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Nematic and chiral superconductivity induced by odd-parity fluctuations
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Recent experiments indicate that superconductivity in Bi2Se3 intercalated with Cu, Nb, or Sr is nematic with
rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral
superconductivity induced by odd-parity fluctuations. We show that odd-parity fluctuations in the two-component
Eu representation of D3d crystal point group can generate attractive interaction in both the even-parity s-wave and
odd-parity Eu pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion
can suppress s-wave pairing relative to Eu pairing, and thus the latter can have a higher critical temperature. Eu

pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model.
When s-wave and Eu pairings have similar instability temperature, we find an intermediate phase in which both
types of pairing coexist.
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I. INTRODUCTION

The theoretical identification of time-reversal invariant
topological insulators [1,2] has sparked a great discovery
of topological states in various forms of matter, including
insulators [3,4], superconductors [4], and semimetals [5,6].
A topological superconductor is enriched by its intrinsic
particle-hole symmetry, which protects zero-energy Majorana
modes on boundaries and in vortices [4]. Topological super-
conductivity is being actively studied in both theory [7–10]
and experiment [11,12].

Recent experiments have identified Bi2Se3 intercalated
with Cu, Nb, or Sr as a candidate system for topological
superconductor. Many bulk properties in the superconduct-
ing state of doped Bi2Se3 display a uniaxial anisotropy in
response to an in-plane magnetic field, which include Knight
shift [13], upper critical field [14,15], magnetic torque [16],
and specific heat [14]. Therefore, the superconducting state
breaks the lattice discrete rotational symmetry, and can be
termed as nematic. Specific heat [17] and penetration depth
measurement [18] have shown the absence of line nodes in the
superconducting state. Given these experimental observations,
the nematic state is most consistent with an Eu pairing
channel that has two components and odd-parity symmetry
[19]. Here Eu is one of the symmetry representations allowed
by the D3d point group of Bi2Se3. The odd-parity nematic
state can be a fully gapped time-reversal-invariant topological
superconductor [19]. So far, experimental evidence of surface
Majorana states associated with topological superconductivity
has been not conclusive [20,21]. On the theoretical side,
different aspects of the nematic states have been explored,
including bulk properties [22–24], surface states [25], vortex
states [26,27], and the interplay between Eu superconductivity
and magnetism [28,29].

The basic question, which remains largely open [30,31],
is the underlying microscopic mechanism for the odd-parity
nematic superconductivity in doped Bi2Se3. In the pioneering
work of Fu and Berg [32], they demonstrated that pairing
instability in the odd-parity channels can be generated by a
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simple type of attractive interaction in doped Bi2Se3. However,
the odd-parity A1u pairing channel has a higher critical
temperature than the Eu pairing channel in their model.

Odd-parity pairing can be induced by magnetic fluctuations,
as in the case of superfluid Helium-3 [33] and in strongly
correlated materials like Sr2RuO4 [34] and UPt3 [35]. It has
recently been proposed that odd-parity pairing can also be
induced by odd-parity fluctuations in a system with strong
spin-orbit coupling, time-reversal, and inversion symmetries
[36–38]. As doped Bi2Se3 is likely a weakly correlated
material, we study superconductivity induced by odd-parity
fluctuations in this paper.

In Ref. [36], Kozii and Fu have studied the most symmetric
group O(3) in three dimensions and found that odd-parity
fluctuation in pseudoscalar and vector representations generate
attractive interaction in both conventional even-parity s-
wave pairing channel and odd-parity pairing channels, while
fluctuation in the multipolar channel only generates attractive
interaction in the s-wave channel. Our work builds upon
Ref. [36]. We apply a similar approach to doped Bi2Se3 which
has a D3d point group symmetry. Symmetry classifications of
odd-parity fluctuations for O(3) and D3d groups are different.
Our main results can be summarized as follows. Odd-parity
fluctuations in the Eu representation of the D3d point group can
induce attractive interaction in both the s-wave and odd-parity
Eu pairing channels, but repulsive interaction in the other two
odd-parity A1u and A2u pairing channels. The competition
between s-wave and Eu pairings can be further tuned by
Coulomb repulsion, which has the strongest pair-breaking
effect in the s-wave channel.

