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We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the
intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light
scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar
coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and
differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory,
based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of
power requirement to the all-magnonic switching. A very good agreement between calculation and experiment
was found. In addition, a micromagnetic and finite-element approach has been independently used to study
the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of
spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for
nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.

DOI: 10.1103/PhysRevB.96.144428

I. INTRODUCTION

In the past decades, the patterning of insulating magnetic
materials emerges as a promising technology which is the
basis of the rising field of magnonics and magnon-spintronics
for magnonic integrated circuits (see, e.g., Refs. [1–5] and
references therein).

The insulating-based magnonics opens a promising alter-
native to the concept of beyond-CMOS signal processing
devices [4,6–8], in which information is carried by spin waves
(SW) (or magnons) instead of electrons. The ferrimagnetic
thin films of yttrium iron garnet (YIG) possess significantly
smaller dynamic spin-wave damping compared to the metallic
magnetic films (even for the case of the nanometer-thick
YIG [9]). Thus utilization of the patterned YIG provides the
basis for next generation computing technology with low-level
energy consumption [1,4].

The particular problem of each signal processing device
inside the magnonic network is the fabrication of the spin-wave
buses, which connect the functional magnonic units together.
The interconnection can be realized with the magnonic
waveguides [10], irregular magnetic structures [11], and via
the dipolar coupling of spin waves. The latter is performed
via two types of the magnonic architectures: the vertical
[12–14] and planar or lateral [15–18] topologies of the
magnonic network. The vertical coupling of spin waves is
usually implemented in the sandwiched multilayer magnetic
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structure [14], whereas the lateral topology implies the using
of side-coupled magnonic stripe (SCMS).

The latter is the routine versatile component with great
potential for integration into large-scale planar magnonic
circuits and suitable for versatile operations with data in
magnonic networks due to the controllable collective mag-
netization dynamics in the adjacent ferromagnetic stripes
[16,19–23]. SCMSs provide the magnonic interconnects of
separate magnonic signal processing elements in the magnonic
networks [2,17] and can operate as the multichannel direc-
tional coupler [16,19–21], spin-wave power splitter [22], and
tunable frequency-selective insulating-based magnonic unit
[11,18].

The interest in nonlinear spin-wave processes in ferromag-
nets has arisen from the evolution of the theory of nonlinear
dynamics of dissipative systems [24–26]. Such nonlinear
phenomena in YIG as two-dimensional wave bullets and
soliton formation and propagation have been traditionally
studied in spin-wave waveguides of millimeter width using
microwave [27–31] and Brillouin light scattering techniques
[32–41]. By employing the nonlinear effects in YIG [27–
29,42], the variety of tunable spin-wave devices was realized
[32,33,37,38,40,43], e.g., intensity-dependent nonlinear phase
shifters, filters [44–46], and magnonic-crystal based switching
devices [22]. In recent years the nonlinear spin-wave dynamics
has drawn great attention as a new means for generation of
coherent spin-wave modes by spin-orbit torque produced by
pure spin currents [9,43].

An alternative mechanism of spin-wave switching can
be implemented by the means of the SCMSs integration
in the insulator-based circuits providing the control of the
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magnetization switching by the spin-wave intensity. However,
it should be noted that the lateral confinement of magnetic
stripes results both in the complicated nonlinear dynamics
of SW and multimode spin-wave coupling in lateral topology.
Therefore, investigation of the interplay between the spin-wave
coupling and nonlinearities in confined magnetic structures is
of significant importance for the physics of all-magnonic ultra-
fast switching. Moreover, the nonlinear dynamics of coupled
spin waves in adjacent magnonic stripes is of importance for
nonlinear physics of dissipative systems in general.

Here, we report an experimental investigation of spin-
wave intensity-dependent switching in side-coupled magnonic
stripes. This behavior is a result of the nonlinear spin-wave
mode transformation and differential nonlinear spin-wave
phase shift in each adjacent stripe. We present a theoretical
model, which describes the nonlinear spin-wave transport in
the magnonic stripes in the presence of the magnetodipolar
interaction.

