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Theory of noncollinear interactions beyond Heisenberg exchange: Applications to bcc Fe
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We show for a simple noncollinear configuration of the atomistic spins (in particular, where one spin is
rotated by a finite angle in a ferromagnetic background) that the pairwise energy variation computed in terms
of multiple-scattering formalism cannot be fully mapped onto a bilinear Heisenberg spin model even in the
absence of spin-orbit coupling. The non-Heisenberg terms induced by the spin-polarized host appear in leading
orders in the expansion of the infinitesimal angle variations. However, an Eg-T2g symmetry analysis based on
the orbital decomposition of the exchange parameters in bcc Fe leads to the conclusion that the nearest-neighbor
exchange parameters related to the T2g orbitals are essentially Heisenberg-like: they do not depend on the spin
configuration, and can, in this case, be mapped onto a Heisenberg spin model even in extreme noncollinear cases.
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I. INTRODUCTION

The microscopic origin of the exchange interactions in
ferromagnetic bcc Fe (as well as in metallic magnets in
general) is part of ongoing scientific discussions [1–3], in spite
of the fact that iron is probably the best-known magnet. Espe-
cially at finite temperature when the atomistic spin moments
deviate from a collinear and uniform direction, i.e., a global
magnetization axis cannot be easily identified, the dependence
of the interatomic exchange parameters on the underlying spin
configuration could become more significant [3]. The lack of
a global quantization axis requires the use of a noncollinear
framework for calculation of the exchange parameters which
are crucial for the interpretation of the experimental observa-
tions [4,5]. Based on the classical Heisenberg model,

H = −
∑
i �=j

Jij �ei · �ej , (1)

where �ei (�ej ) is a unit vector pointing in the direction of the
atomic moment at site i (j ) and Jij stands for the exchange
coupling parameter between the magnetic moments, the
critical temperature and the magnon excitation spectra of iron
at low temperatures can be well described by ab initio calcu-
lations [3,5–12]. Note that the sum in Eq. (1) avoids double
counting.

Although a formula for the exchange coupling Jij in the
case of the collinear arrangement has been known for a long
time, due to the seminal work of Lichtenstein, Katsnelson,
Antropov, and Gubanov (LKAG) [13], even for relativistic
[14] and correlated systems [15], a counterpart mapping onto
a spin Hamiltonian for the noncollinear arrangement [16] is
nontrivial. Similar to the LKAG derivation, a derivation was
found in Ref. [17] for the pairwise energy variation based on
the magnetic force theorem [18,19] by allowing the presence
of a noncollinear underlying spin configuration. The pairwise
energy variation term δEtwo

ij emerges for the case when two

atomistic spins are infinitesimally rotated at two different sites
at the same time, and its further analysis is in the scope of
this paper. Note that the total energy variation can be written
as δEij = δEone

i + δEone
j + δEtwo

ij , where the one-site energy
variation δEone

i (δEone
j ) takes into account the interaction

between the spin at site i (j ) and the environment formed
by the other spins (except for the spins sitting at sites i and j ).
A system is in equilibrium when δEone

i does not have a finite
contribution of leading order in the infinitesimal rotation angle
δθi , when no torques occur within the magnetic state. Note that
one can still find noncollinear systems also in equilibrium as
the flat spin spirals [20]. By using the noncollinear approach
for bcc Fe as well as for Fe overlayers on Ir(001), the magnon
softening observed at room temperature in neutron scattering
experiments [21] was explained [17,22]. In this paper, we
show that in a general, nonequilibrium, noncollinear case, an
anisotropic-type term is found that cannot be mapped onto
a Heisenberg model given by Eq. (1) even in the absence
of spin-orbit coupling. We show, however, that an Eg-T2g

symmetry analysis based on the orbital decomposition of
Jij leads to a conclusion for the origin of Heisenberg and
non-Heisenberg terms similar to what was published in Ref. [2]
within the LKAG approach.