The organization of this paper is the following. In Sec. II,
we study odd-parity fluctuations and superconductivity. The
fluctuations are possibly induced by electron-phonon interac-
tion. We use an approach that closely follows that in Ref. [36].
Essential details of the approach will be presented to make
the discussion self-contained. We obtain a phase diagram
(Fig. 1) as a function of phenomenological parameters γi

(i = 1,2,3) and U . γi , introduced in Eq. (5), parametrize
odd-parity particle-hole fluctuations in Eu representation. U is
the repulsive interaction in the s-wave pairing channel, which
can arise from Coulomb repulsion. There is a critical Uc, above
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FIG. 1. (a) χp(T )/χs(T ) at U = 0 as a function of γ1 and
γ2. (b) The surface with rainbow color represents Uc at which
χp(T ) = χs(T ). The odd-parity Eu superconductivity supports two
different phases: nematic and chiral, which are separated by the gray
boundaries. In (a) and (b), we used the normalization γ 2

1 + γ 2
2 + γ 2

3 =
1 without loss of generality. Therefore, γ 2

1 + γ 2
2 � 1.

which Eu pairing has a higher critical temperature compared
to the s-wave pairing. Eu superconductivity supports two
distinct phases [39]: nematic and chiral, both of which can
be realized in the parameter space of γi . In Sec. III, we
study a phase in the vicinity of Uc, where even-parity s-
wave and odd-parity Eu pairing can coexist. The coexistence
phase spontaneously breaks both time-reversal and lattice
discrete rotational symmetries. The gap structures in different
superconductivity phases are reviewed. In Sec. IV, we discuss
our work in the context of previous studies. We present some
related materials in the Appendixes. Appendix A shows that
an on-site repulsion in Bi2Se3 generates repulsive interaction
in both s-wave and A2u pairing channels, but not in the Eu

channel. In Appendixes B and C, we show that odd-parity
fluctuations in A1u (A2u) representation can generate A1u (A2u)
Cooper pairing besides the usual s-wave pairing.

Before ending the Introduction section, we mention that
odd-parity particle-hole fluctuations can become unstable and
lead to spontaneous parity-breaking phases [40], which have
been recently observed in Cd2Re2O7 [41].

II. TWO-COMPONENT ODD-PARITY FLUCTUATION
AND SUPERCONDUCTIVITY

Electronic bands in Bi2Se3 are doubly degenerate at every
k point due to the presence of both time-reversal and inversion
symmetries. When Bi2Se3 is intercalated with Cu, Nb, or
Sr, the chemical potential lies in the conduction bands. As
attractive interaction induced by fluctuations typically occurs
in a small energy window around chemical potential, we
will only retain the lowest conduction bands in our theory.
The Fermi surface of Bi2Se3 at low electron doping level is
approximately spherical [42,43]. Therefore, we approximate
the conduction band by a parabolic dispersion:

H0 =
∑

k

(
h̄k2

2m
− μ

)
c
†
kck, (1)

which is intended to describe physics near the chemical
potential μ. c

†
k represents a two-component spinor (c†k↑,c

†
k↓),

which is understood to be in the “manifestly covariant Bloch
basis” (MCBB) [40]. Here ↑ and ↓ represent pseudospin

TABLE I. Linear order expansion of odd-parity form factors in
different symmetry representations of D3d point group [39]. A1u

and Eu representations have multiple basis functions in lowest order
expansion. k̂i denotes ki/|k|.

Symmetry Form factors

A1u �
(1)
1 = 1√

2
(k̂xsx + k̂ysy), �

(2)
1 = k̂zsz

A2u �
(1)
2 = 1√

2
(k̂xsy − k̂ysx)

Eu

�(1)
x = k̂xsz,�

(2)
x = k̂zsx,�

(3)
x = 1√

2
(k̂xsy + k̂ysx)

�(1)
y = k̂ysz,�

(2)
y = k̂zsy,�

(3)
y = 1√

2
(k̂xsx − k̂ysy)

instead of real spin because of strong spin-orbit coupling.
Nevertheless, the pseudospin in the MCBB transforms in
the same way as the real spin of a free electron under
symmetry operations. In particular, the transformations under
time-reversal (T̂ ) and inversion (P̂) operations are

T̂ c
†
kαT̂ −1 = εαβc

†
−kβ, P̂c

†
kαP̂−1 = c

†
−kα, (2)

where εαβ is the fully antisymmetric tensor with ε↑↓ = 1.
To study electron-phonon interaction, we focus on phonons

at the Brillouin zone center, which can be classified by the
D3d point group of Bi2Se3. To be specific, we consider Eu

phonons that are odd under inversion and have two degenerate
modes. The coupling between electrons and Eu phonons can
be expressed as

Hel−ph,0 = φxQ̂x + φyQ̂y,Q̂a = 1

2

∑
k

c
†
k�a(k)ck, (3)

where the Hermitian operators (φx,φy) represent the Eu

phonons, and also take into account all coupling constants.
�x,y(k) are 2 × 2 matrices in the pseudospin space. As Hel−ph,0

should be invariant under all symmetries that the system has,
the operators Q̂x,y are Hermitian, time reversal symmetric,
and form a two-component Eu representation. By Hermiticity,
we can express �x,y(k) using identity matrix s0 and Pauli
matrices s:

�a(k) = D̃a(k)s0 + Da(k) · s, (4)

where both the scalar D̃a and the vector Da are real. By
time-reversal symmetry, we require D̃a(k) = D̃a(−k) and
Da(k) = −Da(−k). On the other hand, Q̂a is odd under
inversion, which leads to �a(k) = −�a(−k). Therefore, D̃a(k)
must vanish. In our low-energy theory, odd-parity phonons
couple to electron’s spin, which is possible due to the presence
of strong spin-orbit coupling.