The structure of the paper is the following. First, we study
the nonlinear spin-wave coupling in the adjacent insulating
thin-film ferrimagnet stripe by the means of direct spatially re-
solved Brillouin light scattering (BLS) technique. We demon-
strate that this system provides intensity-dependent switching
of spin-wave power between the adjacent stripes (Sec. II).
Then, we attribute these effects to the nonlinear behavior of
the spin-wave phase and transformation of spin-wave profiles
in magnonic stripes. To prove this and describe the weakly
nonlinear spatial phenomena in parallel magnetic stripe, we
present the simple model based on finite-element method
and micromagnetic (Landau-Lifshitz-Gilbert equation) sim-
ulation. We show that the experimentally observed variation
of the power transmission between magnonic stripes and the
power dependency of the coupling length is in agreement with
the developed numerical model (Sec. III). Next, we present
the phenomenological model based on the space-dependent
coupled Ginzburg-Landau equations to describe the main
features of the spin-wave coupling in the laterally parallel
magnonic stripes taking into account the nonlinear spin-wave
damping, and its predictions agree well with the experimental
results of both BLS and microwave spectroscopy techniques
(Sec. IV). Finally, we discuss the influence of structural
parameters on the coupling efficiency and spin-wave switching
in Sec. V and show how to decrease the input power, which
is enough for an all-magnonic coupler operation. Moreover,
we demonstrate that the proposed intensity-dependent dual
channel directional coupler can be used for parallel signal
processing in nonlinear magnonic networks.

II. EXPERIMENT

A. Structure fabrication

Figure 1(a) shows the schematic of the side-coupled
magnonic stripes and the outline of BLS experiment. The
adjacent magnetic waveguides were fabricated with the pulsed
laser patterning [47] of the t1 = 7.7-μm-thick insulating thin-
film ferrimagnet yttrium iron garnet [Y3Fe5O12 (111)] into
the form of side-coupled stripes S1 and S2 with edge-to-edge
spacing of d = 40 μm. YIG film with saturation magnetization
of M0 = 139 G was epitaxially grown on a 500-μm-thick

FIG. 1. (a) Schematic view of side-coupled magnonic stripes and
cartoon of BLS experiment. BLS measurement was performed in
backscattering configuration. On the inset: relative effective gap deff/d

as a function of stripe’s width. (b) Internal magnetic field profile Hi(y)
for SCMSs (top) and the transverse profile of the symmetric �s(y) and
antisymmetric �as(y) modes (bottom). The spacing between stripes
is depicted with shaded area. (c) The dispersion measured using
VNA (open squares) and dispersion characteristics of symmetric and
antisymmetric modes of SCMSs of width 100 μm (dashed curves),
200 μm (solid curves), and 1 mm (dotted curves). All the shown data
were obtained at H0 = 1200 Oe.

gadolinium gallium garnet [Gd3Ga5O12 (111)] substrate. The
width of both stripes was w = 200 μm. The length along the
long side was 7 mm for S1 and 5 mm for S2. The length of
the side-coupled region was b = 5 mm. These parameters of
the SCMSs provide the efficient spin-wave coupling and the
optimal switching regime, as it will be explained in Sec. V. The
microwave transducer with the width of 30 μm (along x axis)
and length of 2 mm (along y axis) was used for spin-waves
(SWs) excitation. Input transducer was attached to the stripe
S1. The uniform static magnetic field H0 = 1200 Oe was
applied in the plane of the waveguides along the y direction.
Thus the guided magnetostatic surface wave (MSSW) was
excited [25,48,49].

B. Spin-wave dispersion and eigenmode spectra

When two parallel magnetic stripes are brought in close
proximity of each other, the propagating SW is coupled by
the dipolar field and the spin-wave dispersion branch of an
isolated waveguide is split into two SW modes. Thus the
eigenmodes spectrum of identical SCMSs consists of the
orthogonal system [50] of symmetric �s and antisymmetric
�as modes [16] [see Fig. 1(c)]. It should be noted that the lateral
confinement of adjacent stripes leads not only to the reduction
of internal magnetic field Hi but also to the asymmetrical
profile of the internal field distribution inside S1 and S2 with
respect to the center of each stripe [Fig. 1(b), top panel].
As a result, we should take into account the decrease of the

144428-2



TOWARD NONLINEAR MAGNONICS: INTENSITY- . . . PHYSICAL REVIEW B 96, 144428 (2017)

waveguide area, which supports the SW propagation; thus
the effective width of each magnonic stripe is weff ≈ 150 μm.
Therefore, we use the finite-element method (FEM) [16,51,52]
to calculate the eigenmodes spectra and mode profiles of
the laterally symmetric parallel magnetic stripes with the
nonuniform magnetization configurations inside the stripes.
The value of the internal field at the center of both stripes is
Hi0 = 1159 Oe. This leads to the redshift of the frequency of
ferromagnetic resonance (FMR) of the in-plane magnetized
film [53] f0 = (γ /2π )[Hi0(Hi0 + 4πM0)]1/2 = 5.141 GHz,
where γ /2π = 2.8 MHz/Oe is the electronic gyromagnetic
ratio for YIG.

