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Magnon-phonon coupling effects on the indirect K -edge resonant inelastic x-ray scattering
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We compute the effects of magnon-phonon coupling on the indirect K-edge bimagnon resonant inelastic x-ray
scattering (RIXS) intensity spectrum of a square lattice Heisenberg antiferromagnet. We analyze the effects of
competing nearest and next-nearest magnetic and magnon-phonon coupling interaction in the RIXS spectrum,
for both the antiferromagnetic (AF) and the collinear antiferromagnetic (CAF) phases of the model. Utilizing
the Dyson-Maleev representation of spin operators, the Bethe-Salpeter ladder approximation scheme for the
bimagnon interacting channel, and considering the lowest-order magnon-phonon-magnon scattering interaction,
we highlight distinct features in the x-ray spectrum. Considering damping effects, arising due to the presence of
phonons, we find that in the AF phase the RIXS intensity spectrum attains a maximum value primarily localized
around the K (± π

2 ,± π

2 ) point. For the CAF phase, the intensity is broadly distributed with a significant scattering
intensity located around the Y (± π

2 ,0) point. Furthermore, in the CAF phase for suitable anisotropy, nearest-, and
next-nearest-neighbor interaction parameters, the phonon effects can manifest as a distinct peak both below and
above the bimagnon peak. Such a feature is in contrast to the antiferromagnetic spectrum where the effect due
to the phonon peak was located consistently beyond the bimagnon peak in the high-energy end of the spectrum.
Additionally, in the CAF phase we find the RIXS bimagnon-phonon spectrum to be more sensitive to anisotropy
compared to its antiferromagnetic counterpart. We conclude that the ultimate effect of magnon-phonon effects
in the indirect K-edge RIXS spectrum, in both the antiferromagnetic and the collinear antiferromagnetic phases,
is an observable effect.

DOI: 10.1103/PhysRevB.96.144436

I. INTRODUCTION

Improved x-ray instrumentation resolution coupled with
advanced x-ray synchrotron radiation sources have established
resonant inelastic x-ray scattering (RIXS) as a significant
experimental tool to explore condensed matter systems [1,2].
Experimental [3–18], theoretical [19–29], and computational
[16,23,28,30–32] approaches have investigated RIXS across
a wide variety of systems in various dimensions for a range
of elementary excitations at different x-ray edges. While the
effect of magnon-magnon interactions on the indirect K-edge
RIXS spectrum has been investigated both experimentally and
theoretically in the antiferromagnetic (AF) and the collinear
antiferromagnetic (CAF) phases [19,21–24], until now there
is no study (theoretical or experimental) which exclusively
investigates the role of many-body magnon-phonon interaction
on the indirect K-edge bimagnon RIXS intensity spectrum.
At the K edge spin angular momentum is conserved in the
indirect RIXS process due to the lack of spin-orbit coupling in
the 1s electron. Thus, the double spin-flip bimagnon excitation
is the leading process at the K edge. For the higher angular
momentum shells (L,M,N, . . .) with finite orbital momentum
single spin-flip excitations are allowed [1].

As a probe, RIXS has a high degree of sensitivity towards
the local environment. Thus, it is a natural question to ask the
following: How can phonons which produce lattice modula-
tions (local vibrations) affect the magnetic RIXS spectrum?
How can a multimagnon RIXS excitation spectrum, such as
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that of a bimagnon, be affected by phonons? The interplay
of phonons with bimagnons offers the potential to uncover
physical phenomena which have been overlooked until now.
With next-generation beamlines being constructed globally
and experimental initiatives likely to probe phonon effects
in correlated materials, answers to the above questions are
imperative and timely. The theoretical study in this paper offers
insight on the key experimentally observable signatures which
delineate magnon-magnon and magnon-phonon interaction
effects in the indirect K-edge RIXS spectrum.

Past investigation on spatial anisotropy and significant
frustration within the square lattice Heisenberg magnet has
led to the prediction of a two-peak bimagnon structure [24].
The proposed two-peak structure was a consequence of the
bimagnon spectrum’s sensitivity to microscopic magnetic
interactions. But, in real materials lattice vibrations do matter.
Thus, a realistic theoretical model which provides a true depic-
tion of the materials under investigation with a comprehensive
account of magnon-phonon coupling is called for.

The coupling between magnetic and lattice degrees of
freedom can generate novel physical phenomena. For example,
it can effect electronic degrees of freedom [33,34], induce
multiferroic order [35], create magnon-phonon excitation
effects in Raman spectroscopy [30], and have an effect on
thermal conductivity [36] and optical conductivity [37]. Past
theoretical studies on magnon-phonon interaction in quantum
Heisenberg magnets have alluded to the fact that at low but
finite temperatures, phonons do play a role on influencing
magnetic interaction. This fact has been especially studied
within the context of experimental and theoretical studies of
spin-phonon interaction on the Raman spectra of Heisenberg
antiferromagnets. In these studies it was found that significant
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broadening effects dominate both the single-magnon and two-
magnon line shapes. Theoretical calculations have attributed
the anomalous broadening of the two-magnon spectrum in
cuprates to phonon effects [38–43].

Unfortunately, Raman spectroscopy is a zero wave-vector
probe [44]. Therefore, it limits the amount of physical
information that can be extracted. But, RIXS is not. The
high-energy x-ray photons in the RIXS experiments allow
for large transferred momenta, with the zero wave vector
reproducing the Raman response. Thus, it is appropriate
to consider RIXS to explore the full energy wave-vector
range to study the effects of magnon-phonon coupling on the
bimagnon excitation spectrum. Recently, there have been some
experimental [33,45,46] and theoretical [34,46,47] studies
devoted to the study of electron-phonon coupling and its effect
on the RIXS spectrum. We note that our study is different from
the existing ones since we are primarily concerned with the
role of magnon-phonon interaction on the bimagnon excitation
spectrum.

In this paper, we compute the effects of magnon-phonon
coupling on the indirect K-edge bimagnon resonant inelastic
x-ray scattering (RIXS) intensity spectrum of a square lattice
Heisenberg antiferromagnet. The magnetic model theoreti-
cally investigated includes both the nearest-neighbor (NN) and
next-nearest-neighbor (NNN) magnetic and magnon-phonon
interaction effects. Since the Heisenberg magnetic model
is considered up to the NNN interaction [see Eq. (1)],
to be consistent in our theoretical formulation we include
the magnon-phonon coupling beyond the NN interaction.
Using Dyson-Maleev representation of spin operators, the
Bethe-Salpeter ladder approximation scheme for the bimagnon
interacting channel, and considering the lowest-order magnon-
phonon-magnon scattering interaction we elucidate the distinct
features in the RIXS x-ray spectrum.

