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Crystal field effects on spin pumping
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“Spin pumping” is the injection of spin angular momentum by a time-dependent magnetization into an adjacent
normal metal proportional to the spin mixing conductance. We study the role of electrostatic interactions in the
form of crystal fields on the pumped spin currents generated by insulators with exchange-coupled local moments
at the interface to a metal. The crystal field is shown to render the spin currents anisotropic, which implies that
the spin mixing conductance of insulator | normal metal bilayers depends on crystal cut and orientation. We
interpret the interface “effective field” (imaginary part of the spin mixing conductance) in terms of the coherent
motion of the equilibrium spin density induced by proximity in the normal metal.
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I. INTRODUCTION

The interaction between the magnetization and currents in
small structures and devices has attracted much attention in the
last two decades. The generation of a spin current by magneti-
zation dynamics is referred to as spin pumping [1,2]: A time-
dependent magnetization “pumps” a spin current with magni-
tude and polarization J = g

↑↓
r m × ṁ − g

↑↓
i ṁ into a normal

metal contact, where m is the unit magnetization vector, ṁ its
time derivative, and g↑↓ = g

↑↓
r + ig

↑↓
i is the complex interfa-

cial spin mixing conductance. The spin pumping enhances the
magnetization damping and can be interpreted as the Onsager
reciprocal effect to the current-induced spin transfer torque,
both being governed by the same spin mixing conductance
[3]. The mixing conductance of the magnetic insulator yttrium
iron garnet (YIG) was predicted to be of the same order of mag-
nitude as that of magnetic metals [4], which was subsequently
confirmed by experiments [5,6]. A dependence of the spin mix-
ing conductance on the interface cut and orientation to the nor-
mal metal has also been predicted [4] and confirmed [7,8]. This
anisotropy could partly be explained by the density of the local
Fe magnetic moment directly at the interface. The rotational
symmetry of magnetic atoms can be broken by the electric
fields generated by neighboring atoms, i.e., the so called crystal
field. The relationship between the spin pumping and the local
symmetry of magnetic moments at the interface has, to the best
of our knowledge, not been studied yet. We therefore focus
here on noncubic crystal fields of 3d transition metal ions with
partially (not fully or half-) filled shells. These are predicted
to cause effects that are much stronger than those generated by
a cubic crystal field or when acting on 4f moments. Also, in
the former case the spin orbit interaction is much weaker than
the spin orbit interaction that we, hence, disregard here.

Under crystal fields, the angular part of the single 3d elec-
tron is described by the real valued doubly degenerate eg and
triply degenerate t2g orbitals [9,10]. For transition metal ions
on sites with octahedral symmetry, the energy level order is
Eeg

> Et2g
while in tetrahedral environment Et2g

> Eeg
[9,10].

The total orbital angular momentum in this basis is quenched,
〈Lz〉 = 0 [9,10]. The magnetism is then predominantly caused
by the electron (Pauli) spins. When the spin orbit interaction
is not negligible but competes with the crystal fields, the
eigenstates are complex combinations of the sets eg and t2g .

The orbital moment is then not completely quenched 〈Lz〉 �= 0
and the energy depends on the direction of the magnetization
relative to the crystal axes (magnetic anisotropy) [11]. The ef-
fects of the spin-orbit interaction is discussed in a forthcoming
paper with emphasis on partially filled 4f shells [12].

Here we study the role of crystal fields on the spin
mixing conductance that governs spin pumping and other
properties of interfaces. The paper is organized as follows.
In Sec. II, we review the static and dynamics of 3d transition
metal magnetic moments, disregarding their weak spin-orbit
interactions. In the presence of crystal fields, the ground
state electronic density of individual ions is nonspherical.
By the exchange interaction such local moment induces in
a metal an oscillating proximity spin density and associated
Ruderman-Kittel-Kasuya-Yosida interaction (RKKY) [13–15]
that are also anisotropic. This has, for example, been confirmed
by first principles calculations on metallic surfaces [16]. The
effects of such anisotropies on the spin dynamics are discussed
in Sec. III, where we find that the spin current emitted by
a dynamic magnetization is enhanced in certain directions.
We discuss how the anisotropy influences local magnetization
dynamic in term of enhanced damping in Sec. IV. In Sec. V,
we extend our analysis to magnetic insulators in which the
local moments at the interface are exposed to normal metal
contacts. In Sec. VI we conclude that the crystal fields induce
differences in the spin pumping for different crystal growth
directions, which might help to explain some experiments.

II. SINGLE-ION MODEL

Consider a single localized magnetic moment generated
by a partially filled 3d shell with spin density Sd (r,t) that
depends adiabatically on time. In terms of the single electron
wave functions ψj (r) with orbital index j , the ground state
spin density reads

Sd (r,t) = S(t)nd (r), (1)

where the electron density distribution of unpaired electrons

nd (r) =
∑

j

Sj |ψj (r)|2, (2)

Sj = fj,↑ − fj,↓∑
k(fk,↑ − fk,↓)

(3)

2469-9950/2017/96(14)/144434(10) 144434-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.144434


CAHAYA, LEON, AND BAUER PHYSICAL REVIEW B 96, 144434 (2017)

TABLE I. The deformation of the spin density of 3d orbitals
can be expressed in terms of the quadrupole moment Q2, which is
obtained from this table and the occupation numbers.

Orbital Yj 〈�〉j

Yz2 4/7
Yx2−y2 and Yxy −4/7
Yxz and Yyz 2/7

depends on the occupation numbers fj,ms
of orbital j and

spin label ms = {↑,↓} and is normalized,
∫

dr nd (r) = 1. The
occupation numbers fj,ms

are governed by the aufbau principle
when the thermal energy is much smaller than the crystal field
splitting (�), i.e., kBT /|�| � 1, where kB is the Boltzmann
constant and T the temperature. Since spin orbit interaction
is disregarded, the time dependence is encoded exclusively in
the unit vector of the total spin S(t).