Figure 1(b), bottom panel, shows the profiles of �s and �as.
Dispersion characteristics of low order transversal symmetric
and antisymmetric modes are shown in Fig. 1(c) with the
red and blue lines, respectively. It can be seen that cutoff
frequency for the lowest order symmetric mode f s

co is higher
than that of antisymmetric mode f as

co and both frequencies are
lower than FMR frequency: f as

co < f s
co < f0. It is important

to emphasize that the increase of the stripe width leads to
the reduction of the discrepancy between cutoff and FMR
frequencies. Thus, if the width reaches the value w = 1 mm,
the above-mentioned discrepancy is almost negligible [dotted
curves in Fig. 1(c)]; hence f as

co ≈ f s
co ≈ f0. Dispersion of

MSSW in the SCMS’s was measured by microwave technique
using E8362C PNA Vector Network Analyzer (VNA). The
experiments were performed at relatively small input power
P0 = −25 dBm in the linear regime of the MSSW propagation.
The output microwave transducer is placed on the S1 at the
distance of 5 mm from the input transducer. Dispersion of
MSSW is demonstrated in Fig. 1(c) with open squares. Due to
the interference of eigenmodes �s and �as the effective wave
number of spin wave is equal to k(f ) ≈ [ks(f ) + kas(f )]/2,
where ks and kas are the wave numbers of symmetric and
antisymmetric modes.

C. BLS measurements of nonlinear regime of coupled
spin-wave propagation

First, to demonstrate the efficient coupling between ad-
jacent magnetic stripes, we use the BLS technique in the
backscattering configuration [54–56]. Figure 2 shows the
pseudocolor-coded two-dimensional 5 × 0.45 mm2 spatial
maps of the recorded BLS intensity I (x,y) at the frequency
f1 = 5.1 GHz. Intensity map was obtained by the scanning
with the probing light spot along the x and y axis with the
spatial resolution of 25 μm and then integration over the time
period of 2 μs. We perform BLS measurement at different
levels of input power P0 = −25 dBm [Fig. 2(a)], P0 = 5
dBm [Fig. 2(b)], and P0 = 23 dBm [Fig. 2(c)]. The input
pulse signal had a length of 50 ns. The pulse repetition period
was 2 μs.

These parameters of input pulse signal were chosen in order
to avoid the overheating of the YIG sample in the area of the
input microstrip antenna and self-heating of the YIG sample
by the propagating MSSW. Using the VNA and oscilloscope
we can estimate the threshold of the pulse width and amplitude
at which the frequency starts to shift due to heating. We set
the value of power and vary the pulse duration. If the pulse
duration at fixed power is sufficiently long to overheat the

FIG. 2. Normalized color-coded BLS intensity map recorded at
the excitation frequency of f1 = 5.1 GHz. Power level of input signal
is labeled above each map. Edges of stripes are guided with dotted
lines. L denotes the spin-wave coupling length for each map.

sample or to induce the four-magnon decay processes, we can
determine the appropriate pulse parameters via the recording
of the pulse form of reflected signal.

From the comparison of these maps, one should note that
the spin-wave power transfers from one stripe to the other
in a periodic manner with the spatial period of 2L. Here L

is the coupling length, which is equal to the distance along
x direction over which a SW propagating in one magnonic
stripe transfers all its energy to the second adjacent stripe.
Coupling length is defined at the frequency f and power P0

as L(f,P0) = π/|ks(f,P0) − kas(f,P0)|, where ks(f,P0) and
kas(f,P0) are the wave numbers of the lowest order transversal
symmetric and antisymmetric modes.

It is also worth noting that the results presented in Fig. 2
show that L is increased with the increase of the input power
level. Thus the BLS experiment reveals the nonlinear nature of
the intensity-dependent switching. Therefore, the SW may be
effectively routed between the magnetic stripes by changing
input power. Hereafter we propose the explanation of this
nonlinear effect. We denote the coupling length, extracted from
BLS data as L1,2,3 (see Fig. 2), where L1 corresponds to the
linear regime (P0 = −25 dBm), L2 to P0 = 5 dBm, and L3 to
P0 = 23 dBm.
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One should take into account that the full power exchange
between S1 and S2 is unachievable due to the different coupling
lengths of the transverse width modes [16]. Figures 2(a) and
2(b) demonstrate also that for a given excitation frequency
f1 only the first and second width modes in S2 interfere with
each other [57]. This leads to the formation of “snake-like”
stationary intensity distribution in S2. Therefore, SCMS can
operate as a width-mode sorter, which is similar to the
symmetry-broken magnonic waveguide [58]. As the input
power level is increased the spin-wave intensity distribution in
each stripe transforms due to the nonlinear coupling between
initially independent width modes [39]. Thus the proposed
topology of the SCMSs can act as an all-magnonic equivalent
of a tunable multiferroic coupler [23], similar to all-optical
switching in the fiber couplers [59–63] or in the graphene
layers [64].