Higher-order exchange interactions are known to emerge
in the absence of spin-orbit coupling. Recently, the micro-
scopic theory of the magnetic interactions including four-spin
exchange was successfully applied to simulate the magnetic
phase diagram of heavy rare-earth elements [23]. In the case of
bcc Fe, higher-order (biquadratic) exchange interactions also
have to be taken into account in the spin Hamiltonian [24–27].
It can be shown that the noncollinear pairwise energy variation
formula recovers the pairwise energy formula published in
Ref. [24] for a collinear case by keeping the higher- (fourth-)
order terms in the infinitesimal angle variation; that is, an
anisotropic term is present even in the collinear limit, which
was found to be numerically significant in bcc Fe [17].
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FIG. 1. Schematic representation of the geometry of the single-
spin-rotation system. As a new system of reference for the in-
finitesimal two-site spin rotations, an atomistic spin is rotated by
a finite θi angle at site i on a lattice when every other spin
forms a ferromagnetic background. The exchange parameters Ji

(i = 1,2,3, . . . ) are calculated between the rotated spin at site i and
a spin in the ferromagnetic host at site j .

In this paper, we analyze the pairwise energy variation
for the system of single-spin rotation shown in Fig. 1. The
single-spin-rotation problem is a kind of nonequilibrium and
noncollinear state in which an atomistic spin is rotated by
a finite θi angle at site i on a bcc Fe lattice when every
other spin forms a collinear ferromagnetic background. It
serves here primarily as a good example of how exchange
interactions of ferromagnetic materials become modified when
the system is brought out of equilibrium. We show that one
can find contributing terms in the noncollinear δEtwo

ij that
are essentially non-Heisenberg of the leading (second) order
in the infinitesimal angle variation: terms can be found that
cannot be mapped onto Eq. (1). This is a different case than
a Heisenberg model with spin-configuration-dependent Jij , as
defined in Ref. [2], where Jij in Eq. (1) was referred to as the
non-Heisenberg parameter when it (significantly) depended
on the spin configuration [28]. However, in this paper, we
numerically calculate the implicit configuration dependence
of the parameters that are needed to determine the pairwise
energy variation δEtwo

ij . It should also be noted that it is possible
to do a spin-cluster expansion for a description in terms of spin
models [29].

This paper is structured as follows. In Sec. II, we will
outline the pairwise energy variation formula derived in
Ref. [17] for a general, noncollinear spin arrangement.
Then, in Sec. III, we summarize the technical details of the
density functional theory (DFT) calculations based on the
multiple-scattering formalism (MSF) [30]. In Sec. IV, we
apply the noncollinear formalism to the system of single-spin
rotation. The numerical results are also presented in Sec. IV,
while Sec. V summarizes the main conclusions.

II. THEORETICAL BACKGROUND

The fundamental equation of a scalar relativistic MSF is
given as [30](

τ−1
ij

)
Lσ,L′σ ′ = piLσσ ′δij δLL′ − G0

ij,LL′δσσ ′, (2)

where τij stands for the scattering path operator (SPO) and
pi = t−1

i denotes the inverse of the single-site scattering
operator (ISO). In Eq. (2) L = (l,m) stands for the angular
momentum and magnetic quantum numbers, σ refers to the

spin index, G0
ij is the free (or bare) structure constant, and

indices i and j refer to the considered lattice sites. G0
ij is

calculated from the Hamiltonian of the free particle; hence, it
is spin independent. Later on, we omit the orbital and spin
indices, and the boldface notation stands for quantities in
both spin and orbital spaces (18 × 18 matrices in the spd

basis), while the lack of boldface refers to quantities defined
only in the orbital space (9 × 9 matrices in the spd basis).
We introduce a general notation for the single-site scattering
operator in a noncollinear framework as

ti = t0
i I2 + ti �ei · �σ , (3)

where the unit vector �ei refers to the magnetic spin moment
at site i (as already defined in the Introduction) and can be
written as

�ei = ( sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)), (4)

where θi and φi are the polar and azimuthal angles, respec-
tively. �σ is the vector formed by Pauli matrices, I2 is the
unit matrix in spin space, t0

i denotes the nonmagnetic (charge)
part, and ti stands for the magnetic (spin) part of the single-site
scattering operator. Note that the single-site scattering operator
ti depends on the energy ε.