In the presence of crystal fields, nd (r) has the point
symmetry of the crystal site (or higher) that is characterized by
a multipolar expansion. Here we focus on the common case
of uniaxial deformation along the z direction, which allows
parameterizing of the anisotropy in the spin density by its
quadrupole moment

Q2 =
∫

drr2

(
3z2

r2
− 1

)
nd (r), (4)

where z = r cos θ is the coordinate along the symmetry axis of
nd (r). Q2 > 0(< 0) describes a prolate (oblate) ellipsoidlike
distribution. Decomposing the orbitals in the radial and angular
functions, ψj (r) = R3d (r)Yj (�), the quadrupole reads

Q2 = 〈r2〉
∑

j

Sj

∫
(3 cos2 θ − 1)|Yj (�)|2d�, (5)

where r = |r|, 〈r2〉 = ∫
r2drr2R2

3d (r), � ≡ r/r and d� =
dθdφ sin θ . The radial function R3d (r) can be approximated
by Slater-type orbitals [17,18], while the angular function are
linear combinations of spherical harmonics (see Appendix A).
Q2 is calculated using the occupation numbers and the coeffi-
cients 〈�〉j = ∫

(3 cos2 θ − 1)|Yj (�)|2d�, listed in Table I.
Crystal fields can be parameterized by a point charge model

of the local environment. The Hamiltonian close to the center
of an octahedron made from point charges qe is

Hcf (r) =
∑

n

−qe2

4πε0|r − rn| 	 −3qe2

2πε0R0

+ �octa
x4 + y4 + z4 − 3(x2y2 + x2z2 + y2z2)

〈r4〉 ,

(6)

where the subscript n labels the point charges at
{(±R0,0,0),(0, ± R0,0),(0,0, ± R0)}, r = xx̂ + yŷ + zẑ, and
the Cartesian axes {x,y,z} are oriented along the crystallo-
graphic directions (100), (010), and (001), respectively. R0 is
the nearest-neighbor distance, ε0 is the vacuum permittivity,
−e is the electron charge, and qe is the electric charge of
neighboring ions. In metals, ion cores are positively charged,
i.e., q > 0, while in transition metal oxides the oxygen anions
dominate and q < 0. The crystal field parameter is �octa =

FIG. 1. The Yz2 orbital of a 3d magnetic ion in an octahedral
environment (upper panel) and the corresponding orbital splitting of
the real-valued orbitals eg(Yz2 , Yx2−y2 ) and t2g(Yxy , Yxz, Yyz) (lower
panel). The octahedral environment is (a) elongated, (b) unperturbed,
and (c) compressed in the z direction.

−7qe2〈r4〉R−5
0 (8πε0)−1 and can be estimated as � ∼ 2 eV

for q = −2, 〈r4〉1/4 = 1.5 Å, R0 = 3 Å. In the tetrahedral site,
on the other hand, the magnetic atom sits in the center of
a cube defined by (±R0, ± R0, ± R0)/

√
3. Both octahedral

and tetrahedral sites are described by the same Hamiltonian
[10] but �tetra = −4�octa/9. Figure 1(b) shows the crystal field
splitting for a symmetric octahedron (charges equidistant from
the origin) into a doubly degenerate eg and triply degenerate t2g

states (see Appendix). Uniaxial strain breaks the degeneracies
of eg and t2g levels [19–21] as sketched in Figs. 1(a) and 1(c).

Half-filled shells, such as Mn2+ and Fe3+are isotropic
(spherical) and their Q2 vanishes in any crystal field. The
quadrupolar moments vanish as well for octahedral and
tetrahedral crystal fields, because the half-filled eg and t2g

shells are still nearly spherical:

eg :
∫

d�(3 cos2 θ − 1)(|Yz2 |2 + |Yx2−y2 |2) = 0, (7)

t2g :
∫

d�(3 cos2 θ − 1)(|Yxy |2 + |Yxz|2 + |Yyz|2) = 0. (8)

The quadrupole in the presence of compressive and tensile
uniaxial strains depends on the occupation numbers as

Q2

〈r2〉 = 2

7

[
SYxz

+ SYyz
+ 2

(
SYz2 − SYx2−y2 − SYxy

)]
, (9)

where SYj
is given by Eq. (3). We note that even in distorted

octahedral sites, some ions such as V2+, Cr3+ Ni2+, and Cu3+

have Q2 = 0 because the eg and t2g are half filled.

Interaction between a magnetic ion and conduction electrons

The interaction between localized magnetic moments and
conduction electrons with spin density sc(r,t) is described by
the s-d exchange Hamiltonian [22,23]. In the local-density
approximation:

Hs−d = − J

h̄2

∫
Sd (r,t) · sc(r,t)dr, (10)

where in the static and strong screening limit of the Coulomb
interaction the exchange constant J = g−1

e is the reciprocal
conduction electron density of states ge of the host metal
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and h̄ is Planck’s constant divided by 2π . For free electrons,
ge = mekF /(π2h̄2) = 3ne/(2EF ), in terms of the electron
density ne, Fermi energy EF , and the effective electron mass
me. In the ground state, a static magnetic moment induces
spin density oscillations. Hs−d also communicates the time
dependence of the magnetic moment Ṡ �= 0 to the conduction
electrons, which can be formulated by extending the RKKY
perturbation theory into the time domain [2]. Magnetization
dynamics can be excited by magnetic or spin resonance, but
also by spin transfer torques due to voltage and temperature
gradients, lattice vibrations, etc. [24,25].