Our analysis of the RIXS spectrum, performed for a wide
range of model parameters in both the antiferromagnetic and
the collinear antiferromagnetic phases of this model, suggests
several contrasting behaviors in the antiferromagnetic and
the collinear antiferromagnetic phases. We consider damping
effects in our calculation due to the presence of longitudinal
acoustic phonons in our model. We find that in the AF
phase, the RIXS intensity spectrum attains a maximum value
primarily localized around the K (±π

2 ,±π
2 ) point. Within

the nearest-neighbor model, the system is weakly sensitive
to the presence of magnon-phonon interactions. For most
parameter choices, the feature developed is a shoulder in the
RIXS spectrum. But, inclusion of the NNN magnetic and
magnon-phonon coupling within the isotropic model leads
to a splitting of the peak. In contrast, for the CAF phase in
the isotropic model the intensity is broadly distributed with a
significant scattering intensity located around the Y (±π

2 ,0)
point. The rest of the spectral weight appears along the K

to M (±π,0) path in the Brillouin zone (BZ). Furthermore,
in the CAF phase for suitable anisotropy, nearest-, and next-
nearest-neighbor interaction parameters, the phonon effects
can manifest itself as a distinct peak both below and above
the bimagnon peak. Such a feature is in contrast to the AF
spectrum where the effect due to the phonon peak was located
consistently beyond the bimagnon peak in the high-energy end

J2

Jx

Jy

(a) Rigid Lattice (b) Deformabale lattice

FIG. 1. Spatially anisotropic Heisenberg model on a square
lattice with exchange interactions Jx,y (nearest neighbor along x,y

bond) and J2 (next-nearest neighbor). (a) Lattice with rigid bonds.
The exchange constants are independent of any spatial variation.
(b) Lattice with deformable bonds modeled via spatially dependent
exchange interactions Jx,y(rij ) and J2(rij ).

of the spectrum. Within the anisotropic model the AF RIXS
spectrum is merely broadened without any special peak or
shoulder development. However, in the CAF phase we find
the RIXS bimagnon-phonon spectrum to be more sensitive
to anisotropy compared to its antiferromagnetic counterpart.
The final RIXS spectra are a result of intricate many-body
magnon-magnon interactions, influenced by the effect of
many-body magnon-phonon interactions.

This paper is organized as follows. In Sec. II A we introduce
the NN and NNN Heisenberg Hamiltonian including the
effects of phonons. In Sec. II B we write explicitly the contribu-
tion arising from the spin-phonon coupling. In Sec. III we state
the RIXS operator, the bimagnon Green’s function, the corre-
sponding Bethe-Salpeter equation, and the phonon Green’s
function contributions. In Sec. IV we present and discuss our
results on the effect of damping and magnon-phonon coupling
(Sec. IV A), phonon contribution to bimagnon RIXS spectrum
(Sec. IV B), frustration and magnon-phonon coupling effects
on the AF phase bimagnon phonon spectrum (Sec. IV C), CAF
phase RIXS spectrum (Sec. IV D), and anisotropy effects in
both the AF and CAF phases (Sec. IV E). Finally, in Sec. V
we provide our conclusions.

II. MODEL

A. Heisenberg Hamiltonian

The frustrated J1-J2 model [48–50] and its spatially
anisotropic Jx-Jy-J2 version [51–53] can support both the
(π,π )-AF and the (π,0)-CAF phases. There are several
excellent material realizations of these models in cuprates [54],
pnictides [55,56], and complex vanadium oxide compounds
[57]. For our purpose we generalize the model to include the
effect of spin-lattice interaction by expanding the spatially
dependent exchange interactions Jx,y(rij ) and J2(rij ) (see
Fig. 1). The presence of lattice vibrations (phonons) causes the
ionic distances to vary, which in turn are expected to induce
magnon-phonon interactions [58]. We write the spin S = 1

2
anisotropic Jx-Jy-J2 Heisenberg model on a two-dimensional
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square lattice as

H = 1

2

∑
i,δx

Jx(ri i+δx
)Si · Si+δx

+ 1

2

∑
i,δy

Jy(ri i+δy
)Si · Si+δy

+ 1

2

∑
i,δ2

J2(ri i+δ2 )Si · Si+δ2 , (1)

where δ2 = δx + δy. Assuming first-order deviations from
the lattice equilibrium positions, the superexchange coupling
J (rij ) can be expanded as [40,43]

J (rij ) = J (Rij ) + (ui − uj ) · ∇J (r)|r=Rij
, (2)

where ri = Ri + ui , Ri is the equilibrium position of the site i,
and ui is the displacement operator due to the lattice vibration.
Henceforth, we set Jx(Rij ) = Jx , Jy(Rij ) = Jy , and J2(Rij ) =
J2. The phonon lattice deviations can be quantized resulting
in a Hamiltonian which consists of a pure spin contribution
Hs and one with a magnon-phonon contribution Hsp. We
next analyze the model within the standard Dyson-Maleev
spin-wave theory approach outlined in Appendix A. Note, the
choice of representation Holstein-Primakoff or Dyson-Maleev
does not affect the results of our paper. In the AF phase we
have

Hs = E0 + E1

∑
k

κk(εk − 1)

+E1

∑
k

κkεk(α†
kαk + β

†
−kβ−k) + H 4. (3)

In the above equation, we have E0 = −N
2 JxS

2z(1 + ζ )(1 −
2η

1+ζ
), where N is the total number of sites and the coordination

number z = 2. We also introduce the interaction ratios ζ =
Jy/Jx and η = J2/Jx , and E1 = JxSz(1 + ζ ) in the AF phase.
In addition, we define the following functions:

γ1(k) = cos kx + ζ cos ky

1 + ζ
, γ2(k) = cos kx cos ky, (4)

κk = 1 − 2η

1 + ζ
[1 − γ2(k)], γk = γ1(k)

κk
,

εk =
√

1 − γ 2
k . (5)

The higher-order term H 4 is given by the expression

H 4 = E1

2S

∑
k

[Ak(α†
kαk + β

†
−kβ−k) + Bk(α†

kβ
†
−k + αkβ−k)]

+ E1

SN

∑
1,2,3,4

δG(1 + 2 − 3 − 4)u1u2u3u4

× (
V

(4)
1234α

†
1β

†
−4β−2α3 + · · · ), (6)

where the uk and vk coefficients arise in the Bogoliubov trans-
formation with vk = −xkuk . The momentum labels k1,k2, . . .

are abbreviated as 1,2, . . . . We invoke the conservation of
momentum rule up to the reciprocal lattice vector G with
δG(1 + 2 − 3 − 4). The constant and the quadratic terms in H 4

arising from normal ordering procedure are known as Oguchi

corrections. The coefficients are

Ak = A1
1 − γ1(k)γ (k)

εk

− �A1 (cos kx − cos ky)
γ (k)

εk

+A2
1 − γ2(k)

εk

,

A1 = 2
N

∑
p

γ1(p)γ (p) + εp − 1

εp

,

�A1 = 2

N

∑
p

ζ

(1 + ζ )2
(cos px − cos py)

γ (p)

εp

,

A2 = 2η

1 + ζ

2

N

∑
p

1 − εp − γ2(p)

εp

. (7)

Note, the Ak equation is different from the previously reported
expression [51,59–61]. We find an additional contribution �A1

that was previously ignored (please see Appendix A). At
the bimagnon RIXS spectrum level the presence or absence
of this Oguchi correction term does not change the results
quantitatively or qualitatively. However, with the inclusion
of anisotropic interactions and magnon-phonon coupling it is
important to consider an accurate expression. The AF phase
magnon-phonon RIXS spectrum is mildly affected, but, the
CAF phase spectrum is unaffected. The quartic interaction
vertex in Eq. (6), relevant to our calculation, is given by the
expression

V
(4)

1234 = −[γ1(3 − 2)x3x4 + γ1(4 − 2) + γ1(3 − 1)x1x2x3x4

+ γ1(4 − 1)x1x2 − γ1(2)x4 − γ1(1)x1x2x4

− γ1(3 + 4 − 2)x3 − γ1(3 + 4 − 1)x1x2x3]

+ 2η

2(1 + ζ )
[γ2(4 − 2) + γ2(4 − 1) + γ2(3 − 2)

+ γ2(3 − 1) − γ2(2) − γ2(1) − γ2(3 + 4 − 2)

− γ2(3 + 4 − 1)](x2x4 + �G x1x3), (8)

where �G = eiGx . In the CAF phase, Hs and H 4 have the same
form as in the AF phase with the new redefined coefficients

γ ′
1(k) = cos kx(1 + 2η cos ky)

1 + 2η
, γ ′

2(k) = cos ky,

κ ′
k = 1 − ζ

1 + 2η
(1 − γ ′

2(k)), γ ′
k = γ ′

1(k)