For the ISO, one can introduce the same notation as for ti
in Eq. (3) as follows:

pi = p0
i I2 + pi �ei · �σ . (5)

Later, we will need to deal with the variation of the ISO under
a small rotation that can be written as

δpi = piδ�ei · �σ , (6)

where δ�ei stands for the deviation of a spin moment after an
infinitesimal rotation at site i. Finally, the SPO has the structure

τij = T 0
ij I2 + �Tij · �σ , (7)

where T 0
ij denotes the charge and �Tij = (T x

ij ,T
y

ij ,T
z
ij ) stands for

the spin part of the SPO. In the collinear limit �Tij is reduced to
(0,0,T z

ij ), and the components of SPO in the up- and down-spin

channels can be defined as T
↑
ij = T 0

ij + T z
ij and T

↓
ij = T 0

ij − T z
ij .

So far, we have defined the quantities required to calculate
the pairwise total energy variation in a noncollinear frame-
work. This can be obtained as the variation of the integrated
density of states times energy [19,31]. Due to the Lloyd
formula [31], we can write

δEtwo
ij = − 1

π

∫ εF

−∞
dε Im T rσL(δpiτij δpj τji), (8)

where εF stands for the Fermi energy. Inserting Eqs. (6) and
(7) into Eq. (8) and introducing the matrix

A
αβ

ij = 1

π

∫ εF

−∞
dε Im T rL

(
piT

α
ij pjT

β

ji

)
, (9)

where indices α and β run over [32] 0, x, y, or z, we get

δEtwo
ij = −2

(
A00

ij −
∑

μ

A
μμ

ij

)
δ�ei · δ�ej − 4

∑
μ,ν

A
μν

ij δe
μ

i δeν
j ,

(10)
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where μ and ν run over x, y, and z. In Eq. (10), we have
repeated the derivation of Ref. [17] for the noncollinear
pairwise energy variation by introducing the quantities we
will need to present our results [33].

III. DETAILS OF THE CALCULATIONS

The calculations were performed with the use of standard
DFT techniques by means of the real-space linear muffin-tin-
orbital method within the atomic-sphere approximation (RS-
LMTO-ASA) [34,35]. We employed the standard local-spin-
density approximation (LSDA) for the exchange-correlation
energy throughout the study.

First, we calculated self-consistently the electronic struc-
ture of a system with 8393 Fe atoms arranged into a bcc
lattice structure whose inner (core) part can be considered
bulklike. The interatomic distance was set to 2.861 Å, while
the Wigner-Seitz radius was set to 1.409 Å. Then we embedded
nine Fe impurity atoms (one atom and its nearest neighbors)
into the Fe bulk host, making it possible to change the direction
of the atomistic spins on those atoms and to calculate the
electronic structure self-consistently for every θi angle which
was set at site i while the spin direction on other atoms was
kept collinear and ferromagnetic [36]. Note that constraints
are neglected in our calculations. Numerical proofs showed,
however, that the input angle and the output angle typically
varied within 10◦.

IV. RESULTS

From a Heisenberg spin model such as the one introduced in
Eq. (1), one gets for the pairwise energy variation, in general,
that

δEtwo−H
ij = −2Jij δ�ei · δ�ej , (11)

which is reduced to

δEtwo−H
ij = 2Jij δθiδθj (12)

in the collinear limit when only the leading term is kept
by inserting the spin variations δ�ei = (δθi,0,0) and δ�ej =
(−δθj ,0,0). The symbol H in the expression δEtwo−H

ij refers
to the fact that it is derived from the Heisenberg model (1).
In this case every spin points to the z direction in a global
coordinate system, and a spin at site i and another one at site
j are rotated by angles δθi and δθj , respectively. It was shown
in Ref. [17] that in this collinear case Jij = A00

ij − Azz
ij = A

↑↓
ij .