III. MECHANISM OF SPIN-WAVE COUPLING
IN ADJACENT STRIPES

A. Linear regime of spin-wave coupling

Next, to elucidate the intermodal coupling mechanism
between the stripes, we perform the micromagnetic study
(MMS) of spin-wave propagation along the side-coupled
waveguides (see Fig. 3). We use the object-oriented micro-
magnetic framework (OOMMF) [65] to perform the numerical
solution of a Landau-Lifshitz equation for the dynamics
of the magnetization [66]. The volume of simulation area
was (7000 × 440 × 7.7) μm3; the size of the mesh cell
was (0.1 × 0.1 × 1.1) μm3. First, we perform the static
simulation to obtain the ground magnetic state of coupled
stripes. Therefore, we define the internal magnetic field profile
Hi(y) [see Fig. 1(b), top panel]. The reason for using MMS
to describe the magnetodipolar coupling of spin waves is
in the straightforward possibility to compute the intensity-
dependent magnetization dynamics in the case of nonuniform
Hi(y). In the next step of the micromagnetic simulations,
spin waves were excited in the vicinity of the left edge of
S1 by a local magnetic field of harmonic temporal profile
h(x,z,t) = h0 sin(2πf t)[hx(x,z)�x0 + hz(x,z)�z0], where h0 is
the amplitude of dynamic magnetization; the x and z profiles
of dynamic magnetic field were taken into account [67,68]
with hx(x,z) and hz(x,z), respectively.

Figure 3(a) demonstrates the dynamic out-of-plane com-
ponent of magnetization mz inside the 5 × 0.45 mm2 box.
Snapshot was extracted after a lapse of 100 ns from the onset
of the excitation at the frequency of 5.1 GHz and amplitude
h0 = 10−5 Oe. The chosen parameters correspond to the
P0 = −25 dBm in experimental setup and, therefore, to the
linear regime of SW propagation.

By the means of the Hilbert transform [69] we detect the
envelope of the dynamic magnetization �(x,y) [see Fig. 3(b)].
Hence we are able to plot the envelope of the dynamic
magnetization across the x coordinate inside each film
as �1(x) = ∫ w

0 �(y,x) dy and �2(x) = ∫ 2w+d

w+d
�(y,x) dy.

Figure 3(c) summarizes the results obtained from BLS mi-
croscopy measurements (open symbols) and micromagnetic
simulations (solid curves) of longitudinal spin-wave profiles
in each adjacent stripe. The results of BLS measurement of

I1(x) = ∫ w

0 I (y,x) dy and I2(x) = ∫ 2w+d

w+d
I (y,x) dy are shown

in Fig. 3(c) with open squares and circles, respectively, and
are strikingly similar to the results of simulation. Thus the
coupling length can be estimated from the well-pronounced
dips in the �1(x) and �2(x) as well as in I1(x) and I2(x).
The value of L is monotonically increased with the increase
of the SW frequency [open squares in Fig. 3(d)]. This is
well confirmed by the numerical simulation [dashed curve
in Fig. 3(d)].

B. Nonlinear regime of spin-wave coupling

Next, to reveal the nonlinear regime of spin-wave coupling
we plot the coupling length as a function of input power from

FIG. 3. Snapshots of the out-of-plane component of dynamic
magnetization (a) and distribution of spin-wave amplitude (b)
calculated by the means of micromagnetic simulations at the
excitation frequency of f1 = 5.1 GHz. Edges of stripes are guided
with dotted lines. (c) Calculated longitudinal profile of spin-wave
amplitude in first (�1) and second (�2) stripe. The data of BLS ex-
periment are shown with open symbols. (d) Frequency dependence of
L is shown with open circles (BLS data), solid curve (micromagnetic
simulation), and dotted curve (FEM simulation). All the shown data
were obtained at H0 = 1200 Oe.
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FIG. 4. (a) Experimentally measured transmission coefficient T0

as a function of x coordinate at P0 = −25 dBm (open circles)
and P0 = 23 dBm (closed squares). Solid and dashed curves depict
the results of numerical simulation; power dependency of coupling
length (b) and transmission factor (c), measured by BLS (triangles)
and numerically simulated using micromagnetic simulation (MMS),
FEM, and coupled GLEs (as labeled in box). (d) Mode y profiles
�1,2 of separated stripes at P0 = 0 dBm (dashed curve) and P0 = 23
dBm (solid curves). (e) Nonlinear differential phase shift in each
stripe �φNL1,2 (dashed and dotted curves) and overlap integral C