For sufficiently weak coupling, the response of the conduc-
tion electrons to a time dependent local moment Sd (r,t) reads

sc(r,t) = J

h̄2

∫
dr′dt ′χ (r − r′,t − t ′)Sd (r′,t ′), (11)

where χ (r,t) is the (scalar) dynamic spin susceptibility of the
homogeneous host metal. In frequency and momentum space

sc(q,ω) = J

h̄2 χ (q,ω)Sd (q,ω), (12)

where

f (q,ω) =
∫

dr
∫

dtf (r,t)e−iq·reiωt , (13)

f (r,t) =
∫

dq
(2π )3

∫
dω

2π
f (q,ω)eiq·re−iωt . (14)

Here the integration domain is a large system volume. In the
free electron gas

χ (q,ω) =
∑

p

(fp − fp+q)h̄2/2

εp+q − εp + h̄ω + i0+ , (15)

where fp = [exp[(εp − μ)/(kBT )] + 1]−1 is the Fermi-Dirac
distribution, εp = h̄2p2/(2me), μ is chemical potential, and 0+
is a positive infinitesimal. The time constants of the conduction
electrons in high density metals are governed by the Fermi ve-
locity (fs) and are much smaller than that of the magnetization
dynamics (ns), which justifies expansion to leading order in
the characteristic frequencies, i.e., the adiabatic approximation
[2], χ (q,ω) 	 χr (q) + iωχi(q), where χr (q) = limω→0 Re
χ (q,ω) and χi(q) = limω→0 ∂ω Im χ (q,ω). In the three-
dimensional free electron gas, the real part of the static
susceptibility χr (r) and its Fourier transform χr (q) correspond
to the static RKKY and Lindhard functions

χr (r) = geh̄
2

16πr3

(
sin 2kF r

2kF r
− cos 2kF r

)
, (16)

χr (q) = geh̄
2

8

(
1 + k2

F − (q/2)2

kF q
ln

∣∣∣∣kF + q/2

kF − q/2

∣∣∣∣
)

, (17)

respectively [26]. The imaginary part of the susceptibility is

χi(r) = g2
e h̄

3π

8

sin2 kF r

k2
F r2

, (18)

χi(q) = g2
e h̄

3π3

8k2
F q


(2kF − q), (19)

where kF = (3π2ne)1/3 is the Fermi wave number. Using
Eq. (1)

sc(q,ω) = J

h̄2 S(ω)χ (q,ω)[niso(q) + nani(q)]. (20)

The Fourier transform of the density distribution nd = niso

(r) + nani(r) is the sum of

niso(q) = 〈j0(qr)〉 (21)

and

nani(q) = −π〈j2(qr)〉Yz2

(
q
q

)√
5

π

Q2

〈r2〉 (22)

= − 5Q2

4〈r2〉 〈j2(qr)〉(3 cos2 θq − 1), (23)

with cos θq = q · ẑ and 〈jn(qr)〉 is the expectation value of the
nth spherical Bessel function for a radial 3d wave function.
Explicit formulas for 〈j0(qr)〉 and 〈j2(qr)〉 are demoted to the
Appendix A 1.

Substituting χ (q,ω) 	 χr (q) + iωχi(q) and keeping only
linear terms in the frequency ω (adiabatic approximation)

sc(q,ω) = J

h̄2 [S(ω)χr (q) + iωS(ω)χi(q)]nd (q). (24)

Transforming back into time domain

sc(r,t) = J

h̄2 [ρr (r)S(t) − ρi(r)Ṡ(t)]. (25)

The densities

ρr (r) =
∫

dqeiq·r

(2π )3
χr (q)nd (q) (26)

ρi(r) =
∫

dqeiq·r

(2π )3
χi(q)nd (q) (27)

are plotted in Fig. 2 for several values of k2
F 〈r2〉 and Q2.

Figures 2(a) and 2(c) illustrate that with increasing Fermi
energy a larger region of the the electron gas is polarized,
as in the RKKY polarization function (16). The ion anisotropy
is parameterized by the quadrupole Q2, which is proportional
to 〈r2〉, see Eq. (5); larger ions induce a stronger anisotropy,
cf. Figs. 2(c) and 2(d). This can also be seen from Eq. (23) by
approximating 〈j2(qr)〉 ≈ q2〈r2〉/15, which leads to nani ∼
〈r2〉. The sign of Q2 can enlarge or decrease the total
conduction electron spin polarization, as shown in Figs. 2(c)
and 2(e).

When the atomic radius is small nd (r) → δ(r), the static
spin polarization reduces to the well-known RKKY spatial
oscillations

lim
nd (r)→δ(r)

ρr (r) = χr (r),

while ρi(r) → χi(r). In this limit all crystal field effects vanish.

