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Engineering elliptical spin-excitations by complex anisotropy fields
in Fe adatoms and dimers on Cu(111)
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We investigate the dynamics of Fe adatoms and dimers deposited on the Cu(111) metallic surface in the
presence of spin-orbit coupling, within time-dependent density functional theory. The ab initio results provide
material-dependent parameters that can be used in semiclassical approaches, which are used for insightful
interpretations of the excitation modes. By manipulating the surroundings of the magnetic elements, we show
that elliptical precessional motion may be induced through the modification of the magnetic anisotropy energy. We
also demonstrate how different kinds of spin precession are realized, considering the symmetry of the magnetic
anisotropy energy, the ferro- or antiferromagnetic nature of the exchange coupling between the impurities, and
the strength of the magnetic damping. In particular, the normal modes of a dimer depend on the initial magnetic
configuration, changing drastically by going from a ferromagnetic metastable state to the antiferromagnetic
ground state. By taking into account the effect of the damping into their resonant frequencies, we reveal that
an important contribution arises for strongly biaxial systems and specially for the antiferromagnetic dimers
with large exchange couplings. Counterintuitively, our results indicate that the magnetic damping influences the
quantum fluctuations by decreasing the zero-point energy of the system.
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I. INTRODUCTION

Future technological devices demand an understanding of
quantum mechanisms in nanostructures such as single atoms
and small clusters [1,2]. Recent atomic manipulation and
spectroscopy experiments utilizing the scanning tunneling
microscope (STM) pushed forward the frontiers of this area
by the development of logic operations based on atomic spin
manipulation [3], subnanometer-sized sensors [4], magnetic
stability of single adatoms [5], and many other atomic-scale
realizations [6–11]. Additionally to miniaturizing components,
advanced spintronic devices also require ultrafast manipu-
lation of the magnetic units. With that aim, it is natural to
investigate the dynamic processes of those magnetic building
blocks [11–20].

Many of those atomic-scale investigations are made on
insulating surfaces, where the host weakly interacts with
the magnetic units (see, e.g., Refs. [5,6,11,18,21–24]). On
the other hand, for metallic hosts, the surface and deposited
structures hybridize strongly, modifying the original electronic
states of the isolated subsystems [15–17,25,26]. This strong
coupling leads to a noninteger magnetic moment and to broad-
ened spin excitation spectra of the deposited nanostructures.
It also affects the magnetic excitations of those systems,
changing relaxation times [27] and influencing the polarization
of spin currents pumped out of the magnetic unit into the
substrate [28]. These spin currents may be used to excite other
magnetic units deposited on the surface [29], or, in the presence
of spin-orbit coupling, to generate charge currents [30,31].

When two or more magnetic atoms or clusters are brought
together, their mutual interaction can lead to ferromagnetic,
collinear antiferromagnetic, or even more complex magnetic
structures. Their excitation modes depend on the local en-
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vironment and also on the exchange coupling between the
components. In particular, antiferromagnetic systems have
been studied for decades [32–34] and still generate interest in
its ground state description and possible excitations [35,36].
These structures play a central role in the rising and promising
field of antiferromagnetic spintronics [37], in which excita-
tions and switching can be induced by spin-orbit torques, when
charge currents are applied to adjacent heavy metal layers
[38,39].

In this paper, we investigate magnetic excitations of
the smallest possible nanostructures—adatoms and dimers,
primer constituents of any ferromagnetic or antiferromagnetic
system—deposited on metallic surfaces. To correctly capture
the mixing effects discussed above, we employ first princi-
ples calculations based on time-dependent density functional
theory [25,40,41] taking the effects of the spin-orbit coupling
into account, which can lead to nontrivial magnetic anisotropy
fields. We focus on the dynamic transverse magnetic sus-
ceptibility that describes the density of spin excitations and
is directly related to the measured conductance in inelastic
scanning tunneling spectroscopy (ISTS) experiments [42].
This quantity is defined as the magnetic response of the system
to an oscillatory transverse magnetic field, as in ferromagnetic
resonance experiments. We also make use of a semiclassical
model to interpret the features of the precessional modes and
to define effective parameters.