(solid curve) as a function of input power. The data were obtained for
f = 5.1 GHz and H0 = 1200 Oe.

the experimentally measured BLS map [see the red triangles
in Fig. 4(b)]. These data clearly demonstrate the increase of
coupling length by the factor of 1.3, which is enough for the
spin-wave power switching between the adjacent stripes in
the magnonic circuits. The ratio of power transferred from
S1 to S2 at each value of x coordinate can be estimated via
coefficient T0 = 10 log(P2/P1), where P1,2 = I1,2(x) are the
integrated BLS intensities across each stripe. The variation
of the T0 across the x coordinate is plotted with open circles
in linear regime and closed squares in nonlinear regime [see
Fig. 4(a)]. It is seen that the position-dependent coefficient T0

is not convenient for the generality of the nonlinear coupling
description. Thus the efficiency of power transfer between
magnonic stripes can be estimated with the coefficient T ,
which is defined as T = 10 log(P2/P1), where P1,2 = I1,2(x =
4L1) are the integrated BLS intensities across S1,2 at x = 4L1.
We emphasize that this way of definition of T is convenient for
the nonlinear coupler operation description. Thus the position
independent coefficient T is defined mainly by the spin-wave
dispersion. Therefore, T describes mainly the transformation

of spin-wave characteristics in the nonlinear regime against the
linear regime. With the input power increasing, the spin-wave
power is switched from S1 into S2 (Fig. 2) and T increases
by 15 dB in going from P0 = −20 dBm to P0 = 20 dBm. We
note that the spin-wave power is divided equally between the
magnetic stripes, when

T (x = 4L1,P0) = 0. (1)

The solution of Eq. (1) defines the critical power P0 = Pth.
One expects the monotonous increase of C with the increase
of P0; however, at the P0 = 23 dBm the coefficient C as well
as the coupling length L starts to decrease [see Fig. 4(c)]. This
behavior can be attributed to the nonlinear magnon-magnon
scattering processes, which are known to be highly efficient
in YIG films and lead to the nonlinear damping of spin
waves [25]. From the experimental data, which are depicted
in Fig. 4(c) with triangles, it is seen that, at Pth = 18 dBm,
the power is divided equally between S1 and S2. It is worth
noting that the numerical simulation predicts the critical value
of Pth = 17 dBm, which is in a good accordance with the
experimental value.

The physical origin of the spin-wave coupling in SCMS is
in the overlap of each stripe with the exponentially decaying
tail of the spin-wave modes supported by the other stripe
[16]. Furthermore, it was shown by Demidov [37] that in the
Damon-Eshbach propagation geometry the nonlinearity acts
in the opposite way to the linear diffraction decreasing the
transverse spin-wave mode size. Figure 4(d) demonstrates the
mode profile of each separated magnetic stripe at the input
power 5 dBm (dotted curves) and 23 dBm (solid curves). The
overlap of mode profiles is schematically depicted in Fig. 4(d)
with the shaded area. Thus the MSSW field distribution
transforms with the power increase, and the value of spin-wave
wave vector is changed. Nonlinear eigenmode profiles were
calculated using the iterative FEM simulation with the local
mesh refinement [52] (the minimal element size of the mesh
was 0.0188 μm, the maximum element growth rate was 1.25,
and the curvature factor was 0.25) taking into account the
local magnetization decrease with the profile corresponding
to the linear eigenmode and nonuniform internal magnetic
field profile, calculated via the micromagnetic simulation.
The theory of the magnetodipolar interaction in the array of
magnetic nanodots [70] can also be used to calculate SW
coupling; however, in the case of Damon-Eschbach geometry
it is impossible to apply this theoretical approach due to the
nonuniform and asymmetric magnetic field profile in each
magnetic stripe. We also take into account only the first SW
mode of magnetic stripe due to the fact that for the higher
order spin-wave mode the dynamic stray field produced by the
spin-wave mode is decreased [15].

As seen from Fig. 4(d) the transverse width along y

coordinate of the mode profiles of each separated stripe
�1,2(y,f,P0) are decreased with the power increase. This leads
to the decrease of the overlap integral between the modes in
each SCMS:

C(f,P0) =
∫

�1(y,f,P0)�2(y,f,P0) dy√∫
�2

1(y,f,P0) dy
∫

�2
2(y,f,P0) dy

. (2)
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The integrals in (2) are taken along the line −w − d/2 � y �
w + d/2. The calculated amplitude dependence of the overlap
integral is shown in Fig. 4(e) with solid curve. The monotonic
decrease of C with the increase of P0 qualitatively elucidates
the behavior of L(P0). It should be noted that we neglect the
phase shift between the modes �1 and �2 in Eq. (2).