The form factors �x,y(k) are further restricted by other point
group symmetries. There are three basis functions separately
for �x and �y to first order of k in the Eu representation, as
listed in Table I. In general, �x,y(k) is a linear combination of
these three basis functions:

�a(k) = γ1�
(1)
a (k) + γ2�

(2
a (k) + γ3�

(3)
a (k), (5)

where γi are real parameters that are not fixed by symmetries.
We will take γi as free parameters and study phase diagrams
in this parameter space.
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Hel−ph,0 describes the coupling between electrons and
zone-center phonon modes. We generalize the coupling to
include phonon modes at finite momentum:

Hel−ph =
∑

q

φx,qQ̂x(q) + φy,qQ̂y(q),

Q̂a(q) = 1

2

∑
k

c
†
k+q[�a(k + q) + �a(k)]ck. (6)

In the generalization, we assume that the phonon modes vary
smoothly in real space.

The electron-phonon coupling generates an effective
electron-electron interaction:

Hint = 1

	

∑
q

Vq[Q̂x(q)Q̂x(−q) + Q̂y(q)Q̂y(−q)], (7)

where 	 is the system size. By the definition in (6), we have
Q̂a(−q) = Q̂

†
a(q).

In Hint, we neglect the frequency dependence of Vq for
simplicity. The point group symmetries put constraints on the
momentum dependence of Vq : (1) Vq is an even function of q
and (2) it is invariant under a threefold rotation of q along ẑ

direction.
We now restrict the interaction to the Bardeen-Cooper-

Schrieffer (BCS) channel:

HBCS = 1

	

∑
k,k′

Vαβγ δ(k,k′)c†kαc
†
−kβc−k′γ ck′δ. (8)

The expression for the interaction vertex Vαβγ δ(k,k′) is given
by

Vαβγ δ(k,k′) = −1

8

∑
a=x,y

{Vk−k′[Da + D′
a] · sαδ[Da + D′

a] · sβγ − Vk+k′ [Da − D′
a] · sαγ [Da − D′

a] · sβδ}, (9)

where Da and D′
a are respectively shorthand notations for Da(k) and Da(k′). Here Da(k) is the vector representation of �a(k),

as introduced in (4).
To minimize the number of parameters in our phenomenogical study, we further approximate Vq by its value at zero momentum

V0. Here V0 < 0, representing attractive interaction induced by phonon fluctuations. Under this simplification, it is convenient to
separate Vαβγ δ to two parts: Vαβγ δ = (V e + V o)αβγ δ . The expressions for V e,o are as follows:

V e
αβγ δ(k,k′) ≈ −V0

8

∑
a=x,y

{(Da · s)αδ(Da · s)βγ − (Da · s)αγ (Da · s)βδ + (D′
a · s)αδ(D′

a · s)βγ − (D′
a · s)αγ (D′

a · s)βδ}

= V0

8

∑
a=x,y

(|Da|2 + |D′
a|2)εαβε

†
γ δ,

V o
αβγ δ(k,k′) ≈ −V0

8

∑
a=x,y

{(Da · s)αδ(D′
a · s)βγ + (Da · s)αγ (D′

a · s)βδ + (D′
a · s)αδ(Da · s)βγ + (D′

a · s)αγ (Da · s)βδ]}

= V0

4

∑
a=x,y

{[(Da · s)ε]αβ[(D′
a · s)ε]†γ δ − [(Da × s)ε]αβ · [(D′

a × s)ε]†γ δ}. (10)

Here V e and V o are respectively even and odd functions of
k and k′, and, therefore, generate correspondingly even- and
odd-parity pairings. In (10), the final expressions of V e,o are
presented in a form that is suitable for BCS decomposition. In
the following subsections II A and II B, we study the pairing
instabilities in even- and odd-parity channels separately and
finally compare them.