We chose a prototypical system composed by Fe adatoms
and dimers deposited on the Cu(111) surface, but our results
apply more generally to transition metals deposited on other
metallic surfaces, in a qualitative way. For a single magnetic
adatom, we show how external magnetic fields can stabilize
different magnetization directions and drastically change
the precession shape of the motion. We also demonstrate
how similar effects can be obtained by atomic engineering
[6,43,44], namely by bringing nonmagnetic Cu atoms to the
vicinity of the magnetic Fe atom, and thus modifying the
magnetic anisotropy energy landscape of the system. Tilted
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anisotropies are also important to break the symmetries of
spin-orbit torques, leading to deterministic switching of the
magnetic unit [45]. When a second magnetic atom is placed
close to the first one, the rotational symmetry is naturally
broken and a biaxial anisotropy is induced. We also take
advantage of the distance-dependent oscillatory exchange
interaction [7] to design structures with ferromagnetic (FM)
and antiferromagnetic (AFM) alignments, showing how the
spin excitations change by varying just the starting magnetic
configuration. For such nanosized magnetic structures, zero-
point spin fluctuations can be of concern, and so we shall also
discuss their role.

This paper is organized as follows. In Sec. II, we describe
the first principles approach using time-dependent density
functional theory (TDDFT) that we use to obtain the excitation
spectra of the magnetic structures. We also derive a phe-
nomenological formalism to aid in the analysis of the ab initio
results. By fitting the results of the first-principles calculations
to this model, we obtain material-dependent parameters that
may be used in semiclassical approaches. Section III is devoted
to the single adatom excitations. The magnetization dynamics
of 3d adatoms on the Cu(111) surface were explored in
Ref. [14]. Here we expand this study and explore how the
anisotropies affect the magnetization dynamics, focusing on
how they lead to elliptical precession. In Sec. IV, we investigate
the excitations of Fe dimers, with large and relatively small
interatomic magnetic couplings. In the latter case, we analyze
the excitations starting from two different states: when the
magnetic moments are aligned ferromagnetically (metastable
state) and antiferromagnetically (ground state). We show how
a simple change of the starting alignment drastically alters the
excitation spectra depending on the coupling, anisotropy, and
damping. Finally, in Sec. V we summarize our results.

II. THEORETICAL FRAMEWORK

A. Spin excitations from first principles

Our first-principles description of spin excitations is based
on time-dependent density functional theory, using the linear
response approach. The central object is the dynamical
magnetic susceptibility, which is closely related to the inelastic
tunneling conductance measured experimentally, as explained
in Ref. [42]. This approach requires two steps: First the
self-consistent ground state electronic structure must be found,
and then the linear response of the ground state to a magnetic
perturbation is evaluated. These steps are briefly outlined
below.

The ground state electronic structure is obtained from DFT
calculations, based on the Korringa-Kohn-Rostoker Green
function method [46] (KKR-GF), in the local spin density
approximation (LSDA), as parametrized by Vosko, Wilk,
and Nusair [47]. The scattering problem is solved in the
atomic sphere approximation (ASA) with �max = 3 cutoff,
with subsequent use of the full charge density. Energy
integrations are performed with a rectangular contour in the
upper complex energy plane using 40 points, including five
Matsubara frequencies with temperature T = 50 K [48].

The electronic structure of the clusters on the Cu(111)
surface is calculated in two steps. First the pristine surface is

simulated using a 22-layer slab of Cu(111) planes, augmented
with two vacuum regions with the thickness of four bulk
layers. The in-plane lattice constant is the experimental one,
a = 3.615/

√
2 Å = 2.556 Å. No relaxation of the interlayer

distance has been considered for the slab calculation. A k mesh
with 180 × 180 points in the whole two-dimensional Brillouin
zone is employed. Next, a real-space cluster is embedded at
the surface, including the adatoms and all surrounding nearest-
neighbor positions (Cu atoms and vacuum), and treated
self-consistently. Structural optimization of the supported
nanostructures is accounted for by a vertical relaxation of the
structure towards the surface by 14% of the bulk interlayer
distance [49,50].

The key quantity for the description of spin excitations
is the dynamical magnetic susceptibility. In linear response,
when an external monochromatic magnetic field perturbs the
system, this susceptibility describes the linear change to the
spin density that it causes

δMμ(r,ω) =
∑

ν

∫
dr′ χμν(r,r′,ω) δBν(r′,ω). (1)

Here μ,ν = x,y,z are the cartesian components of the spin
density. Within TDDFT, the magnetic susceptibility is related
to the one of the Kohn-Sham electrons through the Hartree-
exchange-correlation kernel via a Dyson-like equation:

χ (ω) = χKS(ω) + χKS(ω) KHxc χ (ω), (2)

where the spatial dependence has been omitted. The kernel
KHxc includes the Hartree and the exchange-correlation
contributions. The adiabatic LSDA was implied, which
leads to a frequency-independent kernel. Further details
on the formalism and its implementation can be found in
Refs. [14,25,41,51,52].

