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Critical behavior of the van der Waals bonded ferromagnet Fe3−xGeTe2
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The critical properties of the single-crystalline van der Waals bonded ferromagnet Fe3−xGeTe2 were
investigated by bulk dc magnetization around the paramagnetic to ferromagnetic (FM) phase transition. The
Fe3−xGeTe2 single crystals grown by self-flux method with Fe deficiency x ≈ 0.36 exhibit bulk FM ordering
below Tc = 152 K. The Mössbauer spectroscopy was used to provide information on defects and local atomic
environment in such crystals. Critical exponents β = 0.372(4) with a critical temperature Tc = 151.25(5) K
and γ = 1.265(15) with Tc = 151.17(12) K are obtained by the Kouvel-Fisher method, whereas δ = 4.50(1) is
obtained by a critical isotherm analysis at Tc = 151 K. These critical exponents obey the Widom scaling relation
δ = 1 + γ /β, indicating self-consistency of the obtained values. With these critical exponents the isotherm M(H )
curves below and above the critical temperatures collapse into two independent universal branches, obeying the
single scaling equation m = f±(h), where m and h are renormalized magnetization and field, respectively. The
exponents determined in this study are close to those calculated from the results of the renormalization group
approach for a heuristic model of three-dimensional Heisenberg (d = 3,n = 3) spins coupled with the attractive
long-range interactions between spins that decay as J (r) ≈ r−(3+σ ) with σ = 1.89.
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I. INTRODUCTION

Two-dimensional (2D) materials such as graphene and
ultrathin transition-metal dichalcogenides exhibit a number
of attractive properties that have been extensively studied in
the past decade [1–4]. However, in contrast to mechanical
and optoelectronic properties, the possibility of magnetism in
2D materials has received little attention. Recently, the van
der Waals (VDW) bonded magnetic materials are of great
interest as building blocks for heterostructures designed for
application in spin-based information technologies. The CrX3

(X = Cl, Br, I) and CrXTe3 (X = Si, Ge, Sn) have been
identified as promising candidates for long-range magnetism
in monolayers [5–9]. CrSiTe3 exhibits ferromagnetic (FM)
ordering at 32 K in the bulk [10], and it can be enhanced
to ∼80 K in monolayer and few-layer samples [11]. Bulk
CrI3 and CrGeTe3 are ferromagnetic at ∼61 K, which is
still somewhat low for spintronic applications [6,12]. Con-
sidering this, the VDW bonded material Fe3−xGeTe2 may
be of particular interest because the bulk is ferromagnetic at
∼230 K [13].

The ternary compound Fe3−xGeTe2 contains Fe3−xGe slabs
with two inequivalent Fe sites Fe1 and Fe2 [13]. The slabs are
sandwiched between two VDW bonded Te layers, as depicted
in Fig. 1(a). Fe3−xGeTe2 is a strongly correlated ferromagnetic
metal with the Curie temperature Tc ∼ 230 K or 220 K
[13–15], and the ferromagnetism with itinerant character
can be tuned by controlling Fe content [16]. Tc decreases
with increasing Fe vacancies, and the lattice responds with
a decrease in the in-plane lattice parameter and a slight
expansion along the c axis [16]. The flux-grown crystals
typically have a lower Tc ≈ 150 K with the Fe vacancies level
x ≈ 0.3 [16]. The x-ray diffraction (XRD) and Mössbauer
spectroscopy reveal that the presence of Fe vacancies occur
only in the Fe2 sites, whereas no Fe atoms occupy the interlayer
space; neutron powder diffraction (NPD) shows that the ratio
of moments between Fe1 and Fe2 is 1.25 at 1.5 K in Fe2.9GeTe2

polycrystal [17]. However, May et al. found that there is no
significant difference in the moments on the two Fe atomic
positions in the unit cell of flux-grown Fe-deficient single
crystals and verified that the moments lie along the c axis
without any significant spin canting or reorientation [16].
Recently, in addition to the reported FM transition at 214 K
in chemical vapor transport (CVT)-grown single crystals, Yi
et al. determined that the ferromagnetic layers of Fe2.9GeTe2

actually order antiferromagnetically along the c axis below
152 K [18]. Furthermore, the density-functional calculations
predict that single-layer Fe3GeTe2 is dynamically stable and
exhibits a significant uniaxial magnetocrystalline anisotropy,
potentially useful for magnetic storage applications [19].