A. Even-parity instability

Even-parity pairing, or typically named as s-wave pairing,
is induced by V e. As we will discuss in the subsection II B,
the effective interaction Hint (7) always generates a larger
instability in s-wave channel compared to odd-parity channels.
To study competition between even- and odd-parity pairings,
we add a repulsive interaction to V e:

He = 1

	

∑
k,k′

[
V e

αβγ δ(k,k′) + U |V0|
4

εαβε
†
γ δ

]
c
†
kαc

†
−kβc−k′γ ck′δ

= V0

	

∑
k,k′

[g0(k) + g0(k′)]
[
1

2
εαβc

†
kαc

†
−kβ

][
1

2
ε
†
γ δc−k′γ ck′δ

]
,

(11)

where U > 0 characterizes the repulsive interaction and
g0(k) = (|Dx(k)|2 + |Dy(k)|2 − U )/2. For reasons to become
clear shortly, we make the following transformation:

g0(k) + g0(k′) = 1

2κ
[g+(k)g+(k′) − g−(k)g−(k′)],

g±(k) = g0(k) ± κ, (12)

where κ is a positive parameter. We choose κ such that

〈g+(k)g−(k)〉 = 0, (13)

where 〈. . .〉 denotes an average over Fermi surface, normalized
so 〈1〉 = 1. Using (12), He can be decomposed into two
channels:

He = V0

2κ	
(S†

+S+ − S
†
−S−),

S
†
± = 1

2

∑
kαβ

g±(k)εαβc
†
kαc

†
−kβ. (14)

Because g+(k) and g−(k) are orthogonal over the Fermi
surface as required by (13), the attractive and repulsive
channels respectively represented by S

†
+ and S

†
− are decoupled
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in the linearized gap equation. Therefore, we only consider S
†
+

in the following. The critical temperature Tc,s for S
†
+ channel

is determined by its linearized gap equation:

|V0|χs(Tc,s) = 1,

χs(T ) = 1

2κ

〈
1

2
Tr[g+(k)s0]2

〉
χ0(T ). (15)

Here χ0 is the standard superconductivity susceptibility:
χ0(T ) = N (0)

∫ ωD

−ωD
dε tanh[ε/(2T )]/(2ε), where N (0) is the

density of states at the Fermi energy, ωD is the cutoff energy
for attractive interaction, and T is the temperature.

B. Odd-parity instability

We turn to the V o interaction:

Ho = 1

	

∑
k,k′

V o
αβγ δ(k,k′)c†kαc

†
−kβc−k′γ ck′δ. (16)

We will decompose Ho into different odd-parity pairing
channels, which are classified into different representation of
the point group and generally take the form

F̂ (i)†
a = 1

2

∑
k,αβ

c
†
kα

[
�(i)

a (k)ε
]
αβ

c
†
−kβ. (17)

The form factor �a can be classified in the same way as
those used in the particle-hole channel, which are listed in
Table I. We use subscript a = 1 and 2 to stand for A1u and A2u

representation, respectively, and a = x and y to denote the two
components in Eu representation. The superscript i enumerates
different basis functions within the same representation.

Ho decomposed in terms of F̂
(i)†
a has the form

Ho = V0

	

{
−(γ1F̂

(1)
1 −

√
2γ2F̂

(2)
1

)†(
γ1F̂

(1)
1 −

√
2γ2F̂

(2)
1

)

− γ 2
1 F̂

(1)†
2 F̂

(1)
2 +

∑
a=x,y

∑
i,j

F̂ (i)†
a Wij F̂

(j )
a

}
, (18)

where the coefficient matrix W is symmetric and real:

W =

⎛
⎜⎝

γ 2
1 − γ 2

3 γ1γ2 2γ1γ3

γ1γ2 0 2γ2γ3

2γ1γ3 2γ2γ3 −γ 2
1

⎞
⎟⎠. (19)

Because V0 < 0, the interaction is repulsive for A1u and
A2u pairing channels in Ho so there is no superconductivity
instability in these two channels.

We diagonalize the matrix W to decompose the Eu

channels:

∑
i,j

F̂ (i)†
a Wij F̂

(j )
a =

3∑
ν=1

wν

[∑
i

λ
(ν)
i F̂ (i)

a

]†[∑
j

λ
(ν)
j F̂ (j )

a

]
,

(20)

where wν represents the νth largest eigenvalue of W and
(λ(ν)

1 ,λ
(ν)
2 ,λ

(ν)
3 ) is the corresponding normalized eigenvector.

