.org/10.1103/PhysRevLett.116.070407
https://doi.org/10.1103/PhysRevLett.116.070407
https://doi.org/10.1103/PhysRevLett.116.070407
https://doi.org/10.1103/PhysRevLett.115.143601
https://doi.org/10.1103/PhysRevLett.115.143601
https://doi.org/10.1103/PhysRevLett.115.143601
https://doi.org/10.1103/PhysRevLett.115.143601


SPINOR POLARITON CONDENSATES UNDER . . . PHYSICAL REVIEW B 96, 144511 (2017)

[14] L. He, L. M. Sieberer, and S. Diehl, Space-Time Vortex
Driven Crossover and Vortex Turbulence Phase Transition in
One-Dimensional Driven Open Condensates, Phys. Rev. Lett.
118, 085301 (2017).

[15] P. G. Lagoudakis, P. G. Savvidis, J. J. Baumberg, D. M.
Whittaker, P. R. Eastham, M. S. Skolnick, and J. S. Roberts,
Stimulated spin dynamics of polaritons in semiconductor mi-
crocavities, Phys. Rev. B 65, 161310 (2002).

[16] A. Kavokin, P. G. Lagoudakis, G. Malpuech, and J. J. Baumberg,
Polarization rotation in parametric scattering of polaritons
in semiconductor microcavities, Phys. Rev. B 67, 195321
(2003).

[17] Y. G. Rubo, A. Kavokin, and I. A. Shelykh, Suppression of
superfluidity of exciton-polaritons by magnetic field, Phys. Lett.
A 358, 227 (2006).

[18] A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider,
L. Worschech, and A. Forchel, Polarized Nonequilibrium Bose-
Einstein Condensates of Spinor Exciton Polaritons in a Magnetic
Field, Phys. Rev. Lett. 105, 256401 (2010).

[19] P. Walker, T. C. H. Liew, D. Sarkar, M. Durska, A. P. D.
Love, M. S. Skolnick, J. S. Roberts, I. A. Shelykh, A. V.
Kavokin, and D. N. Krizhanovskii, Suppression of Zeeman
Splitting of the Energy Levels of Exciton-Polariton Condensates
in Semiconductor Microcavities in an External Magnetic Field,
Phys. Rev. Lett. 106, 257401 (2011).

[20] J. Fischer, S. Brodbeck, A. V. Chernenko, I. Lederer, A.
Rahimi-Iman, M. Amthor, V. D. Kulakovskii, L. Worschech,
M. Kamp, M. Durnev et al., Anomalies of a Nonequilibrium
Spinor Polariton Condensate in a Magnetic Field, Phys. Rev.
Lett. 112, 093902 (2014).

[21] A. Kavokin, G. Malpuech, and M. Glazov, Optical Spin Hall
Effect, Phys. Rev. Lett. 95, 136601 (2005).

[22] C. Leyder, M. Romanelli, J. Ph. Karr, E. Giacobino, T. C. H.
Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A.
Bramati, Observation of the optical spin hall effect, Nat. Phys.
3, 628 (2007).

[23] W. Langbein, I. Shelykh, D. Solnyshkov, G. Malpuech, Yu.
Rubo, and A. Kavokin, Polarization beats in ballistic propa-
gation of exciton-polaritons in microcavities, Phys. Rev. B 75,
075323 (2007).

[24] E. Kammann, T. C. H. Liew, H. Ohadi, P. Cilibrizzi, P. Tsotsis,
Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin, and P. G.
Lagoudakis, Nonlinear Optical Spin Hall Effect and Long-
Range Spin Transport in Polariton Lasers, Phys. Rev. Lett. 109,
036404 (2012).

[25] H. Ohadi, A. Dreismann, Y. G. Rubo, F. Pinsker, Y. del
Valle-Inclan Redondo, S. I. Tsintzos, Z. Hatzopoulos, P. G.
Savvidis, and J. J. Baumberg, Spontaneous Spin Bifurcations
and Ferromagnetic Phase Transitions in a Spinor Exciton-
Polariton Condensate, Phys. Rev. X 5, 031002 (2015).

[26] H. Ohadi, Y. del Valle-Inclan Redondo, A. Dreismann, Y. G.
Rubo, F. Pinsker, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis,
and J. J. Baumberg, Tunable Magnetic Alignment Between
Trapped Exciton-Polariton Condensates, Phys. Rev. Lett. 116,
106403 (2016).