III. SPIN CURRENT

Conduction electron spin density and local moments are
also related by the spin conservation equation

∂tsc(r,t) + ∇ · J(r) =
(

dsc(r,t)
dt

)
source

, (28)
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FIG. 2. Conduction electron spin densities induced by a time-
dependent anisotropic magnetic moment. ρr (r) (left panels) and
ρi(r) (right panels) as defined in Eq. (25) are plotted for several
parameter values in the y = 0 plane. ρr (r) and ρi(r) are normalized to
2k2

F ge and χi(r = 0), respectively. The values of (k2
F 〈r2〉,Q2/〈r2〉) are

(a) (1/4,1/7), (b) (1,1/7), (c) (4,1/7), (d) (4,8/21), (e) (4, − 1/7).

where the source term(
dsc(r,t)

dt

)
source

= − sc(r,t)
τs

+ J

h̄2 sc(r,t) × Sd (r,t), (29)

describes spin flip scattering on the time scale τs and spin
precession in the exchange torque exerted by the local moment.
Jν

σ is the spin current tensor, where the indexes σ and ν refer to
the spin polarization and current directions, respectively [27].
We obtain explicit expressions for the spin current divergence
by substituting sc from Eq. (25), in the clean limit of the metal
and slow magnetization dynamics (τs → ∞ and S̈ → 0):

∇ · J(r) = J 2

h̄4 ρi(r)n3d (r)S × Ṡ − J

h̄2 ρr (r)Ṡ. (30)

By writing the spin current in terms of a vector spin potential
�(r) as Jν

σ (r) = −∂ν�(r), Eq. (30) is reduced to a Poisson
equation. The spin current direction is governed by the gradient
of the spin potential, while its polarization is proportional to
its direction. The solution of our Poisson equation is

�(r,t) = �r (r)S(t) × Ṡ(t) + �i(r)Ṡ(t), (31)

where we defined dissipative (�r ) and reactive (�i) scalar
potentials. To leading order in the quadrupole moment

�r (r) = Giso
r

4πr

(
1 + 3 cos2 θ − 1

4r2
Q2

)
, (32)

where

Giso
r ≡ J 2

h̄4

∫
dq

(2π )3
χi(q)|nd (q)|2, (33)

= Gr

[
F0 +

(
Q2

〈r2〉
)2

F2

]
, (34)

with

Gr = πJ 2g2
e

8h̄
. (35)

The dimensionless parameters can be obtained analytically as:

F0 = 11D(1208 − 5D(27D(3D − 16) + 682)) − 1627

31185D(D + 1)11

+ 1627

31185D
, (36)

F2 = −44D(D(27D(12D − 43) + 985) + 197) − 788

31185D(D + 1)11

+ 788

31185D
, (37)

where D = k2
F 〈r2〉/14, and are given in Fig. 3 for various tran-

sition metal atoms. With increasing ionic radius, F0 decreases,
but F2 increases up to half of F0 for lighter ions, because
the ratio of the anisotropic contribution 〈j2(qr)〉2/〈j0(qr)〉2 is
suppressed for small 〈r2〉 [see Eq. (A11)].

When k2
F 〈r2〉 → ∞, both F0 and F2 converge to zero

as ∼(k2
F 〈r2〉)−1. While for small k2

F 〈r2〉 � 1, F0 ≈ 1, F2 ≈
4(k2

F 〈r2〉)2/135 and Giso
r reduces to Gr . �r (r) decays mono-

tonically with r , but with an anisotropic component. The
“reactive” spin potential in the “far field” r2 � 〈r2〉 reads
to leading order in r−1

�i(r) =
(

1

k2
F

+ Q2
3 cos2 θ − 1

3

)
Gi cos 2kF r

16πr3
, (38)

144434-4



CRYSTAL FIELD EFFECTS ON SPIN PUMPING PHYSICAL REVIEW B 96, 144434 (2017)

FIG. 3. Real (dissipative) part of the spin mixing conductance
Giso

r /Gr as defined in Eqs. (34) and (35) for 3d local moments in a

free electron metal with Fermi number kF ∼ 2 Å
−1

as a function of
〈r2〉, the mean square 3d orbital radius. The suppression of F0 with
increasing 〈r2〉 reflects the reduced Fourier components of exchange
scattering at the Fermi surface. Also indicated are the average 3d radii
of free transition metal atoms [18] that decrease with higher nuclear
charge.

where Gi = Jge/4. It oscillates as a function of distance as
cos(2kF r), in phase with the RKKY-like ground state spin
density.

We can decompose the spin current along the radial r̂ and
polar θ̂ unit vectors as

Jr (r) = 1

4πr2

(
Gif2(θ )

sin 2kF r

2kF r
+ f1(θ )GrS ×

)
Ṡ, (39)

Jθ (r) = 3Q2 cos θ sin θ

8πr4

[
Gi cos 2kF r

3kF r
− GrS ×

]
Ṡ, (40)

respectively, where f1(θ ) = 1 + 3Q2(3 cos2 θ − 1)/(4r2),
f2(θ ) = 1 + (2/3)k2

F Q2(3 cos2 θ − 1). The azimuthal Jϕ van-
ishes by symmetry. Ions with half-filled shells are spherically
symmetric and pump a radially symmetric spin current, i.e.,
Jθ ≡ 0.

The theory as exposed above is directly applicable to
magnetic impurities in a metal host. It induces anisotropy into
the RKKY interaction between magnetic moments in dilute
alloys, which can be relevant for the Kondo and related effects.
Here we do not pursue this direction, since we are mainly
interested in the dynamics of interfaces between magnetic
insulators and metals.

In transition metal oxides, magnetic cations usually fill the
voids created by oxygen anions scaffolding, with commonly
tetrahedral and octahedral coordination. In order to generate
finite Q2, the symmetry must be broken by, e.g., by strain or at
interface. This effect is at least partly responsible for the large
interface (compared to bulk) magnetic anisotropy of transition
metals [28].