We find that w1 � 0 and w2,3 � 0. w1 is generically positive,
and it is zero only when γ1,2 = 0 or γ1,3 = 0. Therefore,
there is generally one attractive Eu pairing channel and two

repulsive Eu channels. Furthermore, the three Eu channels are
decoupled in the linearized gap equation because (1) different
eigenvectors ofW are orthogonal and (2) different form factors
are orthogonal over the Fermi surface and have the same
normalization for the Fermi surface average:〈

1
2 Tr
[
�(i)

a (k)�(i ′)
a′ (k)

]〉 = 1
3δaa′δii ′ . (21)

We focus on the attractive Eu channel as summarized in the
following:

H̃o = w1V0

	
(�†

x�x + �†
y�y),

�†
a =

∑
i

λ
(1)
i F̂ (i)†

a = 1

2

∑
k,αβ

c
†
kα[ga(k)ε]αβc

†
−kβ, (22)

where we have introduced matrices gx,y that are defined
as ga(k) = ∑

i λ
(1)
i �(i)

a . The corresponding linearized gap
equation is

|V0|χp(Tc,p) = 1,

χp(T ) = w1
〈

1
2 Tr[gx(k)]2

〉
χ0(T ) = w1

3
χ0(T ), (23)

where Tc,p is the critical temperature for the Eu channel. χp(T )
remains the same if gx(k) is replaced by gy(k) in its expression,
which is a result of the discrete lattice rotational symmetry.

As a summary, the Eu phonon generates superconductivity
instability in both s-wave channel and Eu channel. We find
that χp(T ) is always weaker compared to χs(T ) when U = 0
[Fig. 1(a)], which means s wave has higher critical temperature
in this case. Nevertheless, χp(T ) can reach about 0.5χs(T ) in
a large parameter space of γi , indicating that the Eu pairing
instability can be strong. As U increases, χs(T ) decreases
while χp(T ) does not change. We can define a critical Uc

at which χp(T ) = χs(T ). The s-wave and odd-parity Eu

superconductivity have larger instability temperature below
and above Uc, respectively. The phase diagram as a function
of U and γi is summarized in Fig. 1(b).

We note that other phonon modes, which are not included in
our model, generally produce attractive interaction in s-wave
channel, but not necessarily in Eu channel. Some particular
phonon modes, for example, A2u modes discussed in Ap-
pendix C, can even have pair-breaking effects for Eu channel.
Therefore, the value of Uc obtained from our model should be
viewed as a lower bound of the critical repulsive interaction.

Assuming U > Uc, the Eu superconductivity pairing is
realized below Tc,p. As a two-component superconductivity,
Eu pairing generally has two forms: nematic and chiral. To
determine which one is realized, we study the Ginzburg-
Landau free energy up to fourth order in the Eu pairing order
parameter (ηx,ηy):

Fp = r1(|ηx |2 + |ηy |2) + b1(|ηx |2 + |ηy |2)2 + b2

∣∣η2
x + η2

y

∣∣2,
(24)

where the parameters r1 and b1,2 can be fully determined by
the interaction H̃o under the weak-coupling analysis:

r1 = 1

w1|V0| (1 − |V0|χp), b1 = 〈
Tr
[
g2

x(k)g2
y(k)

]〉
β0,

b2 = 1
2 〈Tr[gx(k)gy(k)]2〉β0, (25)
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where β0 = 7ζ (3)N (0)/(16π2T 2) and ζ (x) is the Riemann
zeta function. Here b1 is always positive, but the sign of b2 can
vary as a function of γi . When b2 < 0, a nematic state with
real order parameter (ηx,ηy) ∝ (cos θ, sin θ ) is favored. Here
the angle θ characterizes the nematic direction, and its value is
arbitrary for the free energy Fp that only includes terms up to
fourth order. For the case of b2 > 0, a chiral state with complex
order parameter (ηx,ηy) ∝ (1, ± i) is favored. The nematic and
chiral states respectively break the lattice rotational symmetry
and time-reversal symmetry. The phase boundary (b2 = 0)
between the nematic and chiral states is shown in Fig. 1(b),
indicating a large parameter space in which nematic state is
more favorable. It is intriguing that phononic mechanism can
induce time-reversal-breaking chiral superconductivity. The
competition between nematic and chiral states has been studied
as a function of λ

(1)
i in Ref. [39]. Our work reveals that λ

(1)
i

can be derived from parameters γi , the latter of which could be
extracted from ab initio study of electron-phonon interactions.

III. COEXISTENCE OF EVEN-
AND ODD-PARITY SUPERCONDUCTIVITY

At U = Uc, the s-wave and Eu channel have the same
critical temperature Tc,s = Tc,p = T ∗

c . To pin down the nature
of the superconductivity below T ∗

c , we study the Ginzburg-
Landau free energy that includes both s-wave and Eu pairing
order parameters:

F = Fs + Fp + Fsp, Fs = r0|ηs |2 + b0|ηs |4,
Fsp = b3

{
4(|ηx |2 + |ηy |2)|ηs |2 + [(

η2
x + η2

y

)
η∗2

s + c.c.
]}

, (26)

whereFs is the free energy for s-wave pairing characterized by
the order parameter ηs ,Fp is give in (24), andFsp describes the
coupling between s-wave and Eu pairings. Parameters in the
free energy are again obtained using weak-coupling analysis:
r0 = 2κ(1 − |V0|χs)/|V0|, b0 = 1

2 〈Tr[g0(k)s0]4〉β0, and b3 =
1
2 〈Tr[g2

x(k)g2
0(k)]〉β0. Here b0 and b3 are always positive.