In order to understand the magnetic behavior in few-layer
samples and the possible applications of this material, it
is necessary to establish the nature of magnetism in the
bulk Fe3−xGeTe2. In this paper, we investigate the critical
behavior of flux-grown Fe3−xGeTe2 single crystal by various
techniques, such as a modified Arrott plot, Kouvel-Fisher
plot, and critical isotherm analysis. Our analyses indicate
that the obtained critical exponents [β = 0.372 ± 0.004 (Tc =
151.25 ± 0.05 K), γ = 1.265 ± 0.015 (Tc = 151.2 ± 0.2 K),
and δ = 4.50 ± 0.01 (Tc = 151 K)] are close to those calcu-
lated from the results of the renormalization group approach
for a three-dimensional Heisenberg spins coupled with a long-
range interaction between spins decaying as J (r) ≈ r−(3+σ )

with σ = 1.89.

II. EXPERIMENTAL DETAILS

High-quality Fe3−xGeTe2 single crystals were grown by
the self-flux technique starting from an intimate mixture of
pure elements Fe (99.99%, Alfa Aesar) powder, Ge (99.999%,
Alfa Aesar) pieces, and Te (99.9999%, Alfa Aesar) pieces
with a molar ratio of 2:1:4. The starting materials were sealed
in an evacuated quartz tube, which was heated to 1000 ◦C
over 20 h, held at 1000 ◦C for 3 h, and then slowly cooled

2469-9950/2017/96(14)/144429(8) 144429-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.144429


YU LIU, V. N. IVANOVSKI, AND C. PETROVIC PHYSICAL REVIEW B 96, 144429 (2017)

FIG. 1. Crystal structure of Fe3−xGeTe2 from (a) side and (b) top
views. The unit cell is enclosed by blue solid lines. Inequivalent
Fe sites are labeled as Fe1 and Fe2, respectively. (c) Powder
x-ray diffraction (XRD) and (d) single-crystal XRD patterns of
Fe3−xGeTe2. The vertical tick marks represent Bragg reflections of
the P 63/mmc space group.

to 680 ◦C at a rate of 1 ◦C/h. X-ray diffraction data were
taken with Cu Kα (λ = 0.15418 nm) radiation of a Rigaku
Miniflex powder diffractometer. The element analysis was
performed using energy-dispersive x-ray spectroscopy (EDX)
in a JEOL LSM-6500 scanning electron microscope. The
magnetization was measured in a Quantum Design magnetic
property measurement system (MPMS-XL5). The M(H )
curves are measured at interval �T = 1 K. The applied
magnetic field (Ha) has been corrected for the internal field as
H = Ha − NM , where M is the measured magnetization and
N is the demagnetization factor. The corrected H was used
for the analysis of critical behavior. The measurement of the
Mössbauer effect in Fe3−xGeTe2 crushed single crystals was
performed in transmission geometry using a 57Co(Rh) source
at room temperature (T = 300 K). The Wissel spectrometer
was calibrated by the spectra of natural iron foil, so the
isomer shift values (δ) are in reference to metallic α iron
(δ = 0).

III. RESULTS AND DISCUSSIONS

Figure 1(a) shows the crystal structure of Fe3−xGeTe2,
which contains Fe3−xGe slabs separated by van der Waals
gapped Te double layers. The Fe atoms in the unit cell occupy
two inequivalent Wyckoff sites Fe1 and Fe2, as illustrated in
Fig. 1(b). The Fe1 atoms are situated in a hexagonal net in a
layer with only Fe atoms. The Fe2 and Ge atoms are covalently
bonded in an adjacent layer. The previous study indicated an
Fe2-deficient occupancy of 0.866 but full occupancy of Fe1
as well as Ge and Te sites in single crystals grown via CVT
[14]. By contrast, our EDX result gives Fe and Ge deficiencies
with a composition of Fe2.64(6)Ge0.87(4)Te2 in the flux-grown
single crystals. Figure 1(c) presents the powder XRD pattern of
Fe3−xGeTe2, in which the observed peaks are well fitted with
the P 63/mmc space group. The determined lattice parameters

FIG. 2. (a) Temperature dependence of magnetization for
Fe3−xGeTe2 measured with the external magnetic field H = 1 kOe
applied along the c axis and in the ab plane under zero-field-cooling
(ZFC) and field-cooling (FC) modes. The yellow solid lines are
fitted by the modified Curie-Weiss law χ = C