The LKAG formula [13] can be derived in the collinear limit
where T

↑
ij and T

↓
ij can be defined, as shown in Sec. II.

Next, we consider the case when �ei = (sin θi,0, cos θi), i.e.,
the spin at site i is rotated in the xz plane by θi (see Fig. 1),
while every other spin forms a ferromagnetic background,
i.e., �ej = (0,0,1). This provides a new reference frame for the
infinitesimal rotations and will be referred to as the single-spin
rotation. It can then be shown that δ�ei = (cos θi,0, − sin θi)δθi

when the spin at site i is rotated now by δθi while δ�ej remains
(−δθj ,0,0). Inserting δ�ei and δ�ej into Eq. (11), we get for the
pairwise energy variation in terms of a Heisenberg model that

δEtwo−H
ij = 2Jij cos(θi)δθiδθj ; (13)

that is, we get that the pairwise energy is proportional to
cos (θi), which recovers Eq. (12) in the LKAG limit. Inserting
δ�ei and δ�ej , however, into Eq. (10), we get for the pairwise
energy variation in terms of MSF that

δEtwo
ij = 2

[
JH

ij cos(θi) + JNH
ij sin(θi)

]
δθiδθj , (14)

where

JH
ij = A00

ij + Axx
ij − Azz

ij (15)

and

JNH
ij = −2Azx

ij , (16)

where the terms which are proportional to cos(θi) and sin(θi)
are referred to as the Heisenberg (H) term and the non-
Heisenberg (NH) term, respectively. It should be stressed
that both the Heisenberg, JH

ij (θi), and the non-Heisenberg,
JNH

ij (θi), parameters can implicitly depend on the angle θi ,
too. In the case when θi = π/2, i.e., when the Heisenberg
contribution is zero because cos (π/2) = 0, JNH

ij can still be
finite. In this case the system is essentially non-Heisenberg.
Otherwise, one should describe it as a Heisenberg model with
a configuration-dependent JH

ij .
It is easy to show in a collinear case that JH

ij = A00
ij − Azz

ij =
A

↑↓
ij ; that is, the LKAG formula can be recovered because

Axx
ij and Azx

ij in Eqs. (15) and (16) vanish. Note that we can

write as a better approximation that δ�ei 	 (δθi,0, − 1/2(δθi)2)
and a similar expression for δ�ej . Inserting those expressions
into Eq. (10), we recover the results for δEtwo

ij published in
Ref. [24], where the anisotropic-type term was mapped onto
a four-spin Hamiltonian. Note that Eq. (8) should then also
be extended with further terms to be correct at the level of the
fourth-order approximation in δθ . As was reported in Ref. [17],
for the nearest-neighbor pairs [37] A00

1 = −0.23 mRy, while
Azz

1 = −1.08 mRy. This means that the spin contribution (zz)
dominates the charge one (00) in the LKAG J1 = A

↑↓
1 in bcc

Fe, which is given as A
↑↓
1 = 0.85 mRy.

Like for Eq. (1) in Ref. [2], we can decompose the
parameters in terms of cubic symmetry-group representations
as follows:

A
αβ

ij = A
αβ−Eg

ij + A
αβ−T2g

ij + A
αβ−mix
ij , (17)

where, as shown in Ref. [38], in some cases, such as for
the second-neighbor pairs, the decomposition is complete;
however, in general we have a finite mixed term, A

αβ−mix
i .