κ ′
k

,

A′
k = A′

1
1 − γ ′

1(k)γ ′(k)

ε′
k

− �′
A1

cos kx(1 − cos ky)
γ ′(k)

ε′
k

+A′
2

1 − γ ′
2(k)

ε′
k

,

�′
A1

= 2

N

∑
p

2η

(1 + 2η)2
cos px(1 − cos py)

γ ′(p)

ε′
p

. (9)

The analytical expressions for E′
1, A′

1, A′
2, and V

′(4)
1234 can be

obtained by using the replacement ζ ↔ 2η. The same replace-
ment will also generate the coefficients γ ′

1(k), γ ′
2(k), κ ′

k , and
ε′
k in A1, A2, and V

(4)
1234.
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B. Magnon-phonon Hamiltonian

In this section we focus on the magnon-phonon Hamil-
tonian contribution Hsp, generalized to include both the
effects of spatial anisotropy and further neighbor interactions.
Introducing the Taylor expansion of the exchange coefficients
as mentioned earlier, we can write an expression for the
magnon-phonon Hamiltonian in the AF phase as

Hsp =
∑
i,δx

(ui − ui+δx
) · ∇Jx(ri i+δx

)SA
i · SB

i+δx

+
∑
i,δy

(ui − ui+δy
) · ∇Jy(ri i+δy

)SA
i · SB

i+δy

+ 1

2

∑
i,δ2

[(ui − ui+δ2 ) · ∇J2(ri i+δ2 )SA
i · SA

i+δ2

+ (ui+δx
− ui+δx+δ2 ) · ∇J2(ri+δx i+δ2 )SB

i+δx
· SB

i+δx+δ2
],

(10)

where the quantized displacement operator ui expression is
given by

ui =
∑
q,λ

√
h̄

2Nm�
ph
λ (q)

e(q,λ)e−iq·Ri ϕqλ, (11)

where �
ph
λ (q) is the dispersion of phonon in branch λ,

e(q,λ) is the phonon’s polarization vector, ϕqλ is the
phonon operator, and m is the reduced ionic mass. To
recast Eq. (10) into its spin-wave version, we use the
standard Dyson-Maleev transformation, followed by a Fourier
transformation, and a subsequent Bogoliubov transforma-
tion to obtain the bosonized magnon-phonon Hamiltonian
expression as

Hsp = S
E1√
N

∑
k1,k2

∑
q,λ

δG(k1 − k2 − q)ϕqλ gx(q,λ)

× [
Aλ(k1,k2,q)α+

k2
αk1 + Bλ(k1,k2,q)β+

−k1
β−k2

+Cλ(k1,k2,q)α+
k2

β+
−k1

+ Dλ(k1,k2,q)αk1β−k2

]
.

(12)

In the above we have introduced the notation

gx(q,λ) = |∇Jx |
E1

√
h̄

2m�
ph
λ (q)

. (13)

The spin-phonon coupling coefficients Aλ, Bλ, Cλ, and Dλ in
Eq. (12) are given in Appendix B for both the AF and the CAF
phases. Furthermore, in the following discussion we introduce
the magnon-phonon coupling ratios for anisotropy and NNN,
respectively, as

�ζ = gy(q,λ)/gx(q,λ), �η = g2(q,λ)/gx(q,λ). (14)

It is possible to estimate a value for the NN magnon-
phonon coupling from experimental data [62]. For example,
in cuprates such as RBa2Cu3O6 (R = Eu, Y), the change in
the exchange energy ∇Jx for the Cu-O bond ranges between

2500–6000 cm−1 Å
−1

. The exchange constant itself varies
between 800–1000 cm−1 (96–120 meV). With h̄�ph in a
20–40 meV interval and the reduced mass of a Cu-O bond

system equal to 2.13 × 10−23 g, we find that gx lies between
0.076–0.41. For our calculations we have chosen gx = 0.28.
Reliable experimental data or theoretical estimates on further
neighbor magnon-phonnon couplings are either rare to find or
difficult to obtain. Thus, for our purposes we make an educated
guess of the physically reasonable ratios to simulate the RIXS
spectrum. We hope this provides further motivation, both
experimentally and theoretically, to investigate the physics of
the further neighbor magnon-phonon coupled quantum magnet
systems.

III. BIMAGNON AND MAGNON-PHONON RIXS

In this section we present the expression for the bimagnon
RIXS scattering operator generalized to the cases of spatially
dependent exchange interaction. Utilizing the standard defini-
tion of the bimagnon RIXS operator, valid within the ultrashort
core-hole lifetime (UCL) expansion [63–65], we have

Ôq =
√

2

N

∑
ij

eiq·ri J (rij )Si · Sj . (15)

In its bosonized form, the operator reads as

Ôq =
∑

k

N (q,k)(α†
k+qβ

†
−k + αkβ−k−q) + · · · , (16)

where we have

N (q,k) = E1

{[
1 + γ1(q) + 2η

1 + ζ
[γ2(k + q) + γ2(k) − 1

− γ2(q)]

]
(uk+qvk + ukvk+q)

+ [γ1(k + q) + γ1(k)] × (uk+quk + vkvk+q)

}
.

(17)

N ′(q,k) in the CAF phase can be obtained with the re-
placement ζ ↔ 2η along with the corresponding coefficients
γ ′

1(k), γ ′
2(k),u′

k , and v′
k . In the following discussion, the

energy is in units of E1. The scattering intensity is given
by

I (q,ω) ∝
∑

n

|〈n|Ôq|0〉|2δ(ω − ωn0), (18)

where |n〉 represents the excited states in the RIXS intermedi-
ate process, and |0〉 is the ground state. The Fourier transform
of the zero-temperature time-ordered Green’s function is
given by

iG(q,ω) =
∫ ∞

0
dt eiωt 〈0|T Ô†

q(t)Ôq(0)|0〉. (19)

Then, the scattering intensity can be expressed from the
Green’s function as

I (q,ω) = − 1

π
Im G(q,ω). (20)

The perturbations for our problem are magnon-magnon
interaction and magnon-phonon-magnon interaction. The
Feynman diagrams are shown in Fig. 2. The Green’s function
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k+q −k

k+q

k'+q

−k

−k'

k+q

k'+q

−k

−k'

k+q

k'+q

−k

−k'

(a)

(b)

FIG. 2. Feynman diagrams used in the RIXS calculation. Single
(double) arrows represent α (β) magnon. Dashed line represents
magnon-magnon interaction. Wiggly line represents magnon- phonon
interaction. k and q represent momentum and momentum transfer.
(a) Magnon-magnon interaction vertices used in the ladder ap-
proximation Bethe-Salpeter scheme. (b) Magnon-phonon interaction
vertex (truncated at the lowest order due to an approximation similar
to Migdal’s theorem).