Spin-orbit coupling leads to new aspects in the calculation
of the dynamical magnetic susceptibility. Let M(r) be the
ground state vector spin density. Then one may define a
pointwise transformation of the global cartesian axes such that
in this new, so-called local spin frame of reference, the ground
state spin density has only one component,

M(r) n̂z = R(r) M(r). (3)

Throughout this paper, vector components in the global frame
{n̂α′ } are primed, while in the local frame {n̂α} they are
unprimed (α = x,y,z). In the local frame, the Dyson-like
equation for the dynamic susceptibility has the following
matrix structure:(

χTT χTL

χLT χLL

)−1

=
(

χKS
TT χKS

TL

χKS
LT χKS

LL

)−1

−
(

Kxc
T 0

0 KHxc
L

)
, (4)

where the 2 × 2 blocks correspond to T = {x,y} and L =
{z,n}, and the index n pertains to the charge density. Frequency
and spatial dependence were omitted for clarity. Note that the
Hartree contribution only appears in the longitudinal part of the
kernel, as indicated by the superscript ‘Hxc.’ The off-diagonal
blocks of the KS susceptibility, χKS

LT and χKS
TL , arise due to

spin-orbit coupling and/or to noncollinear magnetic structures.
If both of these are weak or absent, we can restrict the
calculation only to the purely transverse part of the dynamical
susceptibility, χTT, provided the transformation to the local
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frame has been performed. This is the situation encountered
for the systems described in this work.

The dynamical magnetic susceptibility is a very complex
object, containing the information about all kinds of spin
excitations as well as their detailed spatial and frequency
dependence. A more intuitive physical picture is afforded by
defining atomiclike quantities, by integrating out the spatial
dependence over a region of space assigned to a given magnetic
atom i (j ):

χiμ,jν(ω) =
∫

Vi

dr
∫

Vj

dr′ χμν(r,r′,ω). (5)

If the external perturbing magnetic field is taken to be uniform
within each atomic volume Vi , we arrive at an effective atomic
description:

δMiμ(ω) =
∑
jν

χiμ,jν(ω) δBext
jν (ω). (6)

In the low frequency regime, we can hope to make a connection
to atomistic spin dynamics, as explained in the following.

B. Phenomenological approach

To interpret the results obtained using the TDDFT formal-
ism described above, we also employ a phenomenological
description of the magnetization dynamics given by the
Landau-Lifshitz-Gilbert (LLG) equation [27]. The 2 × 2 trans-
verse magnetic susceptibility χTT can be obtained by assuming
small deviations around the local equilibrium direction, which
defines the n̂z axis. Using this approach, we also extract
all the relevant parameters directly from the first-principles
dynamical susceptibility [14].

The equation of motion for the magnetic moment of atom
i is given by

dMi

dt
= −γ Mi × Beff + α

Mi

Mi × dMi

dt
. (7)

The first term on the right-hand side represents the torque
due to an effective field Beff

i = −∂E/∂Mi obtained from
the energy functional E({Mi}) of the system. The last term
describes relaxation effects that push the magnetization back
to the equilibrium orientation. γ is the gyromagnetic ratio, and
the damping is characterized by the Gilbert parameter α. The
latter is, in principle, a 3 × 3 matrix that captures its possible
anisotropic behavior [53]. Nevertheless, for the purpose of the
discussion set forth in this work, a scalar quantity is sufficient.

Considering an energy functional that includes magnetic
anisotropies, coupling between the different components, and
an external magnetic field Bext we can write

E({Mi}) =
∑

i

Ei(Mi) − J

M2
M1 · M2, (8)

where i = 1,2 labels the magnetic atoms, and

Ei(Mi) = MT
i

Ki

M2
i

Mi − Bext · Mi (9)

is the single atom energy containing the local anisotropy and
Zeeman energies. For the systems we investigate, the general
3 × 3 matrix describing the on-site anisotropy can always be

brought to the diagonal form

Ki =
⎛
⎝Kix 0 0

0 Kiy 0
0 0 0

⎞
⎠ (10)

by a suitable definition of the local frame of reference,
as explained in connection with Eq. (3). When Mi is in
equilibrium, i.e., pointing along the n̂z direction of the local
frame of reference, the effective magnetic field is given by

Beff
i =

(
J

M
+ Bext

)
n̂z, (11)

where we assume that the magnetization is aligned with the
external field.