IV. LOCAL MAGNETIC MOMENT DYNAMICS

The spin current emitted by a local moment implies angular
momentum loss, that is, a dissipative torque acting on the local
moment. In the Landau-Lifshitz-Gilbert equation

Ṁ = −γeffM × B + αeff

Ms

M × Ṁ, (41)

spin pumping torques affect the gyromagnetic ratio γeff and
enhance the Gilbert damping αeff ,

γeff = γ0

1 + Gi

, αeff = α0 + MsG
iso
r /γ0

γ0/γeff
, (42)

where M is the magnetization vector, |M| = Ms is the
saturation magnetization, and B is the sum of external and
anisotropy fields acting on the moment. The constants γ0

and α0 are the gyromagnetic ratio and Gilbert damping in
the absence of spin pumping, respectively. The anisotropic
spin pumping currents are not manifest in the magnetization
dynamics because their torques vanish when integrated over
the local moment. Giso

r and Gi play roles equivalent to the real
and imaginary part of the spin mixing conductance at interfaces
[1]. Giso

r parameterizes the dissipative angular momentum and
energy loss implied by spin pumping, just as the real part of
the spin mixing conductance at interfaces.

The imaginary part Gi is sometimes referred to as an “ef-
fective magnetic field.” It apparently accelerates or decelerates
the precessional motion but conserves energy. The present
results offer a simple picture of the physics of Gi that has
escaped attention because it is hidden in the scattering theory
formulation of spin pumping: The coherent motion of the
proximity RKKY spin density is locked to the precessing
magnetization of the local moment. The Zeeman energy of the
uncoupled system acts only on the local magnetic moments

H
(0)
Z = γ0B ·

∫
Sd(r,t)dr = γ0B · S(t). (43)

On the other hand, it is the entire magnetic moment including
the screening spins that precesses

M = −γ0

∫
[Sd(r,t) + sc(r,t)]dr, (44)

where, in the adiabatic limit,∫
sc(r,t)dr = S(t)

J

h̄2

∫
ρr (r)dr = GiS(t), (45)

so M(t) = −γ0(1 + Gi)S(t). The Zeeman energy of the
coupled systems therefore reads

HZ = 1

1 + Gi

B · M(t). (46)

The renormalization field B → B(1 + Gi)−1 is therefore
caused by the magnetic screening cloud therefore that can
equivalently be written in terms of a new gyromagnetic ratio
γ0 → γeff ≡ γ0(1 + Gi)−1.

V. MAGNETIC INSULATOR/NORMAL
METAL INTERFACE

The present results are relevant for an understanding of the
anisotropy at interfaces between normal metals and ferromag-
netic/ferrimagnetic insulators [29], such as garnets and ferrites.
The magnetism is then carried by local atomic moments that
are ordered by superexchange interactions, usually via oxygen
anions. Since localized on an atomic scale, only moments
directly at the interface have a significant exchange interaction
with the conduction electrons in the metal. Depending on
the crystal direction and the interface cut, the number of
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contributing magnetic moments varies, as does the spin mixing
conductance [4]. Here we focus on the effects of the crystal
field on the spin pumping and the interface spin mixing conduc-
tance. The interface can be modelled in terms of independent
local moments [4] whose motion is locked by the exchange
coupling. The results for the single moments discussed above
can then be applied. Cubic sites, such as symmetric octahe-
drals, do not deform the 3d electron density and suppress all
anisotropies in cubic ferromagnets. However, at the interface
the bulk point symmetry is broken and deformations normal
to the interfaces may be expected, although we could not find
estimates for the magnitude of such interface crystal fields.

Following Ref. [2], we model the metallic contact as a sheet
of magnetic ions in a free electron gas, see Fig. 4(b). Spins can
be pumped only in one direction, so we are only interested in
the results for z > 0, i.e., the metallic side. We introduce the
angle β between the interface normal and the local symmetry
axes, see Fig. 4(b). For example, when the crystal surface is
in (001) and (111) directions, the local symmetry axis is tilted
by angles β = 0 and β 	 55◦, respectively. The equilibrium
magnetization is assumed to lie in the interface by the thin-
film easy-plane form anisotropy that is taken to dominate any
perpendicular crystalline magnetic anisotropy. The coordinate
along the interface normal z is, in general, not parallel to the
coordinate Z that points along the local crystal symmetry axis,
see Fig. 4. We adapt Eq. (10) to model the exchange interaction
at an interface

Hs−d = − J

h̄2

∑
n

∫
sc(r,t) · Sd (r − rn,t)dr, (47)

where the moments are at rn = (xn,yn,0) in the interface
plane and Sd (r,t) has been defined in Eq. (1). Under FMR
conditions all moments precess in phase. We expand the
magnetic moment density at the interface into plane waves
with reciprocal lattice vectors G = Gx x̂ + Gy ŷ

∑
n

nd (r − rn) = Nd

A

∑
G

eiG·(xx̂+yŷ)

×
∫

dqz

2π
nd (qzẑ + G)eiqzz, (48)

FIG. 4. Anisotropic spin pumping. (a) Dissipative spin current
pumped by a single magnetic moment. Far from the origin, the spin
current becomes isotropic. (b) Dissipative spin current generated in a
bilayer of a ferromagnetic insulator (FI) and normal metal (NM). Far
from the interface the spin current direction is normal to the interface.
(c) A sheet of magnetic moments is a model for the FI|NM interface.

where Nd is the number of magnetic ions. The proximity
conduction electron spin density sc(r,t) in linear response is
sc(r) = J h̄−2[ρr (r)S(t) − ρi(r)Ṡ(t)], where the densities ρr,i

are also periodic in the interface plane,

ρr,i(r) = Nd

A

∑
G

eiG·(xx̂+yŷ)
∫

dqze
iqzz

2π

× χr,i

(√
q2

z + G2
)
nd (qzẑ + G). (49)

The spin conservation equation in the metal reads

∇ · J = J 2

h̄4 S(t) × Ṡ(t)ρi(r)
∑

n

nd (r − rn) − J

h̄2 Ṡ(t)ρr (r).