G(q,ω) consists of a bimagnon part Gbm(q,ω) and a magnon-
phonon-magnon part Gm-ph-m(q,ω). The bimagnon part is
given by [21,24]

iGbm(q,t) = 2

N

∑
k,k′

N (q,k)N (q,k′)�(q,t ; k,k′), (21)

where the interacting two-magnon correlation function is
defined as

i�(q,t ; k,k′) = 〈0|T αk+q(t)β−k(t)α†
k′+q(0)β†

−k′(0)|0〉.
(22)

The bimagnon contribution including the effects of magnon-
magnon interaction [66,67] can be be solved exactly using the

Bethe-Salpeter equation. The interaction u1u2u3u4V
(4)

1234 in the
spin Hamiltonian can be decomposed into 18 channels (see
Appendix C)

1

S
uk1+qukuk+quk1V

(4)
k1+q,k,k+q,k1

= ν̂(k)�̂(q)ν̂T (k1), (23)

where ν̂(k) has dimensions of 1 × 18, �̂ is a matrix of di-
mension 18 × 18. The expressions for each of these quantities
in the AF and CAF phases are given in Appendix C. After
summing the ladder diagrams exactly [21,24,68,69], the two-
magnon Green’s function can be expressed as a combination
of several matrix products as

Gbm(q,ω) = G0(q,ω) + Ĝ(q,ω)�̂(q)[1̂

− R̂(q,ω)�̂(q)]−1ĜT (q,ω), (24)

where 1̂ is a unit matrix of dimensions 18 × 18, and we define
the noninteracting Green’s function and the noninteracting
polarization propagator, respectively, as

G0(q,ω) = 2

N

∑
k

N (q,k)2�0(q,ω; k), (25)

�0(q,ω; k) = (ω − ωk+q − ωk + i0+)−1, (26)

and

Ĝ(q,ω) = 2

N

∑
k

N (q,k)�0(q,ω; k)ν̂(k), (27)

R̂(q,ω) = 2

N

∑
k

�0(q,ω; k)ν̂T (k)ν̂(k). (28)

The leading order of the magnon-phonon-magnon part (the
zeroth-order part is already included in bimagnon part) Gm-ph-m

takes the form

Gm-ph-m(q,ω) = 2

N2
S2 ×

∑
k,k′,λ

N (q,k)N (q,k′)g2
x(k − k′,λ) × Aλ(k + q,k′ + q,k − k′)B∗

λ (k′,k,k′ − k)

× 2

ω − ωk − ωk′+q − �
ph

λ (k − k′) + i�k + i�k′+q

1

ω − ωk − ωk+q + i�k + i�k+q

× 1

ω − ωk′ − ωk′+q + i�k′ + i�k′+q
. (29)

In the above Green’s functions we have introduced the variable
�k as magnon damping due to magnon-phonon-magnon
interaction. We use the energy dispersion ωk = κkεk + Ak/2S

in units of E1.

IV. BIMAGNON RIXS SPECTRA RESULTS

In this section, we systematically investigate the effect
of damping, magnon-phonon interaction, magnon-magnon
interaction, and anisotropy on the K-edge bimagnon phonon
indirect RIXS spectrum. We compute the RIXS spectrum

along the BZ traversing the path �:(0,0) → K : (π
2 , π

2 ) →
M:(π,0) → �:(0,0).

A. Damping and magnon-phonon coupling effects

We consider longitudinally polarized acoustic phonons
e(q,λ) ‖ q, with a dispersion given by [40]

�
ph
λ (q) = �phm(q), (30)

where

m(q) =
√

sin2(qx/2) + sin2(qy/2). (31)
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FIG. 3. AF phase (isotropic nearest-neighbor case): (a), (b)
Undamped noninteracting (G0) and interacting bimagnon (Gbm)
indirect RIXS intensity spectrum plots at the M and K points in
BZ. (c) Effect of damping on the bimagnon RIXS plot for a range
of damping parameter �k values computed at the K point in BZ.
(d) Effect of nearest-neighbor magnon-phonon coupling g1 at fixed
damping parameter value of �k = 0.15E1 at the K point in BZ. (e),
(f) Combined effect of the nearest-neighbor phonon contribution g1

and damping on the bimagnon RIXS spectrum at both the M and K

points. Note, the presence of magnon-phonon coupling necessitates
the inclusion of damping in the RIXS calculation. �ph = 0.15E1 is
used in (d)–(f). G refers to total (please see Sec. III for definition
of G).

To keep the discussion and analysis of the model tractable, we
first investigate the isotropic version of the model. In spatially
isotropic limit of the model ζ = 1, we set Jx = Jy = J1 and
gx = gy = g1. Thus, the overall energy scale is given by
E1 = 2J1Sz. The choice of (ζ,η) parameters is dictated by
the magnetization phase diagram of the Jx-Jy-J2 model [51].

In the absence of a magnetic field, magnons in a 2D square
lattice are not damped [70,71]. However, with the inclusion of
magnon-phonon interaction, the lifetimes of the magnons are
affected [40,41]. In the regime where the sound velocity is less
than the magnon velocity, there exist spontaneously occurring
decay processes where a magnon can decompose into a
magnon and a phonon. Even at zero temperature, quantum
fluctuations arising from magnon-phonon interactions can
damp spin-wave excitations. Therefore, presence of spin-
lattice couplings can have an effect on the RIXS spectrum.
Thus, a proper treatment of the magnon-phonon interaction
should consider the damping effect.

In Fig. 3 we display our calculations of the energy
renormalization and damping effects within our model. In

Figs. 3(a) and 3(b) we display the undamped RIXS intensity
spectrum at the M and the K points of the BZ in the
AF phase. Note, the presence of the van Hove singularity
like sharp peaks in the noninteracting case (dashed lines).
These singular structures disappear when we include the
two-magnon interaction (red solid lines) [21]. The scattering
of two magnons indeed changes the structure of the response
function, implying that it is no longer a simple product of the
RIXS matrix element and the density of states.

In Fig. 3(c) we study damping on the RIXS spectrum.
With increasing damping strength the spectrum is broadened,
more so in the low-energy regime where the spectrum height
decreases with increasing damping strength. The high-energy
tail of the intensity pattern is not much affected. While
damping could potentially arise from various microscopic
mechanisms within a 2D square lattice problem, in this paper
we mainly focus on the effect of magnon-phonon interaction.
Also, for simplicity, we consider a phenomenological phonon-
induced constant damping to describe the imaginary part of
the self-energy. Introducing a constant damping to describe
phonon effects is inspired by some previous theories of
two-magnon Raman spectra in cuprates [62,72]. Thus, in our
calculations we set the damping parameter �k = 0.1E1. In
Fig. 3(d) we display the trend on the RIXS spectrum that
would arise when the NN magnon-phonon coupling g1 is
increased in strength. Clearly, beyond a threshold magnon-
phonon coupling strength, a shoulder peak develops. However,
the mere inclusion of the magnon-phonon coupling g1 is not
strong enough to induce any further features. In Figs. 3(e)
and 3(f) we display the combined effects of damping and
magnon-phonon coupling. At this stage, the NNN interaction
is set to zero.

B. Phonon contribution to RIXS spectrum

The origin of magnon-phonon interaction is dynamical in
nature. Thus, summing up an infinite set of diagrams, as
in the bimagnon RIXS intensity case, can pose a serious
calculation challenge. To proceed with the calculation, we
note that higher-order terms generated by the magnon-phonon
interaction decrease rapidly. Thus, akin to the celebrated
Migdal theorem used within the context of electron-phonon
scattering in superconductivity, we consider only the leading-
order magnon-phonon diagram [see Fig. 2(b)].

In Fig. 4 we showcase the effects of g1 on the magnon-
phonon-magnon intensity as the NNN frustration parameter
is varied from 0.1 to 0.3. It appears that for a given NNN
interaction strength, within the isotropic model, the magnon-
phonon interaction causes a rearrangement of the spectral
strength. While at the M point the reshuffling of the spectral
weight is quite prominent, that at the K point is minimally
affected. However, for both the locations in the BZ the spectral
intensity scales in proportion to the magnon-phonon coupling.