The spin excitations can be described by the transverse dy-
namical magnetic susceptibility. This quantity can be formally
derived by calculating the small oscillations of the magnetiza-
tion Mi(t) = Mi n̂z + δMi(t) induced by a transverse oscilla-
tory external field δBext(t) = δBext

0 [cos(ωt)n̂x + sin(ωt)n̂y]. In
the frequency domain, the change in the magnetization is given
by Eq. (6). We can then map the results obtained from the first-
principles calculations to the analytical phenomenological
expressions (listed in Appendix A). The anisotropy constants,
exchange coupling, gyromagnetic ratio, and Gilbert damping
for each case is obtained by fitting the appropriate functional
form to the components of the transverse susceptibility χTT

calculated using TDDFT close to ω = 0 [14].
It is convenient to work with the local circular basis n̂± =

n̂x ± in̂y . Using general complex components containing
information on the amplitude and phase of the oscillation, the
transverse vectors are then transformed from cartesian (vx,vy)
to circular (v−,v+) as v± = vx ± ivy , and

v(t) = Re[(vx n̂x + vy n̂y)e−iωt ]

= 1
2 Re[(v−n̂+ + v+n̂−)e−iωt ], (12)

where v(t) represents any of the following: the external
perturbing field δBext(t), the transverse magnetization com-
ponents δMi(t), or the effective field δBeff

i (t). Equation (7) can
then be written in the form(

δMi−
δMi+

)
=

∑
j

(
χi−,j+ χi−,j−
χi+,j+ χi+,j−

)(
δBext

j−
δBext

j+

)
. (13)

A counterclockwise circularly polarized excitation field is de-
scribed by the cartesian components δBext

x = δB and δBext
y =

iδB, where δB is a real value that describes the amplitude
of oscillation. In the circular basis, this field is described by
δBext

− = 2δB and δBext
+ = 0.

C. Precessional motion

Spin excitations of small magnetic nanostructures can have
a complex precessional nature, the most general form being
elliptical. In order to gain useful insights, here we explain how
the excitations can be described using only three parameters:
the amplitude A, the eccentricity e, and the tilt angle φ, which
are all dynamical.

We first begin by writing the time-dependent magnetic mo-
ment in the local frame of reference as M(t) = M cos θ (t)n̂z +
M sin θ (t)[cos ϕ(t)n̂x + sin ϕ(t)n̂y], where θ,ϕ are the
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A−
A+

φ

x

x

y
y

δm(t)
φ0

δm(0)

FIG. 1. Schematic diagram of the elliptical precession. The time-
dependent transverse magnetization vector δM, illustrated in red,
performs an elliptical motion starting at an azimuthal angle ϕ = φ0

for t = 0. The ellipse has major and minor semiaxes given by A± =
Mδθ (cos ξ ± sin ξ )/2 and is rotated by an angle φ with respect to the
x ′ axis.

usual spherical angles. Assuming small deviations from
the equilibrium orientation, this becomes M(t) � Mn̂z +
δM(t), with the small transverse components δM(t) =
Mδθ (t)[cos ϕ(t)n̂x + sin ϕ(t)n̂y]. We then re-express δM(t)
using the circular components of Eq. (12), parametrized as
δM− = Mδθei(φ0−φ) cos ξ and δM+ = Mδθei(φ0+φ) sin ξ (see
Appendix B). Here, δθ is the small opening angle of the
precessional cone, and ξ sets the aspect ratio of the ellipse: Its
semiaxes are A± = Mδθ (cos ξ ± sin ξ )/2. Referring to Fig. 1,
the tilt of the ellipse away from the x ′ axis is given by φ and
φ0 is the initial phase of the motion. The main parameters of
the ellipse can then be obtained from the circular components
as

A± = |δM−| ± |δM+|
2

φ = 1

2
arg

(
δM+
δM−

)
. (14)

It is instructive to consider the simple scenario where φ = 0,
i.e., when the axes of the ellipse are aligned with the x ′ and
y ′ directions. For ω > 0, the different kinds of precessional
motion are: a counterclockwise circular polarization (�)
for ξ = 0, an x linear polarization (↔) for ξ = π/4, a
clockwise circular polarization (�) for ξ = π/2, and a y

linear polarization (�) for ξ = 3π/4. Values of ξ between
these angles represent ellipses with different eccentricities.