T −θ
+ χ0, where χ0

is the temperature-independent susceptibility, C is the Curie-Weiss
constant, and θ is the Weiss temperature. (Inset) The derivative
magnetization dM/dT vs T in different applied fields along the c

axis. (b) Field dependence of magnetization for Fe3−xGeTe2 measured
at T = 2 K. (Inset) The magnification in the low-field region. (c)
Mössbauer spectrum at T = 300 K of the Fe3−xGeTe2 crushed single
crystal. The experimental data are presented by solid circles, and
the fit is given by the red solid line. Vertical arrow denotes relative
position of the lowermost peak with respect to the basal line (relative
transmission). The fitted lines of subspectra are plotted above the
main spectrum fit: The Fe1 doublet is blue, the Fe1∗ doublet is violet,
and the Fe2 doublet is olive. Error is depicted as the absolute of
difference; the largest value is 0.176%.

a = 0.3954(2) nm and c = 1.6372(2) nm differ from values
of a = 0.400 42(15) nm and c = 1.6282(6) nm in CVT-grown
single crystals [14]. This indicates that the Fe-deficient sample
has smaller a and larger c than the Fe-rich sample, in
good agreement with the previous report [16]. Furthermore,
in the single-crystal 2θ XRD scan [Fig. 1(d)], only (00l)
peaks are detected, indicating the crystal surface is normal
to the c axis with the plate-shaped surface parallel to the ab

plane.
Figure 2(a) shows the temperature dependence of mag-

netization M(T ) measured under H = 1 kOe applied in the
ab plane and parallel to the c axis, respectively. A clear
paramagnetic (PM) to FM transition is observed and the
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apparent anisotropy at low temperatures suggests that the
crystallographic c axis is the easy axis. The zero-field-cooling
(ZFC) and field-cooling (FC) curves show significant splitting
at low temperatures for H//c, further indicating strong
magnet-crystalline anisotropy in Fe3−xGeTe2. Generally, the
critical temperature Tc is actually difficult to be determined
from M(T ) curve because it is usually dependent on the
external field. As shown in the inset of Fig. 2(a), Tc increases
monotonously with the increase of H , which is roughly
determined from the minima of the dM/dT curves. The
Tc is ∼152 K when H = 1 kOe; it gradually increases to
160 K and 180 K for H = 10 kOe and H = 50 kOe,
respectively. In the high-temperature region of 200 K–350
K, the ZFC curves are well fitted by the modified Curie-Weiss
law χ = C

T −θ
+ χ0, where χ0 is the temperature-independent

susceptibility, C is the Curie-Weiss constant, and θ is the Weiss
temperature. The Weiss temperatures obtained from the fitting
are θab = 157(1) K and θc = 164(1) K for H//ab and H//c,
respectively, the positive value confirming the FM interaction
among Fe atoms. The effective moment μeff = 4.21(2) μB/Fe
obtained from H//ab data is identical to μeff = 4.19(5) μB/Fe
from H//c data, indicating a nearly isotropic paramagnetic
behavior at high temperatures. Figure 2(b) displays the
isothermal magnetization measured at T = 2 K. The saturation
field Hs ≈ 3 kOe for H//c is much smaller than Hs ≈ 18
kOe for H//ab, confirming the easy axis is the c axis. The
saturation moment at T = 2 K is Ms ≈ 1.00(1) μB/Fe for
H//ab and Ms ≈ 1.03(1) μB/Fe for H//c, respectively. The
inset in Fig. 2(b) shows the M(H ) in the low-field region
and little hysteresis with the coercive forces Hab = 52 Oe
for H//ab and Hc = 138 Oe for H//c, respectively. All
these results are in good agreement with the previous report
[16]. Then we calculated the Rhodes-Wohlfarth ratio (RWR)
for Fe3−xGeTe2, which is defined as Pc/Ps , where Pc is
obtained from the effective moment Pc(Pc + 2) = P 2

eff and
Ps is the saturation moment obtained in the ordered state
[20,21]. RWR is 1 for a localized system and is larger in
an itinerant system. Here we obtain relatively large values of
RWR = 3.33 with H//ab and RWR = 3.21 with H//c for
Fe3−xGeTe2, which is somewhat smaller than the value of
RWR = 3.8 reported in CVT-grown single crystals without
Fe vacancy [15], indicating a possible weak itinerant character
and/or strong spin fluctuations in the ground state.