In Figs. 5(a) and 5(b) we investigated the magnon-phonon-
magnon RIXS intensity spectrum as a function of η. It is
observed that with increasing interaction, the spectra have a
downshift. Note, the miniscule unphysical negative contribu-
tions in the intensity is an artifact of the exclusion of the
zeroth-order contribution from the magnon-phonon-magnon
vertex function [43]. The final total RIXS intensity which

144436-6



MAGNON-PHONON COUPLING EFFECTS ON THE . . . PHYSICAL REVIEW B 96, 144436 (2017)

g1=0.1
g1=0.14
g1=0.2
g1=0.24
g1=0.28

0.0 0.5 1.0 1.5 2.0 2.5
−0.004

−0.002

0.000

0.002

0.004

/2J1Sz
(a)

In
te

ns
ity

(a
rb

.u
ni

ts
)

=0.1

q=( ,0)

−
1

Im G

g1=0.1
g1=0.14
g1=0.2
g1=0.24
g1=0.28

0.0 0.5 1.0 1.5 2.0 2.5

−0.015
−0.010
−0.005

0.000
0.005
0.010
0.015

/2J1Sz
(b)

In
te

ns
ity

(a
rb

.u
ni

ts
)

=0.1

q=( /2, /2)

−
1

Im G

g1=0.1
g1=0.14
g1=0.2
g1=0.24
g1=0.28

0.0 0.5 1.0 1.5 2.0 2.5
−0.005

0.000

0.005

0.010

0.015

/2J1Sz
(c)

In
te

ns
ity

(a
rb

.u
ni

ts
)

=0.2

q=( ,0) −
1

Im G

g1=0.1
g1=0.14
g1=0.2
g1=0.24
g1=0.28

0.0 0.5 1.0 1.5 2.0 2.5

−0.02

−0.01

0.00

0.01

/2J1Sz
(d)

In
te

ns
ity

(a
rb

.u
ni

ts
)

=0.2

q=( /2, /2) −
1

Im G

g1=0.1
g1=0.14
g1=0.2
g1=0.24
g1=0.28

0.0 0.5 1.0 1.5 2.0 2.5
−0.005

0.000

0.005

0.010

0.015

0.020

/2J1Sz
(e)

In
te

ns
ity

(a
rb

.u
ni

ts
)

=0.3

q=( ,0) −
1

Im G

g1=0.1
g1=0.14
g1=0.2
g1=0.24
g1=0.28

0.0 0.5 1.0 1.5 2.0 2.5

−0.03

−0.02

−0.01

0.00

0.01

0.02

/2J1Sz
(f)

In
te

ns
ity

(a
rb

.u
ni

ts
)

=0.3

q=( /2, /2)

−
1

Im G

FIG. 4. Magnon-phonon-magnon intensity line spectrum com-
parison at the M and K points in BZ for varying g1 and η values
in the AF phase. �η = 0, �k = 0.1E1, and �ph = 0.15E1. Gm-ph-m

refers to magnon-phonon-magnon Green’s function [see Eq. (29)].

includes the contribution from the phonon-induced ladder
interactions restores this term and naturally yields an overall
physical positive RIXS intensity spectrum (see Figs. 6 and 7).
The observed spectral downshift is a characteristic feature
that is also noticed in neutron [73,74] and Raman spectrum
[75] with frustrated interactions. Our present calculations
confirm that such an effect can also occur even within
the magnon-phonon-magnon channel. Interestingly, while the
trend towards downshift itself is robust, the peak-dip-peak
structure appears to be dependent on the BZ location. At the
characteristic (π,0) (M point in BZ) the intensity pattern is
complementary to that observed at the K point. In Figs. 5(c)
and 5(d) the effect of �ph on the magnon-phonon-magnon
intensity at M and K points is displayed to give a sense of
how the RIXS spectrum may be affected. We observe within
our choice of parameters �ph does not affect the intensity
spectrum.

From Figs. 5(e) and 5(f) it is clearly evident that with
increasing NNN interaction η the phonon RIXS spectrum
undergoes a shift in the spectral weight. While most of the
weight is localized around the K point, with enhanced NNN
interaction some of the weight disperses towards the BZ
corner. The 2D plot suggests that the phonon effects are
primarily localized along the (π/2,π/2) → (π,0) line in BZ.
However, with the inclusion of the NNN phonon interaction,
the spectral leaking is subdued, with the spectrum becoming
more localized at the K point [see Figs. 5(g) and 5(h)].

FIG. 5. AF phase: (a), (b) Magnon-phonon-magnon intensity line
spectrum computed at the M and K points in BZ. (c), (d) Effect of
�ph in magnon-phonon-magnon intensity at M and K points. (e)–(h)
2D magnon-phonon-magnon RIXS intensity plot across the BZ for a
range of frequency values computed with g1 = 0.28. The maximum
contribution is localized around the K : ( π

2 , π

2 ) point. With increasing
frustration, the spectrum contribution enhances in strength around
the BZ edge. (g), (h) Variation with respect �η = 0.2,0.6. Damping
parameter fixed to a value of �k = 0.1E1 in all plots. �ph = 0.15E1

in (a), (b) and (e), (h).

C. Effect of frustration and magnon-phonon coupling

In Fig. 6 we show the combined effect of including NNN
interaction and phonon coupling in the calculation. From
Figs. 6(a) and 6(b) it is clearly evident that NNN interaction
introduces a downshift of the spectral weight. In Figs. 6(c)
and 6(d) we show the dependence on the RIXS spectrum
as the magnon-phonon coupling is introduced. Comparing
the line plots for the η = 0.3 case with that in Figs. 6(c)
and 6(d), we notice that including magnon-phonon coupling
causes a peak development, in addition to introducing further
broadening. The broadening effect is more prominent at the
M point. We notice from Figs. 6(e)–6(h) that the effect of
next-nearest-neighbor magnon-phonon coupling is minimal
at the M point, however, has a significant effect at the K

point. Further pronounced effects of the NNN magnon-phonon
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FIG. 6. AF phase: (a), (b) Interacting bimagnon RIXS inten-
sity with constant damping �k = 0.1E1. (c)–(h) Total (interacting
bimagnon plus magnon-phonon) indirect RIXS intensity spectrum
plots for various next-nearest-neighbor (η), phonon nearest (g1), and
phonon next-nearest-neighbor (�η) interaction parameters. We use
�ph = 0.15E1 in the plots (c)–(h). See Sec. III for definitions of G

and Gbm.

coupling contribution are clearly visible in Fig. 6(h). A 2D
RIXS intensity pattern tracking the evolution of the total
interacting RIXS peak development is shown in Fig. 7. We
observe that the most prominent signal is at the K point with
satellite peaks due to magnon-phonon coupling developing as
the strength of the NNN contribution is enhanced. The effect of
the NN magnon-phonon coupling appears to be minimal within
this model. This fact is evident by observing the relatively
unchanged RIXS spectrum features when the magnon-phonon
coupling is changed.

D. RIXS intensity in CAF phase

The 2D quantum Heisenberg AF can support a collinear AF
phase for relevant magnetic interaction parameters [51]. While
the AF phase provides information on the parent magnetic
compounds of cuprates, the CAF phase magnets are relevant
in understanding how pnictide superconductivity can arise. To
provide a comprehensive understanding of the model under
study, in Fig. 8 we display our findings for the CAF phase.
Compared to Fig. 7 for the AF phase where the RIXS intensity
peaks at the K : (π

2 , π
2 ) point, in the CAF phase the RIXS

FIG. 7. AF phase, 2D total (interacting bimagnon plus magnon-
phonon) indirect RIXS intensity spectrum plots for various next-
nearest-neighbor (η), phonon nearest-neighbor coupling (g1), and
phonon next-nearest-neighbor (�η) interaction parameters across the
entire BZ. Damping has been set to �k = 0.1E1.

spectral intensity weight attains its maximum value near (π
2 ,0).

Further comparison of the magnon-phonon-magnon RIXS
plots in the two phases, Figs. 8(b) and 5(e)–5(h), suggests
that the magnon-phonon interaction creates additional satellite
structures in the CAF phase for suitable interaction parameters.
The spectral intensity of the magnon-phonon correlation is
shown in Fig. 8(b) where we notice that the intensity is spread
over a much wider region in the BZ compared to the AF phase.
The additional ripples in the CAF phase spectrum arise from
the magnon-phonon-magnon spectrum. Systematic studies of
the damping effect are displayed in Fig. 9. Similar to the AF
phase, with increasing damping the RIXS bimagnon curves
are broadened out. For the magnon-phonon-magnon plots,
strong damping tends to suppress the satellite structures in
the spectrum more at the K point, compared to the one at the
Y point.