IV. PHENOMENOLOGICAL MODEL OF NONLINEAR
SPIN-WAVE COUPLING

A. Particular form of coupled Ginzburg-Landau equations

The second mechanism contributing to the phenomena of
spin-wave switching in SCMSs is the nonlinear phase shift of
propagating SW [27–29,32,71]. To describe the propagation
of nonlinear spin waves in the magnonic stripes and define the
nonlinear spin-wave phase shift, we use the slowly varying
envelope approximation approach usually employed in the
physics of optical solitons and nonlinear waves [63]. It is
known that there are two theoretical formalisms used to
describe the nonlinear spin-wave coupling in the ferromagnetic
films: the coupled Schrödinger equations (NSE) [25,72] and
the particular form of the coupled Ginzburg-Landau equations
(GLE) [36,63,71,73–77]. The latter is usually considered as a
dissipative extension of the conservative NSE, which describes
weakly nonlinear wave phenomena [74].

Next, we describe the spin-wave coupling in two adjacent
magnetic stripes based on our assumption of the presence
of nonlinear damping, which strongly influences the SW
behavior. Thus we propose the phenomenological model based
on a particular case of the GLE, which is also used in nonlinear
optics [63,78]. The particular form of two coupled GLE
[76] can be obtained from the Landau-Lifshitz equation for
the magnetization dynamics taking into account Kerr-type
nonlinearity [36,45,75,79], i.e., the decrease of the effective
saturation magnetization: M ≈ M0[1 − (m2

x + m2
z)/(2M2

0 )] =
M0(1 − ϕ2/2). Spin-wave power can be estimated asymptot-
ically as [27,29,80] Pin ≈ |ϕ|2M2

0 vgwefft1, where vg is the
group velocity of MSSW in the magnetic stripe of effective
width wefff ; ϕ = ϕ0 is the initial amplitude of MSSW for
the numerical integration of coupled GLEs. Taking into
account the radiation resistance for the lowest-order transverse
mode of MSSW [26,81–84], excited by a shorted microstrip
transmission line, we can estimate the value of Pin from
experimental value P0 via the SW and microstrip transducer
coupling analysis [26].

The system of two coupled GLEs reads as

i
d�1,2

dx
= k�1,2 + κ�2,1 + (ζ − iν2)|�1,2|2�1,2 − iν1�1,2,

(3)

where �1,2 = �1,2(x)|y=y1,2
is the dimensionless SW ampli-

tude along x axis, y1,2 denotes the central position inside stripe
S1 and S2, correspondingly, k = k(f ) is the wave number
of SW propagating in the separate magnetic stripe, κ =
κ(f ) = βC(f ) ≈ |ks(f ) − kas(f )| is the coupling coefficient
between the SW in the adjacent stripes, β is the proportionality
coefficient, ζ = dk/dϕ2 is the nonlinear coefficient, which
was defined from the assumption of the magnetization re-
duction from the Damon-Eschbach dispersion of SW [27,48],

ν1 = 1
vg

| ∂ω
∂Hi

|�H
2 and ν2 = 1

v2
g
ζ �H

2 | ∂ω
∂Hi

|| ∂2ω
∂k2 | are the SW linear

and nonlinear damping, correspondingly, and ω = 2πf is
angular frequency. The ferromagnetic resonance linewidth
is experimentally determined to be �H = 0.54 Oe at the
frequency of 9.7 GHz.

B. Nonlinear spin-wave phase shift

Next, by the direct numerical integration of Eq. (3) we
compute the values of L and T as a function of input power.
The dashed curves in Figs. 4(a) and 4(b) show the results of
numerical simulation, which clearly exhibits a good agreement
with the experimental values. The wave number k, coupling
coefficient κ , and coefficient β were defined from FEM
simulation. We note also that the micromagnetic simulations
demonstrate a good agreement with BLS data [open circles in
Figs. 4(a) and 4(b)], whereas the FEM simulation predicts
only the monotonous growth of coupling length with the
power increase. The important point is that the introduction of
nonlinear damping leads to the increase of the power threshold
Pth of spin-wave switching in the coupled GLEs rather than
that for the coupled NSEs.