The Mössbauer spectrum [Fig. 2(c)] has been examined
with a WinNormos-Site software package based on the least-
squares method [22]. The fit goodness value is 1.032. The
spectrum can be well fitted by three paramagnetic doublets
with small discrepancy with the measured spectrum. The
discrepancy arises due to choice of the fitting model with
equal Lorentz lines. Also, there could be some texture due
to residual preferential orientation for the incident angle of
γ rays in crushed crystals so that the ratio of doublet line
areas is different from 1. Hyperfine parameters give insight
into first coordination sphere (ICS), i.e., local environment
of Fe atoms. ICS for Fe1 consists from Fe1, 3Fe2, 3Ge,
and 3Te, whereas for Fe2 ICS consists from 3Ge, 2Te, and
6Fe1. Fe vacancies prefer Fe2 positions (VFe2) and that
contributes to distorted ICS in some Fe1 atoms (Fe1∗), i.e.,

TABLE I. Mössbauer hyperfine parameters at T = 300 K of
Fe3−xGeTe2. A is the relative area of subspectrum, Γ is the linewidth,
δ is the measured isomer shift, and Δ is the quadrupole splitting. The
fitting errors are presented in parentheses. The superscript * denotes
distorted local environment.

A Γ δ Δ

Site (%) (mm s−1) (mm s−1) (mm s−1)

Fe1 54(5) 0.31(1) 0.397(2) 0.25(1)
Fe∗

1 16(5) 0.22(3) 0.43(1) 0.59(2)
Fe2 30(4) 0.21(1) 0.309(5) 0.586(6)

will create different local symmetry around such atomic sites.
Since the ratio of Fe atoms Fe1 : Fe2 = 2 : 1, we ascribe the
largest doublet 54(5)% (Table I) to Fe1 atomic positions, in
agreement with previous results [17]. It should be noted that
the lattice parameters depend on the number and distribution
of vacancies and that electric field gradient (EFG) tensor
components are very sensitive on the local atomic bonds of
Fe atoms. This is the origin of different quadrupole splitting
(Δ) (Table I). For Fe1∗ atoms we expect larger values of Δ due
to additional asymmetry of EFG (η) that stems from the local
symmetry distortion (Table I) [23]. Small change of isomer
shift (Table I) suggests that vacancies cause a redistribution
of valence electrons. In contrast to Fe1, the shortest chemical
bonds for Fe2 are with Ge atoms and are covalent [18]. This
brings different chemical shift (electric monopole interaction
E0) when compared to Fe1. This and second-order Doppler
shift (also different for different local environment of Fe1,
Fe1∗, and Fe2) contribute to isomer shift δ. Hence, the doublet
with δ = 0.309(5) mm−1 is ascribed to Fe2 in 2c position with
−6m2 point group symmetry [13]. This is higher symmetry
when compared to 3m of Fe1 in 4e position. Measured Δ

(Table I) suggest that charge density around Fe2 is more
anisotropic when compared to Fe1. Ratio Fe1∗ : Fe1 assuming
similar recoilless factors for Fe1 and Fe1∗ points to about
25% vacancies in the ICS of Fe1. Doublets or distribution of
quadrupole splitting were not detected. Based on the linewidth
(Γ , Table I), Fe1 ICS is less ordered when compared to Fe1∗

and Fe2. This could be due to larger distances of Fe2 vacancies
from other ICS so that Fe2 vacancies have negligible influence
on Fe1 ICS. The other possibility could be that Fe2 vacancies
take preferential positions in ICS of Fe1 with higher local
symmetry, thereby decreasing η and Δ parameters. Theoretical
calculations of hyperfine parameters could shed more light on
this.

As is well known, the critical behavior of a second-
order transition can be characterized in detail by a series
of interrelated critical exponents [24]. In the vicinity of a
second-order phase transition, the divergence of correlation
length ξ = ξ0|(T − Tc)/Tc|−ν leads to universal scaling laws
for the spontaneous magnetization Ms and the inverse initial
magnetic susceptibility χ−1

0 . The spontaneous magnetization
Ms below Tc, the inverse initial susceptibility χ−1

0 above Tc,
and the measured magnetization M(H ) at Tc are characterized
by a set of critical exponents β, γ , and δ. The mathematical
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definitions of these exponents from magnetization are

Ms(T ) = M0(−ε)β, ε < 0, T < Tc, (1)