To minimize F below T ∗
c at U = Uc, it is most instructive

to consider the case b2 < 0. F is then minimized by a state
where the s-wave and nematic superconductivity coexist and
have a relative phase difference ±π/2, i.e., ηs = ±i|ηs | and
(ηx,ηy) = |ηp|(cos θ, sin θ ). |ηs | and |ηp| are given by

|ηs |2 = −r0(b1 + b2) + r1b3

2
[
b0(b1 + b2) − b2

3

] ,

|ηp|2 = −r1b0 + r0b3

2
[
b0(b1 + b2) − b2

3

] . (27)

The coexistence of the two superconductivity order parameters
requires the expressions for |ηs |2 and |ηp|2 in (27) to be
positive, which we find to be generally satisfied in the γi

parameter space.
When U is away from Uc, the coexistence state can still

develop, but at a temperature lower than Tc,s when U < Uc or
Tc,p when U > Uc. The schematic phase diagram as a function
of U and T is shown in Fig. 2. This coexistence phase not
only breaks lattice discrete rotational symmetry because of the
presence of nematic order parameter, but also breaks time-
reversal symmetry because of the relative phase difference
±π/2 between the even- and odd-parity order parameters.

FIG. 2. Schematic phase diagram as a function of repulsive
interaction U (s-wave channel) and temperature T . In the vicinity
of Uc where s-wave and nematic superconductivity have the same
instability temperature, there is a phase where both types of
superconductivity coexist with a relative phase difference ±π/2.

In the case of b2 > 0, there can also be an intermediate
phase between s-wave and chiral phases in the vicinity of
Uc. This intermediate phase is characterized by nonzero
order parameters (ηs,η+,η−), where η± = ηx ± iηy . |η+| and
|η−| are generally unequal so both time-reversal and discrete
rotational symmetries are also broken.

We now discuss gap structures in different phases. In the
s-wave phase, the superconductivity gap is proportional to
g+(k) on the Fermi surface, which is fully gapped for weak
repulsion U .

To study gap structure in the nematic phase, we express
ga(k) for a = x and y in terms of a vector:

ga(k) = da(k) · s. (28)

For order parameter (ηx,ηy) given by |ηp|(cos θ, sin θ ), the gap
is proportional to |d| on the Fermi surface, where the vector d
is defined as cos θdx + sin θdy . |d| is finite everywhere on the
Fermi surface unless θ = nπ/3 (integer n takes value from 0
to 5). The nematic phase realizes a fully gapped topological
superconductor when θ �= nπ/3, as it has odd-parity pairing
and the Fermi surface encloses only one time-reversal invariant
momentum [32]. A hallmark of a time-reversal invariant
topological superconductor is that it supports Majorana modes
bound to surfaces and time-reversal-invariant vortex defects
[8,26]. When θ = nπ/3, the nematic pairing preserves one of
the mirror symmetries and the gap vanishes at two opposite
momenta located on the corresponding mirror-invariant plane
in the Brillouin zone [19]. Therefore, the nematic phase with
θ = nπ/3 realizes a topological Dirac superconductor with
Dirac point nodes in the bulk and Majorana arcs on certain
surfaces [25].

In the coexistence phase where s-wave and nematic order
parameter has a phase difference ±π/2, the Bogoliubov–de
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Gennes Hamiltonian is

H(k) = ε0(k)τz + |ηp|[d(k) · s]τx + |ηs |g+(k)τy, (29)

which is expressed in the basis (c†k↑,c
†
k↓,c−k↓, − c−k↑).

ε0(k) = h̄2k2/(2m) − μ and τx,y,z are Pauli matrices in the
Nambu space. Here |ηp| and |ηs | are respectively coupled to
τx and τy , reflecting the π/2 phase difference. The energy
spectrum of H(k) is ±√ε0(k)2 + |ηp|2|d(k)|2 + |ηs |2g+(k)2,
which is fully gapped for any value of θ . The surface Majorana
zero modes presented in the nematic phase also become gapped
in the coexistence phase because of broken time-reversal
symmetry. Such a state represents a superconducting analog
of an axion insulator [44], and can have thermal Hall effect
on the surface. Similar phase with coexistence of even- and
odd-parity pairing have been studied in Ref. [45] and recently
in Ref. [46]. A distinct feature of the coexistence phase that
we obtain is that it spontaneously breaks discrete rotational
symmetry besides time-reversal symmetry. We also note an
additional symmetry breaking in the coexistence phase. In
(29), H(k) satisfies an inversion symmetry H(k) = H(−k)
when |ηp| = 0, or an inversion-gauge symmetry τzH(k)τz =
H(−k) when |ηs | = 0. In the coexistence phase, neither the
inversion nor inversion-gauge symmetry remains.