E. Anisotropy, frustration, and magnon-phonon coupling

In Fig. 10, we compare and contrast the effects of spatial
anisotropy between the AF and the CAF phases to reveal
subtle differences between the RIXS response. A prominent
unique two-shoulder peak is seen to develop in the CAF phase,
which for the AF phase has typically been absent for the
physical parameter region that was investigated. While in the
AF phase the effects of anisotropy overpower the magnon-
phonon effects, in the CAF phase the phonon peak structures
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FIG. 8. RIXS intensity in CAF phase, with ζ = 0.9, η = 1, gx =
0.28, �ζ = 0.9, �η = 0.7, �ph = 0.15E1, �k = 0.1E1. (a) Damped
bimagnon RIXS intensity, (b) magnon-phonon-magnon intensity, (c)
total interacting intensity taking into account the effect of phonons.

are evident. These differences are crucial in distinguishing
between the two different types of magnetic ordering. We also
point out that at the Y point the CAF phase spectrum, the
magnon-phonon coupling introduces peaks both at the low-
and high-energy spectrum. This feature is a consequence of the
multisatellite spectral feature of the magnon-phonon spectrum
as seen in Fig. 9.

FIG. 9. CAF phase damping effects at the K : ( π

2 , π

2 ) and the
Y : (π/2,0) points. �k = 0.1E1, �ph = 0.15E1, with E1 = JxSz(1 +
2η) in the CAF phase. (a), (b) Interacting bimagnon contribution.
(c), (d) Magnon-phonon-magnon contribution.

V. CONCLUSION

Although the theory of magnon-magnon interactions on
RIXS spectrum is well established, there has been no thor-
ough investigation on the role of phonons on the bimagnon
magnetic spectrum of RIXS in the insulating 2D quantum
Heisenberg magnet. In particular, microscopic investigations
of the interaction between spin and lattice degrees of freedom
and its effects on the bimagnon excitation are completely
missing. In this paper, we provide a comprehensive theory
of magnon-phonon interaction effects in both the AF and
CAF phases at the K edge. We compute the RIXS spectrum
including the effects of damping, magnon-phonon coupling
both at the NN and NNN levels in the AF and CAF phases.
A detailed comparison between the two spectra reveals stark

FIG. 10. (a), (c) AF phase interacting RIXS intensity with
anisotropy effects. (b), (d) CAF phase interacting RIXS line plots
with anisotropy effects. �k = 0.1E1 and �ph = 0.15E1, where E1

takes the expression appropriate to either the AF or the CAF phase.
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differences in the location of the maximum intensity points,
the nature of the effect of phonon on the two-peak structure,
and the distribution of the indirect RIXS spectral weight.
From the perspective of experiments, the local sensitivity of
magnon-phonon correlation on the bimagnon spin dynamics
should be clearly evident in the nature of the varying spectral
shapes. The unique differences manifest when anisotropy
and frustration are taken into account. The final outcome
of the magnon-phonon effects in the indirect K-edge RIXS
spectrum, in both the AF and CAF phases, is an experimentally
observable feature. Based upon our analysis, we infer that the
spectrum is a delicate balance between competing nearest- and
next-nearest-neighbor magnon and magnon-phonon coupling
strengths. Finally, we hope our work will inspire future exper-
imental investigation on the hitherto unexplored consequences
of phonon effects on bimagnon RIXS dynamics at the K edge.
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APPENDIX A: DYSON-MALEEV, FOURIER,
AND BOGOLIUBOV TRANSFORMATIONS

The standard two-sublattice Dyson-Maleev representation
used to bosonize the spin operator is given by

S+
i = (2S)1/2(1 − a

†
i ai/2S)ai,

S−
i = (2S)1/2a

†
i ,

Sz
i = S − a

†
i ai (A1)

for the sublattice A, and

S+
j = (2S)1/2b

†
j (1 − b

†
j bj /2S),

S−
j = (2S)1/2bj ,

Sz
j = −S + b

†
j bj (A2)

for the sublattice B. In the above a (a†) represents the bosonic
annihilation (creation) operator on sublattice A and b (b†)
represents the bosonic annihilation (creation) operator on
sublattice B. Introducing the Fourier transform of bosonic
operator we have

ai =
√

2

N

∑
k

eik·ri ak,

bj =
√

2

N

∑
k

eik·rj bk, (A3)

where N is the total number of sites. Using the Bogoliubov
transformations

a
†
k = ukα

†
k + vkβ−k,

b−k = vkα
†
k + ukβ−k, (A4)

we diagonalize the quadratic terms in Hs . The expressions for
uk and vk are given by

uk =
√

1 + εk

2εk
, vk = −sgn(γ (k))

√
1 − εk

2εk
= −ukxk.

(A5)

Further useful relations used in the calculation include u2
k +

v2
k = 1/εk ad ukvk = −γk/(2εk). The additional �A1 Oguchi

correction term Ak (A
′
k) in the AF phase is given by

2

N

∑
2

γ1(1 − 2)u1v1u2v2

=
∑

2

γ1(1)γ1(2)u2v2 + �A1 (cos k1x − cos k1y)
γ (1)

2ε1
,

(A6)

and in the CAF phase by

2

N

∑
2

γ ′
1(1 − 2)u′

1v
′
1u

′
2v

′
2

=
∑

2

γ ′
1(1)γ ′

1(2)u′
2v

′
2 + �′

A1
cos k1x(1 − cos k1y)

γ ′(1)

2ε′
1

.

(A7)

APPENDIX B: MAGNON-PHONON VERTEX

The spin-phonon vertices Aλ, Bλ, Cλ, Dλ are short for
Aλ(k1,k2,q), Bλ(k1,k2,q), Cλ(k1,k2,q), Dλ(k1,k2,q). Their
analytical expressions are given by⎛

⎜⎝
Aλ

Bλ

Cλ

Dλ

⎞
⎟⎠ =

⎛
⎜⎝

u1u2 v1v2 u1v2 v1u2

v1v2 u1u2 v1u2 u1v2

v1u2 u1v2 v1v2 u1u2

u1v2 v1u2 u1u2 v1v2

⎞
⎟⎠

⎛
⎜⎝

�A

�B

�C

�D

⎞
⎟⎠

+�E

⎛
⎜⎝

u1u2 + �G v1v2

v1v2 + �G u1u2

v1u2 + �G u1v2

u1v2 + �G v1u2

⎞
⎟⎠. (B1)

For the AF phase we define

�A = i[χx �x(q) + χy �ζ �y(q)],

�B = i[χx �x(k1 − k2) + χy �ζ �y(k1 − k2)],

�C = i{χx[�x(k2 + q) − �x(k2)]

+χy �ζ [�y(k2 + q) − �y(k2)]},
�D = i{χx[�x(k1) − �x(k1 − q)]

+χy �ζ [�y(k1) − �y(k1 − q)]},
�E = iχ2 �η[�2(k1) − �2(k2) − �2(q)], (B2)
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where �x(k), �y(k), �2(k) are short for �x(q,λ,k),
�y(q,λ,k), and �2(q,λ,k), respectively,

i�x(q,λ,k) = −
∑
δx

ê(q,λ) · δ̂xe
−ik·δx ,

i�y(q,λ,k) = −
∑
δy

ê(q,λ) · δ̂ye
−ik·δy ,

i�2(q,λ,k) = −
∑
δ2

ê(q,λ) · δ̂2e
−ik·δ2 . (B3)

and

χx = 1 − 2

NS

∑
p

(
v2

p + cos pxupvp

)
,

χy = 1 − 2

NS

∑
p

(
v2

p + cos pyupvp

)
,

χ2 = 1 − 2

NS

∑
p

(1 − cos kpx cos kpy)v2
p, (B4)