(50)

In Appendix B we show that the in-plane components of the
spin current are exponentially suppressed with distance from
the interface with typical decay length of the order of the
inverse of the (primitive) reciprocal vector, G−1, which can
be estimated as 1 nm/(2π ) = 1.6 Å, for a lattice constant
parameter of 1 nm. The net spin current flow that leaves
the magnet is therefore normal to the interface direction as
illustrated in Fig. 4(b).

The pumped spin current can be calculated by applying
the Gauss theorem to a flat “pill box” with volume V = Az

as shown in Fig. 4(b). The spin current in the insulator
vanishes, so ∫

V

∇ · Jdr = J
∫

A

dxdy, (51)

where A is a surface on the metal side at a distance z parallel
to the interface and J/|J| is the current polarization. Then,

J
∫

B

dxdy = J 2

h̄4 S(t) × Ṡ(t)
∫

V

dr
∑

n

ρi(r)nd (r − rn)

− J

h̄2 Ṡ(t)
∫

V

drρr (r), (52)

which has the solution

J = g↑↓
r m × ṁ − g

↑↓
i f (z)ṁ, (53)

where

g↑↓
r = NdJ

2S2

Ah̄4

∑
G

∫
dq

(2π )3
χi(

√
q2 + G2)|nd (q ẑ + G)|2,

(54)

g
↑↓
i = NdSGi

A
, (55)

and the function f (z) represents the integrated RKKY density
in Fig. 6 that can be expressed analytically for short and long
distances z from the interface:

f
(
z � k−1

F

) 	 cos 2kF z

(2kF z)2

(
1 − 2Q2k

2
F

3 cos2 β − 1

3

)
, (56)

f
(
z � k−1

F

) 	 1 + 2Q2k
2
F

3 cos2 β − 1

9
. (57)

The coefficients g
↑↓
r and g

↑↓
i as obtained by integrating the

right-hand side of Eq. (50) represent the real and imaginary
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FIG. 5. The dissipative spin current injected by a ferromagnetic
insulator into a normal metal g↑↓

r as a function of angle β between
crystal field direction and interface normal.

parts of the spin-mixing conductance, respectively. The sum
over G in Eq. (54) reflects interference effects that can
be simplified in the limit of large density of magnetic
moments, i.e., when a � π/kF . Since the susceptibility χi(q)
is proportional to the step function, see Eq. (19), and modes
with wave number |G| � 2kF do not contribute. In that limit

g↑↓
r ≈ NdJ

2S2

Ah̄4

∫
dq

(2π )3
χi(q)nd (q ẑ)nd (−q ẑ) (58)

= NdS
2Giso

r

A

(
1 − Q2k

2
F

3 cos2 β − 1

3

)
, (59)

where Giso
r is given by Eq. (34). The contribution by Bragg

scattering with finite G is relevant for materials with lower
interface moment density. However, Eq. (54) as a function
of the interface moment density can be calculated only
numerically, but we estimate that correction terms suppress
the anisotropy. In the dilute limit Nd → 0 all interference and
thereby anisotropies vanish, as discussed in Appendix C.

For a 3d6 high-spin state of Fe2+ or Co3+: S = 3h̄/2
and Nd/A = (0.5 nm)−2, the isotropic contribution g

↑↓
r =

NdS
2Giso

r /A ∼ 1018 cm−2 is of the order of magnitude
accepted for magnetic insulators, while g

↑↓
i = NdSGi/A ∼

1018 cm−2 appears to be rather large [6]. The anisotropy of the
spin current pumped by transition metal ions in an elongated
octahedral crystal field and high spin state with Q2 = ±4/21
is plotted in Fig. 5. The magnetic ions emit less spin current in
the direction in which the 3d subshell is elongated, because the
spin current is generated by exchange in the overlap volume
of the spin densities sc and Sd, see Eqs. (30) and (29), and sc is
preferentially suppressed by proximity in that direction. Ions
with positive Q2 generate maximal (minimal) spin current for
β = π/2 (β = 0), while this is opposite for negative Q2. The
anisotropic spin current depend on the relative angle between
the 3d subshell orientation and the interface orientation β,

which should be observable at selected interfaces.
The reactive spin current depends on position by the

function f (z). It is not a transport spin current but is caused
by the coherent precession of the proximity spin density. It
can be obtained by applying Gauss’ theorem to an integral
over the volume V = Az, as in Fig. 6. The magnitude of this
current near the interface is estimated g

↑↓
i 	 1018 cm−2 and

vanishes algebraically with distance from the interface with
the RKKY oscillations. This spatial dependence f (z) is lost

FIG. 6. The RKKY-like spatial oscillation, represented by di-
mensionless f (z) in the reactive spin current g

↑↓
i f (z), where f =

fiso + fani is decomposed into an isotropic (fiso) and anisotropic (fani)
terms. f ′

ani(z) = fani(z)Q−1
2 k−2

F (3 cos2 β − 1)−1 is the normalized
fani. For z � k−1

F , fiso and f ′
ani approach (2kF )−2 cos 2kF z and

−(2/3)(2kF )−2 cos 2kF z, respectively. When Q2 �= 0 the spin current
depends on the angle β.

in scattering theory in which only the transport of electrons
between incoherent reservoirs are considered. The imaginary
part of the spin mixing conductance g