χ−1
0 (T ) = (h0/m0)εγ , ε > 0, T > Tc, (2)

M = DH 1/δ, ε = 0, T = Tc, (3)

where ε = (T − Tc)/Tc is the reduced temperature, and M0,
h0/m0, and D are the critical amplitudes [25]. The magnetic
equation of state is a relationship among the variables M(H,ε),
H , and T . Using the scaling hypothesis this can be expressed
as

M(H,ε) = εβf±(H/εβ+γ ), (4)

where f+ for T > Tc and f− for T < Tc, respectively, are the
regular functions. In terms of renormalized magnetization m ≡
ε−βM(H,ε) and renormalized field h ≡ ε−(β+γ )H , Eq. (4) can
be written as

m = f±(h), (5)

which implies that for true scaling relations and the right choice
of β, γ , and δ values, scaled m and h will fall on two universal
curves: one above Tc and another below Tc. This is an important
criterion for the critical regime.

In order to clarify the nature of the PM-FM transition
in Fe3−xGeTe2, we measured the isothermal M(H ) in the
temperature range from T = 140 K to T = 170 K, as shown in
Fig. 3(a). Generally, the conventional method to determine the
critical exponents and critical temperature involves the use of
an Arrott plot [26]. The Arrott plot assumes critical exponents
following the mean-field theory, with β = 0.5 and γ = 1.0
[26]. According to this method, isotherms plotted in the form
of M2 vs H/M constitute a set of parallel straight lines, and
the isotherm at the critical temperature Tc should pass through
the origin. At the same time, it directly gives χ−1

0 (T ) and
Ms(T ) as the intercepts on the H/M axis and positive M2 axis,
respectively. Figure 3(b) shows the Arrott plot of Fe3−xGeTe2.
All the curves in this plot show nonlinear behavior having a
downward curvature even in high fields. This suggests that the
framework of the Landau mean-field model is not applicable
to Fe3−xGeTe2. According to Banerjee’s criterion [27], one
can estimate the order of the magnetic transition through the
slope of the straight line: A negative slope corresponds to
the first-order transition while positive corresponds to the
second order. Therefore, the concave downward curvature
clearly indicates that the PM-FM transition in Fe3−xGeTe2

is a second-order one.
A modified Arrott plot of M1/β vs (H/M)1/γ could be

employed [28]. The modified Arrott plot is given by the Arrott-
Noakes equation of state

(H/M)1/γ = aε + bM1/β, (6)

where ε = (T − Tc)/Tc is the reduced temperature, and a and
b are constants. Four kinds of possible exponents belonging to
3D Heisenberg model (β = 0.365,γ = 1.386), 3D XY model
(β = 0.345,γ = 1.316), 3D Ising model (β = 0.325,γ =
1.24), and tricritical mean-field model (β = 0.25,γ = 1.0) are
used to construct the modified Arrott plots [29], as shown in
Fig. 4. As we can see, all these four constructions exhibit

FIG. 3. (a) Typical initial isothermal magnetization curves mea-
sured along the c axis around Tc = 152 K (in an orange symbol and
line) for Fe3−xGeTe2. (b) Arrott plots of M2 vs H/M around Tc for
Fe3−xGeTe2.

quasi straight lines in the high-field region. Apparently, the
lines in Fig. 4(d) are not parallel to each other, indicating
that the tricritical mean-field model is not satisfied. However,
all lines in Figs. 4(a)–4(c) are almost parallel to each other.
To determine an appropriate model, the modified Arrott plots
should be a series of parallel lines in the high-field region
with the same slope, where the slope is defined as S(T ) =
dM1/β/d(H/M)1/γ . The normalized slope (NS) is defined
as NS = S(T )/S(Tc), which enables us to identify the most
suitable model by comparing the NS with the ideal value of
1. Plot of NS vs T for the four different models is shown in
Fig. 5. One can see that the NS of 3D Heisenberg model almost
equals to NS = 1 above Tc, in accordance with the nearly
isotropic magnetic character at high temperatures [Fig. 2(a)],
while that of 3D XY model is the best below Tc, indicating an
enhancement of the anisotropic interaction (spin fluctuations)
on cooling through the transition point.