For the CAF phase, we define

�A = i[χ ′
x �x(q) + χ ′

2 �η �2(q)],

�B = i[χ ′
x �x(k1 − k2) + χ ′

2 �η �2(k1 − k2)],

�C = i{χ ′
x[�x(k2 + q) − �x(k2)]

+χ ′
2 �η[�2(k2 + q) − �2(k2)]},

�D = i{χ ′
x[�x(k1) − �x(k1 − q)]

+χ ′
2 �η[�2(k1) − �2(k1 − q)]},

�E = iχ ′
y �ζ [�y(k1) − �y(k2) − �y(q)], (B5)

where �x(k), �y(k), �2(k) are the same as in AF phase. But,

χ ′
x = 1 − 2

NS

∑
p

(
v′2

p + cos pxu
′
pv′

p

)
,

χ ′
y = 1 − 2

NS

∑
p

(1 − cos kpy)v′2
p ,

χ ′
2 = 1 − 2

NS

∑
p

(
v′2

p + u′
pv′

p cos kpx cos kpy

)
. (B6)

APPENDIX C: VERTICES AND � MATRIX

The vertex u1u2u3u4 V
(4)

1234 can be transformed into a
separable form [see Eq. (23)] with 18 channels and a q-
dependent �(q) matrix. The definition of these channels is

TABLE I. Definition of the channels vn(k) for AF and CAF phases.

n AF vn(k) CAF v′
n(k)

1 uk+quk cos kx u′
k+qu

′
k cos kx

2 uk+quk sin kx u′
k+qu

′
k sin kx

3 uk+quk cos ky u′
k+qu

′
k cos kx cos ky

4 uk+quk sin ky u′
k+qu

′
k sin kx cos ky

5 uk+qvk u′
k+qu

′
k cos kx sin ky

6 vk+quk u′
k+qu

′
k sin kx sin ky

7 vk+qvk cos kx u′
k+qv

′
k

8 vk+qvk sin kx v′
k+qu

′
k

9 vk+qvk cos ky v′
k+qv

′
k cos kx

10 vk+qvk sin ky v′
k+qv

′
k sin kx

11 uk+qvk cos kx cos ky v′
k+qv

′
k cos kx cos ky

12 uk+qvk sin kx cos ky v′
k+qv

′
k sin kx cos ky

13 uk+qvk cos kx sin ky v′
k+qv

′
k cos kx sin ky

14 uk+qvk sin kx sin ky v′
k+qv

′
k sin kx sin ky

15 vk+quk cos kx cos ky u′
k+qv

′
k cos ky

16 vk+quk sin kx cos ky u′
k+qv

′
k sin ky

17 vk+quk cos kx sin ky v′
k+qu

′
k cos ky

18 vk+quk sin kx sin ky v′
k+qu

′
k sin ky

given in Table I [25]. The nonzero matrix elements of �(q) in
AF phase are given by

�(q)1,1 = −θ, �(q)1,5 = −θ, �(q)2,2 = −θ,

�(q)3,3 = −φ,

�(q)3,5 = −φ, �(q)4,4 = −φ, �(q)5,5 = 2η θ γ2(q),

�(q)5,6 = −γ1(q)/S, �(q)5,7 = −θ cos qx,

�(q)5,8 = θ sin qx, �(q)5,9 = −φ cos qy,

�(q)5,10 = φ sin qy, �(q)5,11 = −2η θ γ2(q),

�(q)5,12 = 2η θ γ sc
2 (q), �(q)5,13 = 2η θ γ cs

2 (q),

�(q)5,14 = −2η θ γ ss
2 (q), �(q)6,1 = −θ cos qx,

�(q)6,2 = θ sin qx, �(q)6,3 = −φ cos qy,

�(q)6,4 = φ sin qy,

�(q)6,5 = −γ1(q)/S, �(q)6,6 = 2η θ γ2(q),

�(q)6,15 = −2η θ γ2(q), �(q)6,16 = 2η θ γ sc
2 (q),

�(q)6,17 = 2η θ γ cs
2 (q), �(q)6,18 = −2η θ γ ss

2 (q),

�(q)7,6 = −θ, �(q)7,7 = −θ, �(q)8,8 = −θ,

�(q)9,6 = −φ,

�(q)9,9 = −φ, �(q)10,10 = −φ, �(q)11,5 = −2η θ,

�(q)11,11 = 2η θ, �(q)12,12 = 2η θ, �(q)13,13 = 2η θ,

�(q)14,14 = 2η θ, �(q)15,6 = −2η θ, �(q)15,15 = 2η θ,

�(q)16,16 = 2η θ, �(q)17,17 = 2η θ, �(q)18,18 = 2η θ,
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where

θ = 1

S(1 + ζ )
, φ = ζ

S(1 + ζ )
,

γ sc
2 (q) = sin qx cos qy, γ cs

2 (q) = cos qx sin qy,

γ ss
2 (q) = sin qx sin qy. (C1)

The nonzero matrix elements of �′(q) in CAF phase are given by

�′(q)1,1 = −θ ′, �′(q)1,7 = −θ ′, �′(q)2,2 = −θ ′,

�′(q)3,3 = −2η θ ′, �′(q)3,7 = −2η θ ′, �′(q)4,4 = −2η θ ′,

�′(q)5,5 = −2η θ ′, �′(q)6,6 = −2η θ ′, �′(q)7,7 = φ′ cos qy,

�′(q)7,8 = −γ ′
1(q)/S, �′(q)7,9 = −θ ′ cos qx,

�′(q)7,10 = θ ′ sin qx, �′(q)7,11 = −2η θ ′ γ2(q),

�′(q)7,12 = 2η θ ′ γ sc
2 (q), �′(q)7,13 = 2η θ ′ γ cs

2 (q),

�′(q)7,14 = −2η θ ′ γ ss
2 (q), �′(q)7,15 = −φ′ cos qy,

�′(q)7,16 = φ′ sin qy, �′(q)8,1 = −θ ′ cos qx,

�′(q)8,2 = θ ′ sin qx, �′(q)8,3 = −2η θ ′ γ2(q),

�′(q)8,4 = 2η θ ′ γ sc
2 (q), �′(q)8,5 = 2η θ ′ γ cs

2 (q),

�′(q)8,6 = −2η θ ′ γ ss
2 (q), �′(q)8,7 = −γ ′

1(q)/S,

�′(q)8,8 = φ′ cos qy, �′(q)8,17 = −φ′ cos qy,

�′(q)8,18 = φ′ sin qy, �′(q)9,8 = −θ ′, �′(q)9,9 = −θ ′,

�′(q)10,10 = −θ ′, �′(q)11,8 = −2η θ ′, �′(q)11,11 = −2η θ ′,

�′(q)12,12 = −2η θ ′, �′(q)13,13 = −2η θ ′,

�′(q)14,14 = −2η θ ′, �′(q)15,7 = −φ′, �′(q)15,15 = φ′,

�′(q)16,16 = φ′, �′(q)17,8 = −φ′, �′(q)17,17 = φ′,

�′(q)18,18 = φ′,

where

θ ′ = 1

S(1 + 2η)
, φ′ = ζ

S(1 + 2η)
. (C2)
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I. Bozžović, B. Dalla Piazza, H. M. Rønnow, E. Morenzoni, J.
van den Brink et al., Nat. Mater. 11, 850 (2012).