Note that in three-dimensional materials the crystal-field
splitting dominates the spin-orbit-coupling interaction; hence,
the E-T2g decoupling is meaningful. For the first neighbors

we find that A
↑↓−Eg

1 = 0.56 mRy, A
↑↓−T2g

1 = −0.99 mRy, and
A

↑↓−mix
1 = 1.29 mRy. This means that there is a pronounced

antiferromagnetic coupling coming from the T2g orbitals (T2g

channel) that was shown to be related to Fermi-surface mecha-
nisms (like Ruderman-Kittel-Kasuya-Yosida oscillations cal-
culated in the asymptotic regime) by calculating the exchange
parameters for farther neighbor pairs in a given direction.
However, in the Eg and mixed channels the microscopic origin
is mainly the double-exchange mechanism [2], which requires
the presence of the (ferromagnetic) host. Note that we calculate
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A
αβ

ij in Eq. (9) only for the d electrons. The contributions of
the s and p channels are negligible, and the decomposition in
Eq. (17) then becomes exact.

As we can see in Eq. (10), the A00
ij term contributes only to

the Heisenberg-type term, being proportional to δ�ei · δ�ej . First,

even in the collinear limit we found that A
00−T2g

1 = −0.53 mRy,

A
00−Eg

1 = 0.12 mRy, and A
zz−T2g

1 = 0.46 mRy, compared to
the larger Eg and mixed contributions, −0.45 and −1.1 mRy,
respectively. The source of the anisotropic term (which was
reported already in Ref. [24]) is induced by the spin-polarized
host due to the double-exchange mechanism. Note that in a
paramagnetic phase the A

μμ

ij terms (μ = x,y,z) are the same
in a statistical sense; that is, we cannot speak of terms that
are induced by the symmetry-broken host [17]. Host-induced
terms are related to the ferromagnetic magnetic order. This
mechanism is in analogy to the RKKY interaction: due to
scattering mechanisms and based on a s-d interaction model,
it can be assumed that the electron spin aligns with the
localized magnetic moment orientations. Since our system is
close to a ferromagnetic collinear state, electron spins will
orientate accordingly. However, scattering of these electrons
of a magnetic moment at the single spin rotated by θi will
transfer angular momentum from the electron to this magnetic
moment, which can effectively be considered an extra term in
the classical interaction. We refer to these terms as “host-
induced” terms. Their role can be crucial and should be
analyzed in finite-temperature studies, well above the ordering
temperature, when the ferromagnetic background is vanishing,
along with their contribution to the Dzyaloshinskii-Moriya
interaction, which appears when the spin-orbit interaction
is present and the inversion symmetry between the spins is
lacking in the system.

We now show that the role of the host-induced terms is
more significant for the case of a single-spin rotation of a
noncollinear system (see Fig. 2). In Fig. 2 the black line
shows the relationship between the noncollinear Heisenberg
and non-Heisenberg interatomic exchange coupling constants
[see Eqs. (15) and (16)] for a nearest-neighbor pair in bcc Fe.
The parameters were calculated self-consistently for different
θi angles (see dots) starting from the collinear ferromagnetic
case where JH

1 = 0.85 mRy when θi was zero, marked by
the bigger black symbol. Note that in the final state θi = π ,
which is a collinear state. In this case JNH

1 = 0 and JH
1 can

be calculated in terms of the LKAG formalism. The biggest
relative change going from zero to π takes place in the Eg

channel (red line); that is, this channel together with the mixed
contribution is responsible for the configuration dependence
of JH

1 as well as the emergence of JNH
1 . However, the JH

1
contribution in the T2g channel (see the data in blue) hardly
changes as a function of θi . In addition, the JNH

1 contribution
in T2g remains small compared to that in the other channels.
This clearly shows for the T2g subspace that the mapping onto
a Heisenberg spin Hamiltonian can be done even in the case
when one spin is forced to be rotated by a large angle in a
ferromagnetic background.