To obtain the precise critical exponents β and γ , a rigorous
iterative method has been used [30]. The linear extrapolation
from the high-field region to the intercepts with the axis M1/β

and (H/M)1/γ yields reliable values of Ms(T ) and χ−1
0 (T ).
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FIG. 4. The isotherms of M1/β vs (H/M)1/γ with parameters of (a) 3D Heisenberg model, (b) 3D XY model, (c) 3D Ising model, and (d)
tricritical mean-field model. The straight lines are the linear fit of isotherms at different temperatures.

A set of β and γ can be obtained by fitting the data following
the Eqs. (1) and (2). Then the obtained new values of β and
γ are used to reconstruct a new modified Arrott plot. Conse-
quently, new Ms(T ) and χ−1

0 (T ) are generated from the linear
extrapolation from the high-field region. Therefore, another
set of β and γ can be generated. This procedure was repeated
until the values of β and γ are stable. From this method,

FIG. 5. Temperature dependence of the normalized slopes NS =
S(T )/S(Tc).

the obtained critical exponents are hardly dependent on the
initial parameters, which confirms these critical exponents are
reliable and intrinsic. Figure 6(a) presents the final Ms(T )
and χ−1

0 (T ) with solid fitting curves. The critical exponents
β = 0.374(1), with Tc = 151.27(1) K, and γ = 1.273(8), with
Tc = 151.08(6) K, are obtained. Alternatively, the critical
exponents can be determined by the Kouvel-Fisher method
[31],

Ms(T )

dMs(T )/dT
= T − Tc

β
, (7)

χ−1
0 (T )

dχ−1
0 (T )/dT

= T − Tc

γ
. (8)

According to this method, Ms(T )/[dMs(T )/dT ] and
χ−1

0 (T )/[dχ−1
0 (T )/dT ] are as linear functions of tempera-

ture with slopes of 1/β and 1/γ , respectively. As shown
in Fig. 6(b), the linear fits give β = 0.372(4), with Tc =
151.25(5) K, and γ = 1.265(15), with Tc = 151.17(12) K,
respectively.

The third exponent δ can be calculated from Widom scaling
law,

δ = 1 + γ

β
. (9)

Using the β and γ values determined from the modified Arrott
plot and Kouvel-Fisher plot, we obtain δ = 4.404(12) and
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FIG. 6. (a) Temperature dependence of the spontaneous magne-
tization Ms (left) and the inverse initial susceptibility χ−1

0 (right)
with solid fitting curves for Fe3−xGeTe2. (b) Kouvel-Fisher plots of
Ms(dMs/dT )−1 (left) and χ−1

0 (dχ−1
0 /dT )−1 (right) with solid fitting

curves for Fe3−xGeTe2.

δ = 4.401(6), respectively. Isothermal magnetization M(H )
at a critical temperature Tc = 151 K is shown in Fig. 7, with
the inset plotted on a log-log scale. According to Eq. (3), the

FIG. 7. Isotherm M vs H plot collected at Tc = 151 K for
Fe3−xGeTe2. (Inset) The same plot in log-log scale with a solid fitting
curve.

FIG. 8. (a) Scaling plots of renormalized magnetization m vs
renormalized field h below and above Tc for Fe3−xGeTe2. (Inset) The
same plots in log-log scale. (b) The renormalized magnetization and
field replotted in the form of m2 vs h/m for Fe3−xGeTe2. (Inset) The
rescaling of the M(H ) curves by MH−1/δ vs εH−1/(βδ).

critical exponent δ = 4.50(1) can be deduced, which is very
close to the values obtained from the modified Arrott plot and
Kouvel-Fisher plot. Therefore, the critical exponents β, γ , δ,
and Tc obtained in the present study are self-consistent and
accurately estimated within experimental precision. We note
that these values are close to what was found in stoichiometric
Fe3GeTe2 [32], suggesting that vacancies have little influence
on critical regime and dimensionality of magnetic interactions,
in contrast to Tc value.

The reliability of the obtained critical exponents and Tc

can also be verified by a scaling analysis. Following Eq. (5),
scaled m vs scaled h has been plotted in Fig. 8(a) along with the
same plot on a log-log scale in the inset of Fig. 8(a). It is rather
significant that all the data collapse into two separate branches:
one below Tc and another above Tc. The reliability of the
exponents and Tc has been further ensured with a more rigorous
method by plotting m2 vs h/m, as shown in Fig. 8(b), where
all data also fall on two independent branches. This clearly
indicates that the interactions get properly renormalized in
a critical regime following the scaling equation of state. In
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TABLE II. Comparison of critical exponents of Fe3−xGeTe2 with different theoretical models.