144436-12

https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1103/RevModPhys.83.705
https://doi.org/10.1016/j.jmmm.2014.03.057
https://doi.org/10.1016/j.jmmm.2014.03.057
https://doi.org/10.1016/j.jmmm.2014.03.057
https://doi.org/10.1016/j.jmmm.2014.03.057
https://doi.org/10.1103/PhysRevLett.100.097001
https://doi.org/10.1103/PhysRevLett.100.097001
https://doi.org/10.1103/PhysRevLett.100.097001
https://doi.org/10.1103/PhysRevLett.100.097001
https://doi.org/10.1103/PhysRevLett.102.167401
https://doi.org/10.1103/PhysRevLett.102.167401
https://doi.org/10.1103/PhysRevLett.102.167401
https://doi.org/10.1103/PhysRevLett.102.167401
https://doi.org/10.1103/PhysRevLett.103.047401
https://doi.org/10.1103/PhysRevLett.103.047401
https://doi.org/10.1103/PhysRevLett.103.047401
https://doi.org/10.1103/PhysRevLett.103.047401
https://doi.org/10.1103/PhysRevLett.104.077002
https://doi.org/10.1103/PhysRevLett.104.077002
https://doi.org/10.1103/PhysRevLett.104.077002
https://doi.org/10.1103/PhysRevLett.104.077002
https://doi.org/10.1103/PhysRevLett.105.157006
https://doi.org/10.1103/PhysRevLett.105.157006
https://doi.org/10.1103/PhysRevLett.105.157006
https://doi.org/10.1103/PhysRevLett.105.157006
https://doi.org/10.1103/PhysRevLett.107.107402
https://doi.org/10.1103/PhysRevLett.107.107402
https://doi.org/10.1103/PhysRevLett.107.107402
https://doi.org/10.1103/PhysRevLett.107.107402
https://doi.org/10.1038/nphys2041
https://doi.org/10.1038/nphys2041
https://doi.org/10.1038/nphys2041
https://doi.org/10.1038/nphys2041
https://doi.org/10.1103/PhysRevLett.108.177003
https://doi.org/10.1103/PhysRevLett.108.177003
https://doi.org/10.1103/PhysRevLett.108.177003
https://doi.org/10.1103/PhysRevLett.108.177003
https://doi.org/10.1103/PhysRevB.85.214527
https://doi.org/10.1103/PhysRevB.85.214527
https://doi.org/10.1103/PhysRevB.85.214527
https://doi.org/10.1103/PhysRevB.85.214527
https://doi.org/10.1038/nmat3409
https://doi.org/10.1038/nmat3409
https://doi.org/10.1038/nmat3409
https://doi.org/10.1038/nmat3409


MAGNON-PHONON COUPLING EFFECTS ON THE . . . PHYSICAL REVIEW B 96, 144436 (2017)

[13] M. P. M. Dean, G. Dellea, R. S. Springell, F. Yakhou-Harris, K.
Kummer, N. B. Brookes, X. Liu, Y.-J. Sun, J. Strle, T. Schmitt
et al., Nat. Mater. 12, 1019 (2013).

[14] C. Ulrich, L. J. P. Ament, G. Ghiringhelli, L. Braicovich, M. M.
Sala, N. Pezzotta, T. Schmitt, G. Khaliullin, J. van den Brink,
H. Roth et al., Phys. Rev. Lett. 103, 107205 (2009).

[15] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W.
Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto,
S. Singh et al., Nature (London) 485, 82 (2012).

[16] W. S. Lee, S. Johnston, B. Moritz, J. Lee, M. Yi, K. J. Zhou, T.
Schmitt, L. Patthey, V. Strocov, K. Kudo et al., Phys. Rev. Lett.
110, 265502 (2013).

[17] C. Monney, V. Bisogni, K.-J. Zhou, R. Kraus, V. N. Strocov, G.
Behr, J. Málek, R. Kuzian, S.-L. Drechsler, S. Johnston et al.,
Phys. Rev. Lett. 110, 087403 (2013).

[18] B. Yuan, J. P. Clancy, A. M. Cook, C. M. Thompson, J. Greedan,
G. Cao, B. C. Jeon, T. W. Noh, M. H. Upton, D. Casa et al.,
Phys. Rev. B 95, 235114 (2017).

[19] J. van den Brink, Europhys. Lett. 80, 47003 (2007).
[20] F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. Lett.

101, 106406 (2008).
[21] T. Nagao and J.-I. Igarashi, Phys. Rev. B 75, 214414 (2007).
[22] F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. B 77,

134428 (2008).
[23] C. J. Jia, C.-C. Chen, A. P. Sorini, B. Moritz, and T. P. Devereaux,

New J. Phys. 14, 113038 (2012).
[24] C. Luo, T. Datta, and D.-X. Yao, Phys. Rev. B 89, 165103 (2014).
[25] C. Luo, T. Datta, Z. Huang, and D.-X. Yao, Phys. Rev. B 92,

035109 (2015).
[26] P. Marra, K. Wohlfeld, and J. van den Brink, Phys. Rev. Lett.

109, 117401 (2012).
[27] P. Marra, S. Sykora, K. Wohlfeld, and J. van den Brink, Phys.

Rev. Lett. 110, 117005 (2013).
[28] A. Klauser, J. Mossel, J.-S. Caux, and J. van den Brink,

Phys. Rev. Lett. 106, 157205 (2011).
[29] N. Pakhira, J. K. Freericks, and A. M. Shvaika, Phys. Rev. B 86,

125103 (2012).
[30] S. Johnston, F. Vernay, B. Moritz, Z.-X. Shen, N. Nagaosa, J.

Zaanen, and T. P. Devereaux, Phys. Rev. B 82, 064513 (2010).
[31] K.-J. Zhou, Y.-B. Huang, C. Monney, X. Dai, V. N. Strocov,

N.-L. Wang, Z.-G. Chen, C. Zhang, P. Dai, L. Patthey et al.,
Nat. Commun. 4, 1470 (2013).

[32] F. Forte, M. Cuoco, C. Noce, and J. van den Brink, Phys. Rev.
B 83, 245133 (2011).

[33] S. Moser, S. Fatale, P. Krüger, H. Berger, P. Bugnon, A. Magrez,
H. Niwa, J. Miyawaki, Y. Harada, and M. Grioni, Phys. Rev. Lett.
115, 096404 (2015).

[34] L. J. P. Ament, M. van Veenendaal, and J. van den Brink,
Europhys. Lett. 95, 27008 (2011).

[35] S. Toth, B. Wehinger, K. Rolfs, T. Birol, U. Stuhr, H.
Takatsu, K. Kimura, T. Kimura, H. M. Ronnow, and C. Rüegg,
Nat. Commun. 7, 13547 (2016).

[36] A. L. Chernyshev and W. Brenig, Phys. Rev. B 92, 054409
(2015).

[37] M. Grüninger, D. van der Marel, A. Damascelli, A. Erb, T.
Nunner, and T. Kopp, Phys. Rev. B 62, 12422 (2000).

[38] J. Lorenzana and G. A. Sawatzky, Phys. Rev. Lett. 74, 1867
(1995).

[39] J. Lorenzana and G. A. Sawatzky, Phys. Rev. B 52, 9576 (1995).

[40] D. U. Sänger, Phys. Rev. B 49, 12176 (1994).
[41] D. U. Saenger, Phys. Rev. B 52, 1025 (1995).
[42] T. P. Devereaux, A. Virosztek, and A. Zawadowski, Phys. Rev.

B 51, 505 (1995).
[43] J. D. Lee and B. I. Min, J. Phys. Soc. Jpn. 66, 442 (1997).
[44] T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175 (2007).
[45] Y. Y. Peng, M. Hashimoto, M. M. Sala, A. Amorese, N. B.

Brookes, G. Dellea, W.-S. Lee, M. Minola, T. Schmitt, Y.
Yoshida et al., Phys. Rev. B 92, 064517 (2015).
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