In Fig. 3, where we show the corresponding plot for
second-nearest-neighbor interactions, the obtained parameters
are in the same energy range in all symmetry channels. Note
that the magnitude of JH

2 and JNH
2 is much less than that

FIG. 2. The black line shows the evolution of the noncollinear
interatomic exchange coupling constants for a first-nearest-neighbor
pair in bcc Fe single-spin rotation [see Eqs. (15) and (16)]. The red,
blue, and green lines show its symmetry decomposition in the d

channel defined by Eq. (17). The parameters in the ferromagnetic
collinear limit when θi = 0 are denoted by bigger symbols. For the
nondecomposed (black) curve, θi = π/4, θi = π/2, θi = 3π/4, and
θi = π are also noted.

of JH
1 and JNH

1 . It can be seen in Fig. 4, where the JH

and JNH parameters are shown not only for the first- and
second- but also for a third-, fourth-, fifth-, and sixth -neighbor
pairs in bcc Fe, that the configuration dependence of the
first-neighbor coupling dominates the others. Note that the JH

and JNH parameters are shown as a function of the distance
in the Appendix, where the Eg-T2g decomposition of Fig. 4
is also shown in three other figures. In agreement with the
previous finding [2,13,17,39], the first- and second-neighbor
Jij dominate the Jij calculated for farther neighbors. This
conclusion holds in the noncollinear framework too.

FIG. 3. The black line shows the evolution of the noncollinear in-
teratomic exchange coupling constants for a second-nearest-neighbor
pair in bcc Fe single-spin rotation [see Eqs. (15) and (16)]. The red,
blue, and green lines show its symmetry decomposition in the d

channel defined by Eq. (17). The parameters in the ferromagnetic
collinear limit when θi = 0 are denoted by bigger symbols.
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FIG. 4. The calculated J H and J NH parameters for the first six
nearest neighbors in bcc Fe in the (total) d sector in the case of
single-spin rotation. The parameters in the ferromagnetic collinear
limit when θi = 0 are denoted by bigger symbols. Inset: The same
parameters for the third, fourth, fifth, and sixth neighbors.

V. CONCLUSIONS

To calculate experimentally detectable quantities such as
the critical temperature and the magnon excitation spectra, it
is convenient to perform spin dynamics simulations [40] with
the description of motion of the atomistic spin. For this purpose
the calculation of the interaction parameters between the spins
is usually needed.

We have derived for a simple noncollinear spin config-
uration (when one spin was rotated by a finite angle in a
ferromagnetic background) an equation for the energy of the
pairwise interaction with terms induced by the spin-polarized
host. These terms cannot be completely described by a bilinear
Heisenberg spin model. Similar but higher-order host-induced
terms were previously found even in the collinear limit also
in the absence of spin-orbit coupling when the anisotropic-
type terms were mapped onto higher-order (biquadratic) spin
Hamiltonians [17,24].

We have shown, however, that an Eg-T2g symmetry
analysis based on the decomposition of Jij for the different
atomic orbitals in bcc Fe leads to the conclusion that the
nearest-neighbor exchange parameters in the T2g channel are
essentially Heisenberg parameters. This means that they do not
depend strongly on the spin configuration and can be exactly
mapped onto a Heisenberg spin model. These findings are in
very good agreement with the conclusions of Ref. [2] based on
the LKAG formalism. We also note that the nearest-neighbor
angles between the atomistic spins in bcc Fe are usually
small at low temperatures (where the background is strongly
spin polarized); hence, a Heisenberg model with the LKAG
exchange formula can give a good approximation. However,
at high temperature, when the angles between the neighboring
spins are larger, the background is less polarized.