[27] H. Ohadi, A. J. Ramsay, H. Sigurdsson, Y. del Valle-Inclan
Redondo, S. I. Tsintzos, Z. Hatzopoulos, T. C. H. Liew, I. A.
Shelykh, Y. G. Rubo, P. G. Savvidis, and J. J. Baumberg, Spin
Order and Phase Transitions in Chains of Polariton Condensates,
Phys. Rev. Lett. 119, 067401 (2017).

[28] T. K. Paraiso, M. Wouters, Y. Leger, F. Moriergenoud, and B.
Deveaudpledran, Multistability of a coherent spin ensemble in
a semiconductor microcavity, Nat. Mater. 9, 655 (2010).

[29] S. S. Gavrilov, A. V. Sekretenko, S. I. Novikov, C. Schneider, S.
Hofling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Polariton
multistability and fast linear-to-circular polarization conversion
in planar microcavities with lowered symmetry, Appl. Phys.
Lett. 102, 011104 (2013).

[30] T. C. H. Liew, I. A. Shelykh, and G. Malpuech, Polaritonic
devices, Phys. E (Amsterdam) 43, 1543 (2011).

[31] T. Gao, P. S. Eldridge, T. C. H. Liew, S. I. Tsintzos, G.
Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. G. Savvidis,
Polariton condensate transistor switch, Phys. Rev. B 85, 235102
(2012).

[32] A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino,
A. V. Kavokin, and A. Bramati, Exciton-polariton spin switches,
Nat. Photon. 4, 361 (2010).

[33] C. Schneider, K. Winkler, M. D. Fraser, M. Kamp, Y. Yamamoto,
E. A. Ostrovskaya, and S. Höfling, Exciton-polariton trapping
and potential landscape engineering, Rep. Prog. Phys. 80,
016503 (2017).

[34] C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P.
Schwendimann, Role of the exchange of carriers in elastic
exciton-exciton scattering in quantum wells, Phys. Rev. B 58,
7926 (1998).

[35] M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin,
A. Miard, A. Lemaître, J. Bloch, D. Solnyshkov, G. Malpuech,
and A. V. Kavokin, Polariton-polariton interaction constants in
microcavities, Phys. Rev. B 82, 075301 (2010).

[36] F. P. Laussy, I. A. Shelykh, G. Malpuech, and A. Kavokin,
Effects of bose-einstein condensation of exciton polaritons in
microcavities on the polarization of emitted light, Phys. Rev. B
73, 035315 (2006).

[37] I. A. Shelykh, Yuri G. Rubo, G. Malpuech, D. D. Solnyshkov,
and A. Kavokin, Polarization and Propagation of Polariton
Condensates, Phys. Rev. Lett. 97, 066402 (2006).

[38] N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-Oberli, and
B. Deveaud, Polaritonic feshbach resonance, Nat. Phys. 10, 500
(2014).

[39] N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-Oberli,
and B. Deveaud, Heterodyne spectroscopy of polariton spinor
interactions, Phys. Rev. B 90, 195307 (2014).

[40] N. Takemura, M. D. Anderson, M. Navadeh-Toupchi, D. Y.
Oberli, M. T. Portella-Oberli, and B. Deveaud, Spin anisotropic
interactions of lower polaritons in the vicinity of polaritonic
feshbach resonance, Phys. Rev. B 95, 205303 (2017).

[41] T. C. H. Liew, O. A. Egorov, M. Matuszewski, O. Kyriienko,
X. Ma, and E. A. Ostrovskaya, Instability-induced formation
and nonequilibrium dynamics of phase defects in polariton
condensates, Phys. Rev. B 91, 085413 (2015).

[42] G. Li, T. C. H. Liew, O. A. Egorov, and E. A. Ostrovskaya,
Incoherent excitation and switching of spin states in exciton-
polariton condensates, Phys. Rev. B 92, 064304 (2015).

[43] I. A. Shelykh, Yu. G. Rubo, and A. V. Kavokin, Renormalized
dispersion of elementary excitations in spinor polariton conden-
sates, Superlatt. Microstruct. 41, 313 (2007).

[44] D. D. Solnyshkov, I. A. Shelykh, N. A. Gippius, A. V. Kavokin,
and G. Malpuech, Dispersion of interacting spinor cavity
polaritons out of thermal equilibrium, Phys. Rev. B 77, 045314
(2008).