The chiral phase characterized by (ηx,ηy) ∝ (1, ± i) real-
izes a topological Weyl superconductor with bulk Weyl point
nodes. The nodal structure has been extensively discussed in
Refs. [39,47]. When there is some mixing between s-wave
and chiral superconductivity near Uc, the Weyl points remain
robust unless two Weyl points with opposite chiralities meet
and annihilate each other.

IV. DISCUSSION

We discuss connections between our work and previous
studies. Reference [48] reached a general conclusion that
pure electron-phonon interaction in a system with time-
reversal and inversion symmetries can generate odd-parity
superconductivity, but its instability temperature cannot be
larger than that of the s-wave superconductivity. Our results
are consistent with this general statement, and we also show
that local Coulomb repulsion can tip the balance in favor of
odd-parity pairing. In Ref. [49], Wan and Savrasov presented
a first principle study of phonon mediated superconductivity
in Cu doped Bi2Se3. Encouragingly, they found that pure
electron-phonon interaction does generate odd-parity pairings
in both Eu and A2u channels besides the usual even-parity
channel. Their calculation indicated that the phonon-mediated
instability is stronger in A2u channel compared to Eu channel.
In Appendix A, we show that an on-site repulsive interaction
in Bi2Se3 generates repulsion in both the s-wave channel and
A2u channel, but not in Eu channel. In general a finite-range
repulsive interaction could also suppress Eu pairing [32].
However, the on-site interaction presumably leads to the
most dominant repulsion, which could make Eu pairing more
favorable compared to s-wave and A2u pairings. It is interesting
to reexamine electron-phonon interaction in metal doped
Bi2Se3 using ab initio calculation. In particular, parameters γi ,
which determine whether nematic or chiral superconductivity
is realized in our theory, could be extracted from such a

study. In our work, we do not attempt to determine the critical
temperature of Eu superconductivity. Such a task requires a
detailed knowledge about electron-phonon interaction, which
we leave for ab initio calculation. The study of Wan and
Savrasov [49] has shown that the electron-phonon interaction
is capable of producing a critical temperature of 3–5 K in the
A2u channel.

In summary, we studied odd-parity fluctuations as a possible
mechanism for the nematic superconductivity observed in
doped Bi2Se3.
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APPENDIX A: ON-SITE REPULSION IN Bi2Se3

In this Appendix, we show that an on-site repulsive
interaction in Bi2Se3 generates repulsive interaction in s-wave
and A2u pairing channels. We start from a two-orbital k · p

model of Bi2Se3:

H0(k) = Mσx + v(kx s̃y − ky s̃x)σz + vzkzσy − μ̃, (A1)

where σa and s̃a are Pauli matrices respectively in the orbital
and spin spaces. Here μ̃ and the chemical potential μ in (1)
are related by μ̃ = μ + M . H0(k) is expressed in the basis
dk = (dk,1+,dk,1−,dk,2+,dk,2−)T, where the subscript 1 and 2
label the two orbitals and ± are the spin indices. Here the two
orbitals are mainly derived from Se pz orbitals localized on
top and bottom layers of the Bi2Se3 unit cell [50]. The two
orbitals are interchanged under inversion operation. H0(k) has
four bands, corresponding to the twofold generate valence
bands and another twofold degenerate conduction band near
the band gap.

We consider an on-site repulsive interaction within each
orbital:

HU = 2Ũ

	

∑
pkk′

∑
σ=1,2

d
†
p+k,σ+d

†
p−k,σ−d p−k′,σ−d p+k′,σ+. (A2)

Here Ũ is positive for repulsive interaction. We decompose
HU into BCS channels:

HU ≈ Ũ

	

∑
k,k′

{[∑
σ

d
†
k,σ↑d

†
−k,σ↓

][∑
σ ′

d−k′,σ ′↓dk′,σ ′↑

]

+
[∑

σ

σ (σσ )
z d

†
k,σ↑d

†
−k,σ↓

]

×
[∑

σ ′
σ (σ ′σ ′)

z d−k′,σ ′↓dk′,σ ′↑

]}
, (A3)

where the first and second lines respectively represent even-
and odd-parity pairing channels. Finally we project them to
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the conduction bands [39]∑
k,σ

d
†
k,1↑d

†
−k,1↓ + d

†
k,2↑d

†
−k,2↓

≈ 1

2

∑
k

∑
αβ

c
†
kαεαβc

†
−kβ,

∑
k,σ

d
†
k,1↑d

†
−k,1↓ − d

†
k,2↑d

†
−k,2↓

≈ 1

2

∑
k

∑
αβ

c
†
kα

[
v

μ̃
(kxsy − kysx)ε

]
αβ

c
†
−kβ. (A4)

By looking up Table I, it is clear that the odd-parity pairing in
(A4) belongs to A2u representation.