↑↓
i has been found to be

relatively small for most systems [30].
Cobalt ferrite (CoFe2O4 or CFO) is an iron-based

spinel. Cobalt ferrites possess an inverse spinel structure,
[Fe3+]T[Co2+Fe3+]OO4, where the subscripts []T and []O stand
for the tetrahedral and octahedral sites, respectively. The iron
ions have half filled subshell and an isotropic electronic cloud,
regardless of the symmetries of their environment. However,
the octahedrally coordinated Co2+ ions occupy elongated
octahedrals when grown on SrTiO3 (STO) substrates. The
unit cell lattice parameter of STO aSTO = 3.906 Å [20] is
smaller than the corresponding lattice parameter of CFO
aCFO = 4.195 Å [20]. As a result of this lattice mismatch,
CFO films are in-plane compressed and tetragonally distorted
[7,21], depending on the grown direction of the sample. When
CFO is grown in the (001) direction, the resultant crystal field
is an elongated octahedral, while in the (111) growth direction
the compression creates a slanted octahedral crystal field. The
resultant crystal field can be described by that of an elongated
octahedral with a small energy splitting (see Appendix D).
Our model predicts that the exchange between the cobalt ions
and the conduction electrons is stronger for a (001) CFO than
for a (111) one. Indeed, replacing the cobalt quadrupole Q2 =
−4/21 in Eq. (59) for the angles β(001) = 0 and β(111) = π/4,
we find that g

↑↓
r,(001) is 50% larger than g

↑↓
r,(111), in agreement

with the experiment of Ref. [7]. It should be mentioned that the
magnetization and the surface Co2+/Fe3+ concentration ratio
strongly depend on the preparation conditions [7], however.

Our model can be applied to other than ferromagnetic
order of the local moments at the interface. The dissipative
spin current emitted by each ion is proportional to S × Ṡ
and thereby invariant to spin reversal S → −S. The sum of
all spin-current contributions, as well as the real part of the
spin mixing conductance, does not depend on the (collinear)
order of the sublattices (ferro, ferri, or antiferromagnetic) [4].
However, the imaginary part of the spin mixing conductance
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or effective exchange field g
↑↓
i felt by the conduction electrons

is governed by the sum of the local moments and vanishes for
exactly compensated antiferromagnetic interface order. This
is consistent with previous studies of the spin pumping by
antiferromagnets [31,32].

VI. CONCLUDING REMARKS

The deformations of partially filled 3d shells of local
moments in noncubic crystal fields are reflected by anisotropic
RKKY spin-density oscillations and nonlocal exchange in-
teractions in metallic hosts. We show that the spin current
pumped by a magnetic moment with nonspherical spin density
is anisotropic as well. The spin pumping leads to enhanced
magnetization damping and a renormalized gyromagnetic
ratio. The latter can be interpreted in terms of the coherent
motion of the RKKY spin density oscillations.

The properties of interfaces between magnetic insulators
and metals are governed by the local moments in the
terminating monolayer. The spin mixing conductance and
its asymmetry depends not only on the density of exposed
moments but also on the local point symmetry. We applied
the theory to analyze the spin pumping from a ferromagnetic
insulator to an adjacent normal metal. Most anisotropies focus
the spin currents into a direction normal to the interface, which
is beneficial for spintronics. Spin pumping and spin transfer
torque are each others Onsager reciprocals and governed by
the same spin-mixing conductance. The crystal field effects
in spin pumping addressed here therefore equally affect the
spin-transfer torque efficiency.

The anisotropy of the pumped spin-current depends on the
quadrupole moment Q2, which in turns depends on the orbital
occupation of interface magnetic atoms. While we focus here
on CFO, the anisotropy should affect all transition metal based
magnetic insulator with magnetic moments at the interface
with nonspherical spin distribution. An interesting material to
apply the present analysis could be La1−xSrxMnO3 (LSMO)
in which the 3d shell of the Mn ions is not half filled. First
principles band structure calculations can test our predictions
and render them more quantitative.
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APPENDIX A: TESSERAL SPHERICAL HARMONICS

The 3d orbitals can be written as

ψj (r) = R3d (r)Yj (�), (A1)

where the radial function can be approximated by Slater-type
wave functions [17,18],

R3d (r) =
√

1

6!

(
2

a

)7

r2e−r/a, (A2)

(a)

(b)

Yz Yx -y

Yxy

1 1

1

-1

-1

0

0

0
x x

x

y y

y

z

Yyz Yxz
11

-1-1

0 0

x xy y

z
z

FIG. 7. Orbitals of the 3d atomic shell. For each plot, the radius
of the surface is the value of the function Yj , r(θ,φ) = Yj , where j

is the orbital label. (a) eg orbitals have lobes along the crystal axes.
(b) t2g orbitals point between the axes,.

where the constant a is related to the mean-square radius by
〈r2〉 = 14a2 ∼ 1 Å. In crystals, the angular part of the 3d wave
functions is described by the set of orbitals [9]

Yz2 =
√

5

16π
(3 cos2 θ − 1) =

√
5

16π

2z2 − x2 − y2

r2
, (A3)

Yx2−y2 =
√

15

16π
sin2 θ cos 2φ =

√
15

16π

x2 − y2

r2
, (A4)

known as eg orbitals, and

Yxy =
√

15

16π
sin2 θ sin 2φ =

√
15

4π

xy

r2
, (A5)

Yyz =
√

15

16π
sin 2θ sin φ =

√
15

4π

yz

r2
, (A6)

Yzx =
√

15

16π
sin 2θ cos φ =

√
15

4π

zx

r2
, (A7)

known as t2g orbitals. They are shown in Fig. 7.

1. Mean value of spherical Bessel functions

The nth spherical Bessel function for n = 0 and n = 2 read

j0(x) = sin x

x
, (A8)

j2(x) =
(

3

x2
− 1

x

)
sin x

x
− 3 cos x

x2
. (A9)

Their mean values over Slater-type single-exponential
orbitals are

〈j0(qr)〉 =
∫

j0(qr)nd (r)dr = 1 − 5
6a2q2 + 1

16a4q4(
1 + 1

4a2q2
)6

≈
(

1 − q2〈r2〉
6

)
(A10)
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〈j2(qr)〉 =
∫

j2(qr)nd (r)dr = 2a2q2(7 − 3a2q2/4)

15(1 + a2q2/4)6

≈ q2〈r2〉
15

, (A11)

where the approximations are valid for q2〈r2〉 � 1.