The role of the host-induced terms and their microscopic
origin are crucial (and should be analyzed further) in finite-
temperature systems when the ferromagnetic background is
vanishing, along with their contribution to the Dzyaloshinskii-
Moriya interactions in relativistic calculations. These findings

have key importance for strong out-of-equilibrium situations
and motivate a general description of an equilibrium case that
holds from low temperature (LKAG range) up to the critical
temperature (paramagnetic phase). Reference [16] showed
that a perturbative expansion to the second order of the
Kugel-Khomskii Hamiltonian can be mapped onto a (J1 − J2)
Heisenberg model. It would be interesting to find whether
the Kugel-Khomskii model predicts non-Heisenberg terms for
higher-order perturbation theory. The results can also motivate
the study of the non-Heisenberg behavior of experimentally
realistic systems as ultrafast demagnetization with the use of
direct effective-field calculations.
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APPENDIX

In this appendix we present a few additional results of Fig. 4
shown in the main text. Figures 5 and 6 show the Heisen-
berg and non-Heisenberg parameters for single-spin rotation
calculated from the two-site energy variation as a function

1 2 3 4 5 6
Rij/a

-0.5

0

0.5

1

1.5

2

JH
  (

m
R

y)

0
π/4
π/2
3π/4
π

FIG. 5. The calculated Heisenberg parameters for single-spin
rotation calculated from the two-site energy variation as a function of
distance for four selected angles, θi = 0,π/4,π/2,3π/4, and π .

144413-5



A. SZILVA et al. PHYSICAL REVIEW B 96, 144413 (2017)

1 2 3 4 5 6
Rij/a

0

0.5

1

JN
H

  (
m

R
y)

0
π/4
π/2
3π/4
π

FIG. 6. The calculated non-Heisenberg parameters for single-
spin rotation calculated from the two-site energy variation as a
function of distance for four selected angles, θi = 0,π/4,π/2,3π/4,
and π .

of distance for four selected angles, θi = 0,π/4,π/2,3π/4,
and π . First, we can see that in both cases the strongest
configuration dependence is between the nearest-neighbor
atoms. Second, the nearest-neighbor Heisenberg parameters
shown in Fig. 5 are ferromagnetic for θi = 0 and π when the
collinear limit is considered and are antiferromagnetic in the
extreme noncollinear case (θi = π/2). The nearest-neighbor
Heisenberg parameter has its biggest magnitude in case of
θi = π due to the strong configuration dependence of the E

electrons (see Fig. 2). Third, we note that the non-Heisenberg
parameters are zero (up to numerical accuracy) in collinear
cases (θi = 0 or π ).

Finally, Figs. 7, 8, and 9 show the results for the first six
nearest neighbors, JH and JNH , in the Eg, T2g , and mixed-

FIG. 7. The calculated J H and J NH parameters for the first six
nearest neighbors in bcc Fe in the Eg sector in the case of single-spin
rotation. The parameters in the ferromagnetic collinear limit when
θi = 0 are denoted by bigger symbols. Inset: The same parameters
for the third, fourth, fifth, and sixth neighbors.

FIG. 8. The calculated J H and J NH parameters for the first six
nearest neighbors in bcc Fe in the T2g sector in the case of single-spin
rotation. The parameters in the ferromagnetic collinear limit when
θi = 0 are denoted by bigger symbols. Inset: The same parameters
for the third, fourth, fifth, and sixth neighbors.

symmetry channels, respectively. In the case of the Eg and
the mixed sectors, the configuration dependence of the first-
neighbor coupling (denoted by a black line) dominates the
others. This can be estimated by comparing the areas that
the trajectories span. However, in the T2g case shown in Fig. 8,
the configuration dependence of the first- and second-neighbor
contributions (black and blue lines) are in the same range. The
(absolute) configuration dependence, which is important in the
configuration dependence of the spin stiffness, is significantly
lower for the farther neighbors in every channel, as shown in
the insets in Figs. 7–9.

FIG. 9. The calculated J H and J NH parameters for the first six
nearest neighbors in bcc Fe in the mixed sector in the case of
single-spin rotation. The parameters in the ferromagnetic collinear
limit when θi = 0 are denoted by bigger symbols. Inset: The same
parameters for the third, fourth, fifth, and sixth neighbors.
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