144511-13

https://doi.org/10.1103/PhysRevLett.118.085301
https://doi.org/10.1103/PhysRevLett.118.085301
https://doi.org/10.1103/PhysRevLett.118.085301
https://doi.org/10.1103/PhysRevLett.118.085301
https://doi.org/10.1103/PhysRevB.65.161310
https://doi.org/10.1103/PhysRevB.65.161310
https://doi.org/10.1103/PhysRevB.65.161310
https://doi.org/10.1103/PhysRevB.65.161310
https://doi.org/10.1103/PhysRevB.67.195321
https://doi.org/10.1103/PhysRevB.67.195321
https://doi.org/10.1103/PhysRevB.67.195321
https://doi.org/10.1103/PhysRevB.67.195321
https://doi.org/10.1016/j.physleta.2006.05.015
https://doi.org/10.1016/j.physleta.2006.05.015
https://doi.org/10.1016/j.physleta.2006.05.015
https://doi.org/10.1016/j.physleta.2006.05.015
https://doi.org/10.1103/PhysRevLett.105.256401
https://doi.org/10.1103/PhysRevLett.105.256401
https://doi.org/10.1103/PhysRevLett.105.256401
https://doi.org/10.1103/PhysRevLett.105.256401
https://doi.org/10.1103/PhysRevLett.106.257401
https://doi.org/10.1103/PhysRevLett.106.257401
https://doi.org/10.1103/PhysRevLett.106.257401
https://doi.org/10.1103/PhysRevLett.106.257401
https://doi.org/10.1103/PhysRevLett.112.093902
https://doi.org/10.1103/PhysRevLett.112.093902
https://doi.org/10.1103/PhysRevLett.112.093902
https://doi.org/10.1103/PhysRevLett.112.093902
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1103/PhysRevLett.95.136601
https://doi.org/10.1038/nphys676
https://doi.org/10.1038/nphys676
https://doi.org/10.1038/nphys676
https://doi.org/10.1038/nphys676
https://doi.org/10.1103/PhysRevB.75.075323
https://doi.org/10.1103/PhysRevB.75.075323
https://doi.org/10.1103/PhysRevB.75.075323
https://doi.org/10.1103/PhysRevB.75.075323
https://doi.org/10.1103/PhysRevLett.109.036404
https://doi.org/10.1103/PhysRevLett.109.036404
https://doi.org/10.1103/PhysRevLett.109.036404
https://doi.org/10.1103/PhysRevLett.109.036404
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevX.5.031002
https://doi.org/10.1103/PhysRevLett.116.106403
https://doi.org/10.1103/PhysRevLett.116.106403
https://doi.org/10.1103/PhysRevLett.116.106403
https://doi.org/10.1103/PhysRevLett.116.106403
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1103/PhysRevLett.119.067401
https://doi.org/10.1038/nmat2787
https://doi.org/10.1038/nmat2787
https://doi.org/10.1038/nmat2787
https://doi.org/10.1038/nmat2787
https://doi.org/10.1063/1.4773523
https://doi.org/10.1063/1.4773523
https://doi.org/10.1063/1.4773523
https://doi.org/10.1063/1.4773523
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1016/j.physe.2011.04.003
https://doi.org/10.1103/PhysRevB.85.235102
https://doi.org/10.1103/PhysRevB.85.235102
https://doi.org/10.1103/PhysRevB.85.235102
https://doi.org/10.1103/PhysRevB.85.235102
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1038/nphoton.2010.79
https://doi.org/10.1088/0034-4885/80/1/016503
https://doi.org/10.1088/0034-4885/80/1/016503
https://doi.org/10.1088/0034-4885/80/1/016503
https://doi.org/10.1088/0034-4885/80/1/016503
https://doi.org/10.1103/PhysRevB.58.7926
https://doi.org/10.1103/PhysRevB.58.7926
https://doi.org/10.1103/PhysRevB.58.7926
https://doi.org/10.1103/PhysRevB.58.7926
https://doi.org/10.1103/PhysRevB.82.075301
https://doi.org/10.1103/PhysRevB.82.075301
https://doi.org/10.1103/PhysRevB.82.075301
https://doi.org/10.1103/PhysRevB.82.075301
https://doi.org/10.1103/PhysRevB.73.035315
https://doi.org/10.1103/PhysRevB.73.035315
https://doi.org/10.1103/PhysRevB.73.035315
https://doi.org/10.1103/PhysRevB.73.035315
https://doi.org/10.1103/PhysRevLett.97.066402
https://doi.org/10.1103/PhysRevLett.97.066402
https://doi.org/10.1103/PhysRevLett.97.066402
https://doi.org/10.1103/PhysRevLett.97.066402
https://doi.org/10.1038/nphys2999
https://doi.org/10.1038/nphys2999
https://doi.org/10.1038/nphys2999
https://doi.org/10.1038/nphys2999
https://doi.org/10.1103/PhysRevB.90.195307
https://doi.org/10.1103/PhysRevB.90.195307
https://doi.org/10.1103/PhysRevB.90.195307
https://doi.org/10.1103/PhysRevB.90.195307
https://doi.org/10.1103/PhysRevB.95.205303
https://doi.org/10.1103/PhysRevB.95.205303
https://doi.org/10.1103/PhysRevB.95.205303
https://doi.org/10.1103/PhysRevB.95.205303
https://doi.org/10.1103/PhysRevB.91.085413
https://doi.org/10.1103/PhysRevB.91.085413
https://doi.org/10.1103/PhysRevB.91.085413
https://doi.org/10.1103/PhysRevB.91.085413
https://doi.org/10.1103/PhysRevB.92.064304
https://doi.org/10.1103/PhysRevB.92.064304
https://doi.org/10.1103/PhysRevB.92.064304
https://doi.org/10.1103/PhysRevB.92.064304
https://doi.org/10.1016/j.spmi.2007.03.006
https://doi.org/10.1016/j.spmi.2007.03.006
https://doi.org/10.1016/j.spmi.2007.03.006
https://doi.org/10.1016/j.spmi.2007.03.006
https://doi.org/10.1103/PhysRevB.77.045314
https://doi.org/10.1103/PhysRevB.77.045314
https://doi.org/10.1103/PhysRevB.77.045314
https://doi.org/10.1103/PhysRevB.77.045314