APPENDIX B: SPIN CURRENT DIRECTION
FOR INTERFACES

A two-dimensional periodic lattice is specified by two
independent primitive translation vectors, a1 and a2

rn = n1a1 + n2a2. (B1)

Its reciprocal lattice is

G = n′
1b1 + n′

2b2, (B2)

where b1 = 2πa2/|a1 × a2| and b2 = 2πa1/|a1 × a2|. Equa-
tion (50) implies that translational symmetry of the density
nd and ρr carries over to the vector spin potential � and spin
current tensor Jν

σ (r) = −∂ν�(r). Therefore

�(r) =
∑

G

�G(z)ei(Gxx+Gyy), (B3)

where the Fourier coefficients �G depend on the distance
z from the interface. Inserting this expansion into Eq. (50)
leads to[

G2 − ∂2
z

]
�G(z) = 1

A

∫
A

dxdye−i(Gxx+Gyy)T (r), (B4)

with

T (r) = −J

h̄
ρr (r)Ṡ + J 2

h̄4 ρi(r)
∑

n

nd (r − rn)S × Ṡ, (B5)

where A is the unit cell area. Fourier transforming with respect
to z gives

[
G2 + q2

z

]
�G(qz) = T G(qz), (B6)

T G(qz) = A−1
∫

dze−iqzz

∫
dxdye−i(Gxx+Gyy)T (r). (B7)

Hence

�(r) =
∑

G

ei(Gxx+Gyy)
∫

dqze
iqzz

2π
(
q2

z + G2
)T G(qz) (B8)

=
∑

G

ei(Gxx+Gyy) e−Gz

2G
T G(iG), (B9)

using the residuals theorem for the pole qz = iG. J can be
decomposed into the currents along z and G as

Jz = 1

2

∑
G

e−Gzei(Gxx+Gyy)ẑ ⊗ T G(iG) (B10)

JG = −i

2

∑
G

e−Gzei(Gxx+Gyy) G
G

⊗ T G(iG), (B11)

where ⊗ is the external product of the two subspaces (spin
direction and current flow direction). Thus the spin current
flowing in the in-plane directions (JG) decays exponentially
with distance z when G �= 0. Only the contribution perpendic-
ular to the interface (G = 0) propagates as

Jz(z � 〈r〉) ∼ A−1
∫

drT (r), (B12)

which is the same result we obtain in the main text using the
divergence theorem. On the other hand, JG is not defined for
G = 0.

APPENDIX C: FINITE WAVELENGTH CONTRIBUTIONS
TO THE UNIFORM SPIN CURRENT

Corrections for finite G = |G| < 2kF can be calculated
by using the susceptibility χr (q) and spin density nd (q) in
Eqs. (19), (21), and (23) in the spin-mixing conductance
formula (54). Equation (54) can be rewritten in terms of lattice
vector anx,ny

= nxax + nyay ,

g↑↓
r = NdJ

2S2

Ah̄4

∫
dq

(2π )3
χi(q)|nd (q)|2

∑
nx,ny

eiq·anx ,ny . (C1)

The numerical integration of the above equation is tedious.
However, two natural limit cases are analytically accessible,
namely the dense (ax,ay → 0) and dilute (ax,ay → ∞) local
moments approximations. While the former is used in the
main text, we address here the second one by the following
expansion,

eiq·anx ,ny = 4π
∑
lm

iljl

(
qanx,ny

)
Y ∗

lm(q̂)Ylm

(
ânx,ny

)
.

For garnets with large lattice constants (large an), we can use
the asymptotic properties of the spherical Bessel functions,

lim
qanx ,ny �1

jl

(
qanx,ny

) = sin
(
qanx,ny

− l π
2

)
qanx,ny

. (C2)

Therefore the contribution of the nx,ny �= 0 terms decays as
∝ (kF anx,ny

)−1 and for a moment-to-moment distance of a nm
and an elemental metal typically smaller than 0.1. The sum of
Eq. (C1) is then dominated by the isotropic nx = ny = 0 term
and the interface spin-mixing conductance is just the sum of
the (isotropic) single ion contributions, g↑↓

r = NGiso
r . The spin

current generated by well-separated magnetic moments does
cause interference effects on the perpendicular spin current
and the anisotropies vanish.

APPENDIX D: CRYSTAL FIELD OF DISTORTED
OCTAHEDRAL SITES

Growing CFO films on lattice mismatched substrates [7]
causes magnetostriction [33] that leads to a distortion of the
octahedral environment of the cobalt moments. An elongation
or contraction in the crystal directions (001) and (111) shifts
the oxygen ion positions along the direction ( sin β√

2
,

sin β√
2

, cos β),
where β(001) = 0 and β(111) = 55◦. Similar to Eq. (6), the point
charge model leads to a crystal field splitting

�H
β

cf (r) = �0
2z2 − x2 − y2

〈r2〉 , (D1)
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where

�0 = 3〈r2〉δ cos(β + β0)

4πε0R
3
0 cos β0

, (D2)

δ is the strain, and β0 	 35◦. This distortion creates an effective quadrupolar crystal field. The lattice constants of CFO,
SrTiO3 substrate, and Pt overlayer are aSTO = 3.906 Å, aCFO = 4.195 Å, aPt = 3.912 Å [34]. With strain δ ∼ 2%, we estimate
�0 ∼ 0.06 eV.
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