Moreover, the results of the nonlinear phase shift calculated
by coupled GLEs demonstrate that the differential nonlinear
phase shift in the stripe S1 is �φNL1(f1) = �φth ≈ 2.8π rad at
the power value of Pth, which is in a good accordance for the
optical one-beat length directional coupler [85]. It should be
noted that the nonlinear phase shift in the first stripe is greater
than that for the second stripe �φNL1 > �φNL2 in the range of
spin-wave power 0 < P0 < 30 dBm and �φNL1 − �φNL2 ≈ π

at P0 = Pth. The latter explains the intensity-dependent switch-
ing in the terms of the interference of the symmetrical and
antisymmetrical eigenmodes. Moreover, we emphasize that
the multimode pattern of spin-wave intensity [see Figs. 2(a)
and 2(b)] in S1 changes to almost single-mode regime as the
power exceeds the Pth due to interference of width modes of
separate stripe [37] [see Fig. 2(c)]. This effect also contributes
to the growth of C with the power increase. We plot the
experimentally measured data �φNL1(P0) with open circles in
Fig. 4(d). The nonlinear phase shift was measured in the output
section of the stripe S1 using the microwave spectroscopy
technique [23] based on VNA. The experiment and simulation
consistently reveal the phase dependency of the SW power.

C. Power threshold power of spin-wave switching

Finally, we discuss the results of numerical simulation,
which can verify the power-controlled switching regime
and explain the experimental data [L(P0) and C(P0)]. We
estimate the decrease of the effective saturation magnetization
δMs [blue dashed line in Fig. 5(a)] with the increase of
amplitude of magnetization [25,27] h0: δMs = M0 − Ms ≈
M0γ

2h2
0/(2α2ω2), where α = 1

ω
| ∂ω
∂Hi

|�H
2 = 1.15 × 10−5 is the

Gilbert damping parameter [25,86]. Therefore, we compute
the coupling length as a function of saturation magnetization
Ms . The data in Fig. 5(a) (open circles and fitting with the
red curve) demonstrate the decrease of L as Ms increases and
reaches the M0. Thus the L(h0) can be estimated from the
iterative FEM simulation.
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FIG. 5. (a) Dynamic amplitude of SW h0 (solid curve) and cou-
pling length (dashed curve) as a function of saturation magnetization
in YIG. (b) The map of P0(f ) demonstrating the regimes of spin-wave
dynamics. Yellow region corresponds to the SW transmission through
the first magnetic stripe, blue—to the second. The dashed, solid, and
dotted curves correspond to the values of T , denoted at the top of map.
(c) Transmission of SW through the first stripe S1 measured with VNA
in linear (solid green curve) and nonlinear (dotted red curve) regime.
Calculation results are shown with dashed and dash-dotted curves.
(d) Coupling length as a function of distance between stripes (solid
curve) and internal magnetic field in the center of the stripe (dotted
curve—simulation; open squares—BLS experiment). (e) Threshold
power Pth of spin-wave switching as a function of spacing between
stripes and internal magnetic field. (f) Threshold power (solid curve)
and coupling length (dotted curve) as a function of the stripes’ width.
Open circles denote the experimental data.

We plot the color-coded regime map in Fig. 5(b) demon-
strating the signal switching from the S1 to the S2 frequency
dependence of the nonlinear switching threshold Pth(f ). Here
the blue solid, dashed, and dotted curves correspond to
the conditions T (P0,f ) = 0 dBm, T (P0,f ) = −3 dBm, and
T (P0,f ) = 3 dBm, respectively. As it is seen from Fig. 5(b) the
value of Pth is decreased with the frequency increase; however,
the monotonic growth of the coupling length L impedes the
further lowering of the switching threshold.

Figure 5(c) shows the frequency dependence of the modulus
of the transmission coefficient in the linear (green solid
curve) and nonlinear (red dashed curve) regime, which was
measured using the microwave spectroscopy, when the output
transducer is placed at the end of the stripe S1. The response
shown for the SCMSs is typical of a whole class of devices

involving the linear and nonlinear coupling between two
copropagating modes [16,23,85]. The well-pronounced stop-
band dip corresponds to the frequencies, at which the power of
spin wave does not effectively return to the output section of the
stripe S1. The position of the dip is shifted in the low-frequency
region with the spin-wave power increase. The calculated
transmission for the linear and nonlinear regime are plotted
with dashed and dashed-dotted curves, correspondingly, and
are in good accordance with the experimental data.

Moreover, we emphasize that we consider only the linear
contribution to the perturbing of magnetization in adjacent
stripes, which arises from the overlap of the modal field
with a parallel stripe. We neglect the nonlinear contribution
in coupling, which arises due to the nonlinear interaction
between the spin-wave modes in adjacent stripes [87]. The
nonlinear coupling starts to work at the significant high power
of propagated wave, and thus the nonlinear damping influences
the spin-wave dynamics and cannot lead to the “nonlinear
coupling” mechanism, i.e., as the power of spin wave increases
the spin-wave damping also increases and this leads to the
limitation of the functionality of the nonlinear coupler.