XINGRAN XU, YING HU, ZHIDONG ZHANG, AND ZHAOXIN LIANG PHYSICAL REVIEW B 96, 144511 (2017)

[45] M. O. Borgh, J. Keeling, and N. G. Berloff, Spatial pattern
formation and polarization dynamics of a nonequilibrium spinor
polariton condensate, Phys. Rev. B 81, 235302 (2010).

[46] N. Bobrovska and M. Matuszewski, Adiabatic approximation
and fluctuations in exciton-polariton condensates, Phys. Rev. B
92, 035311 (2015).

[47] C. Sturm, D. Solnyshkov, O. Krebs, A. Lemaître, I. Sagnes, E.
Galopin, A. Amo, G. Malpuech, and J. Bloch, Nonequilibrium
polariton condensate in a magnetic field, Phys. Rev. B 91,
155130 (2015).

[48] A. Askitopoulos, K. Kalinin, T. C. H. Liew, P. Cilibrizzi, Z.
Hatzopoulos, P. G. Savvidis, N. G. Berloff, and P. G. Lagoudakis,
Nonresonant optical control of a spinor polariton condensate,
Phys. Rev. B 93, 205307 (2016).

[49] L. Klopotowski, M. D. Martín, A. Amo, L. Vina, I. A. Shelykh,
M. M. Glazov, G. Malpuech, A. V. Kavokin, and R. André,
Optical anisotropy and pinning of the linear polarization of light
in semiconductor microcavities, Solid State Commun. 139, 511
(2006).

[50] A. Brunetti, M. Vladimirova, S. Cronenberger, D. Scalbert, M.
Nawrocki, and J. Bloch, Linear dichroism in a gaas microcavity,
Superlatt. Microstruct. 41, 429 (2007).

[51] J. Kasprzak, R. André, Le Si Dang, I. A. Shelykh, A. V. Kavokin,
Yuri G. Rubo, K. V. Kavokin, and G. Malpuech, Build up and
pinning of linear polarization in the bose condensates of exciton
polaritons, Phys. Rev. B 75, 045326 (2007).

[52] A. A. Elistratov and Yu. E. Lozovik, Coupled exciton-photon
bose condensate in path integral formalism, Phys. Rev. B 93,
104530 (2016).

[53] K. Dunnett and M. H. Szymańska, Keldysh field theory
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