APPENDIX B: ODD-PARITY FLUCTUATION
IN A1u REPRESENTATION

In Bi2Se3, there is no Brillouin-zone-center phonon mode in
A1u representation [51]. Nevertheless, we can still theoretically
study superconductivity induced by odd-parity particle-hole
fluctuation in A1u representation. The procedure is parallel
to that presented in Sec. II. The main difference is the form
factor:

�1(k) = γ1�
(1)
1 (k) + γ2�

(2)
1 (k), (B1)

where �
(1)
1 (k) and �

(2)
1 (k), given in Table I, are two basis

functions in A1u representation up to first order in k.
The effective interaction induced by A1u fluctuation can

again be decomposed into even- and odd-parity pairing
channels:

He = V0

	

∑
k,k′

[g0(k) + g0(k′)]
[

1

2
εαβc

†
kαc

†
−kβ

][
1

2
ε
†
γ δc−k′γ ck′δ

]
,

Ho = V0

	

{(
γ1F̂

(1)
1 + γ2F̂

(2)
1

)†(
γ1F̂

(1)
1 + γ2F̂

(2)
1

)

− γ 2
1 F̂

(1)†
2 F̂

(1)
2 −

∑
a=x,y

(
γ1√

2
F̂ (1)

a − γ2F̂
(2)
a

)†

×
(

γ1√
2
F̂ (1)

a − γ2F̂
(2)
a

)}
, (B2)

where He describes attractive interaction in even-parity chan-
nel, and the form factor is g0(k) = γ 2

1 (k̂2
x + k̂2

y)/4 + γ 2
2 k̂2

z /2,
which does not include repulsive interaction in the s-wave
channel. In Ho of Eq. (B2), A1u pairing channel has attractive

interaction, while the other two odd-parity channels are
repulsive.

The critical temperature in the even-parity and odd-parity
A1u channels are separately given by the corresponding
linearized gap equations:

|V0|χs(Tc,s) = 1, |V0|χp(Tc,p) = 1,

χs(T )

χ0(T )
= γ 2

1 + γ 2
2

6
+
√

1
60

(
2γ 4

1 + 2γ 2
1 γ 2

2 + 3γ 4
2

)
,

χp(T )

χ0(T )
= γ 2

1 + γ 2
2

3
. (B3)

The ratio χp/χs takes its minimum value 0.85 when γ1 = 0,
and its maximum value 1 when γ1/γ2 = √

2. Therefore, s-
wave and A1u pairings can have the same critical temperature
even without considering the repulsive interaction in the s-
wave channel [36,37,46].

APPENDIX C: ODD-PARITY FLUCTUATION
IN A2u REPRESENTATION

There are A2u phonon modes at the Brillouin zone center
in Bi2Se3. The corresponding form factor has only one basis
function to linear order in k:

�2(k) = γ1�
(1)
2 (k) = γ1√

2
(k̂xsy − k̂ysx). (C1)

In the effective interaction, the even-parity part He takes
similar form as that in (B2), but the form factor go(k) is
replaced by γ 2

1 (k̂2
x + k̂2

y)/4. The odd-parity part Ho is given
by

Ho = γ 2
1 V0

	

{
−F̂

(1)†
1 F̂

(1)
1 + F̂

(1)†
2 F̂

(1)
2 − 1

2

∑
a=x,y

F̂ (1)†
a F̂ (1)

a

}
,

(C2)

where only the A2u pairing channel has an attractive interac-
tion.

The linearized gap equations for even-parity and A2u

channels are respectively expressed as

γ 2
1 |V0|χs(Tc,s) = 1, γ 2

1 |V0|χp(Tc,p) = 1,

χs(T )

χ0(T )
= 1

6
+
√

1

30
,

χp(T )

χ0(T )
= 1

3
. (C3)

Here the ratio χp/χs is about 0.95, indicating that the critical
temperature for the two channels can be comparable. For
simplicity, the gap equations in (C3) do not include the
repulsive interaction discussed in Appendix A.
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