Composition Reference Technique Tc β γ δ

Fe3−xGeTe2 This work Modified Arrott plot 151.27(1) 0.374(1) 1.273(8) 4.404(12)
This work Kouvel-Fisher plot 151.25(5) 0.372(4) 1.265(15) 4.401(6)
This work Critical isotherm 4.50(1)

3D Heisenberg [27] Theory 0.365 1.386 4.8
3D XY [27] Theory 0.345 1.316 4.81
3D Ising [27] Theory 0.325 1.24 4.82
Tricritical mean field [35] Theory 0.25 1.0 5.0

addition, the scaling equation of state takes another form,

H

Mδ
= k

( ε

H 1/β

)
, (10)

where k(x) is the scaling function. Based on Eq. (10), all
experimental curves will collapse into a single curve. The inset
of Fig. 8(b) shows the MH−1/δ vs εH−1/(βδ) for Fe3−xGeTe2,
where the experimental data collapse into a single curve, and
Tc locates at the zero point of the horizontal axis. The well-
rescaled curves further confirm the reliability of the obtained
critical exponents [32].

The obtained critical exponents of Fe3−xGeTe2, as well as
those of different theoretical models, are listed in Table II for
comparison. Taroni et al. have accomplished a comprehensive
investigation of critical exponents for 2D magnets with a
conclusion that the critical exponent β for a 2D magnet should
be within a window ∼0.1 � β � 0.25 [33]. That is to say,
the critical exponents of Fe3−xGeTe2 exhibit apparent 3D
critical phenomenon. One can see that the critical exponent
β of Fe3−xGeTe2 is close to that of 3D Heisenberg model,
while γ approaches that of the 3D XY and/or the 3D Ising
model, which might be the origin of large magnetocrystalline
anisotropy in the ground state of Fe3−xGeTe2. Then it is
important to understand the nature as well as the range of
interaction in this material. As we know, for a homogeneous
magnet, the universality class of the magnetic phase transition
depending on the exchange distance J (r). Fisher et al. theo-
retically treated this kind of magnetic ordering as an attractive
interaction of spins, where a renormalization group theory
analysis suggests the interaction decays with distance r as

J (r) ≈ r−(3+σ ), (11)

where σ is a positive constant [34]. Moreover, the
susceptibility exponent γ is predicted as

γ = 1 + 4

d

(
n + 2

n + 8

)
�σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
[

1 + 2G
(

d
2

)
(7n + 20)

(n − 4)(n + 8)

]
�σ 2, (12)

where �σ = (σ − d
2 ) and G( d

2 ) = 3 − 1
4 ( d

2 )2, n is the spin
dimensionality. When σ > 2, the Heisenberg model is valid for
the 3D isotropic magnet, where J (r) decreases faster than r−5.
When σ � 3/2, the mean-field model is satisfied, expecting
that J (r) decreases slower than r−4.5. From Eq. (12) it is found
that {d : n} = {3 : 3} and σ = 1.89 give the exponents (β =
0.391, γ = 1.332, and δ = 4.407), which are mostly close to
our experimentally observed values (Table II). Moreover, we
obtain the correlation length critical exponent ν = 0.705 [ν =
γ /σ , ξ = ξ0|(T − Tc)/Tc|−ν], and α = −0.115 (α = 2 − νd),
which is close to the theoretical value for 3D Heisenberg model
[α = −0.115(9)] [35,36]. This calculation suggests that the
spin interaction in Fe3−xGeTe2 is close to the 3D Heisenberg
({d : n} = {3 : 3}) type coupled with a long-range (σ = 1.89)
interaction.

IV. CONCLUSIONS

In summary, we have made a comprehensive study on
the critical phenomenon at the PM-FM phase transition in
the van der Waals bonded ferromagnet Fe3−xGeTe2. This
transition is identified to be second order in nature. The critical
exponents β, γ , and δ estimated from various techniques match
reasonably well and follow the scaling equation, confirming
that the obtained exponents are unambiguous and intrinsic
to the material. The determined exponents are close to 3D
Heisenberg (d = 3, n = 3) spins coupled with a long-range
interaction between spin decays as J (r) ≈ r−(3+σ ) with σ =
1.89. Furthermore, with the rapid development in the field of
2D materials, we expect our experimental work to stimulate
broad interests in reducing bulk Fe3−xGeTe2 to monolayer
sheets and possible spintronic application.
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