V. INFLUENCE OF GEOMETRY OF ADJACENT STRIPES
ON NONLINEAR SPIN-WAVE COUPLING

It was shown in Sec. II B that the coupling length L(f )
defines the geometry of the all-magnonic spin-wave coupler.
In the linear regime of SW propagation in the coupling section
of the length b [see Fig. 1(a)], L(f ) should satisfy the condition
L(f ) � b. In the nonlinear regime the necessary criterion of
intensity-dependent SW switching in SCMSs reads as

LNL(f ) � L(f ) � Ld (f ), (4)

where LNL is the characteristic length scale [88] provided the
phase shift �φNL(f ) in nonlinear regime of SW propagation;
Ld = 1/ν1 is the propagation length [25] of SW.

Therefore, we discuss here the design of the all-magnonic
coupler and define the conditions of lowering of the power
threshold for efficient spin-wave switching in the laterally
parallel magnetic stripes.

Spacing between magnetic stripe defines the coupling
length [16] and as a consequence has a significant effect on
the switching power. Thus the increase of the distance between
stripes d leads to the increase of L, as one can see from Fig. 5(e)
(d is ranging between 0 and 70 μm). When d → 0 μm the
coupling length L → L12, where L12 = π/(k1 − k2); k1 and
k2 are the wave numbers of the first and second transverse
modes of MSSW in the stripe of the width [16] of 2w. We also
demonstrate the tuning of the coupling length by the factor
of 1.8 with the variation of the magnetic field from 1120 Oe
to 1170 Oe [see Fig. 5(e)]. The blue dotted line in Fig. 5(e)
shows the results of FEM simulation and open squares depict
the data, which are extracted from BLS measurements.

The decrease of the stripes’ width w leads to the decrease
of the group velocity vg of the MSSW [see Fig. 1(c) for both
symmetric and antisymmetric modes] and as a result leads to
the increase of the nonlinear phase shift �φNL1, which can
be estimated with Eq. (7) from Ref. [89]. This leads to the
decrease of the Pth with the decrease of w. From the other
hand, as shown in Fig. 1(c), the decrease of w leads to the
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increase of �k = |ks(f,P0) − kas(f,P0)| and as a consequence
to the increase of Pth. It should be also taken into account that
the relative effective gap between the stripes deff/d is increased
with the decrease of w [see the inset in Fig. 1(a)]. As a result,
the value of overlap integral C is decreased. This leads also to
the decrease of the threshold power Pth with the decrease of w.

Figure 5(f) demonstrates the well-defined minima of the
dependency Pth(d) due to the effect of the above-mentioned
mechanisms. Thus the optimal values of the SCMS’s width
are in the range 125 < w < 275 μm for the YIG thickness of
7.7 μm. Thus it should be noted that in Ref. [22] the absence
of the nonlinear spin-wave switching can be explained with
the relatively high waveguide width of 720 μm, which was
insufficient to reach the appropriate value of �φNL even at the
input power of P0 = 26 dBm.

We have to note that the variation of the angle of magneti-
zation leads to the variation of the value of overlap integral and
thus to the variation of coupling length. However, in the geom-
etry of the backward volume magnetostatic wave (BVMSW)
the value of the coupling length is higher than for MSSW;
thus the threshold power is also higher. Therefore, the power
requirement to the all-magnonic switching could be reduced
by using the MSSW and the appropriate geometry design.

VI. CONCLUSIONS

In conclusion, we experimentally observe the intensity-
dependent switching in side-coupled YIG stripes. Using the
Brillouin light scattering technique and microwave spec-
troscopy, we demonstrate the nonlinear spin-wave coupling.
We find that the increase of the input microwave signal level

leads to the variation of the power transmission coefficient
between magnonic stripes. The developed analytical model,
taking into account the spin-wave modes transformation and
nonlinear spin-wave phase shift, elucidates the mechanisms of
nonlinear spin-wave coupling between the adjacent magnonic
stripes and predicts the optimal geometry design of the
directional magnonic coupler. This make the studied phe-
nomenon very promising for applications of side-coupled
magnetic stripes in all-magnonic signal processing based on
spin-wave-based integrated circuits and magnonic networks.
Additionally, these results show the possibility of expansion
of the emerging field of magnonics and provide opportunities
for nonlinear magnonics, where the nonlinear effects play
the crucial role for the spin-wave transport in the patterned
magnetic structures.
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