Imagine that the magnetic system is disturbed by a
counterclockwise circularly polarized magnetic field with
angular frequency ω. Then, the components of the dynamical
magnetization are given by Eq. (13), and so the semiaxes of
the ellipse and the tilt angle can then be obtained from the
appropriate susceptibilities as

A± = δBext
0

( |χ−+| ± |χ++|
2

)

φ = 1

2
arg

(
χ++
χ−+

)
. (15)

We shall characterize the elliptical motion by focusing
on its frequency-dependent amplitude A and eccentricity e

m
Bext

m
Bext = 0

m
Bext = 0

y

z

x

FIG. 2. Diagrams of the three different Fe adatoms configurations
deposited on Cu(111). Single Fe adatom without external field (blue),
single Fe adatom with large field along n̂′

y (red), and Fe-Cu dimer
(green). On the right, we display the global frame of reference.

defined as

A(ω) =
√

A2+(ω) + A2−(ω)

2

e(ω) =
√

1 − |A−(ω)|2
|A+(ω)|2 . (16)

Circular precession is described by e = 0, while the motion
describes a linear oscillation for e = 1.

In the following sections, we study the results obtained from
first principles calculations by making use of the analytical
phenomenological expressions and the generic motion quanti-
ties detailed above, to describe the magnetization dynamics of
single Fe adatoms and dimers deposited on a Cu(111) surface.

III. SINGLE MAGNETIC IMPURITY

We start our investigation with a Fe adatom in three different
structures, as depicted in Fig. 2, and how to describe their
dynamics.

A. Out-of-plane magnetization

First, consider a single magnetic Fe adatom deposited on
the Cu(111) surface. The energy of the system can be mapped
into a simple model given by Eq. (9), where the spin magnetic
moment is M = 3.2μB while the orbital magnetic moment is
Morb = 0.55μB. Due to the C3v symmetry of this system, it
presents uniaxial anisotropy with Kx = Ky = K . In Fig. 3, we
show the band energy variation with respect to a self-consistent
calculation for M‖n̂z′ , i.e., �E = Eband(M) − Eband(Mn̂z′),
as a function of the magnetization direction. Following the
magnetic force theorem [54], we find a magnetic anisotropy
energy constant of K�E = 4.95 meV, which corresponds to
an easy axis uniaxial anisotropy, with the easy axis being
the normal to the surface. Throughout the text, we use the
superscript �E to indicate values obtained from band energy
variations.

We imagine that an STM tip is placed above the Fe adatom
and that the tunneling electrons induce spin-flip excitations
locally, which then lead to an inelastic contribution to the
tunneling current [42]. We associate the dynamical spin
excitations driven by this process with the local susceptibility
χ−+. For the C3v symmetry, the circular components of the
effective field simplify to δBeff

± = −2KδM±/M2 + δBext
± . The

equations for δM+ and δM− decouple and the susceptibility
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FIG. 3. Variation of the band energy for a single Fe atom on
the Cu(111) surface. The energy is plotted as a function of the
magnetization direction, taking as a reference the self-consistent
calculation where M‖n̂z′ , i.e., �E = Eband(M) − Eband(Mn̂z′ ). The
system is schematically illustrated in the central diagram, with dark
gray spheres representing Cu atoms, while transparent spheres are
vacuum positions around the Fe adatom (red). For such C3v symmetry,
the uniaxial anisotropy constant K�E = 4.95 meV defined by the
model Hamiltonian given in Eq. (9) can be obtained directly from
the variation of the energy when the magnetization is rotated from
out-of-plane to in-plane, in the z′x ′ plane (red circles). There is
no energy variation when the magnetization is rotated in the (x ′y ′)
surface plane (blue triangles), confirming the uniaxial character of
the anisotropy.

matrix given in Eq. (13) has only diagonal components

χ−+(ω) = δM−
δBext−

= −γ+M

(ω − γ+B‖)
, (17)

and χ+−(ω) = [χ−+(−ω)]∗, where γ+ = γ

1+iα and B‖ =
Bext

z + 2K/M . Note that each susceptibility has a single
pole, located at ω0 = γ+B‖ and ω0 = −γ ∗

+B‖, respectively.
Figure 4(a) (blue curve) shows the density of spin excitations
from the TDDFT calculation (obtained from Im χ−+) when no
static magnetic field is applied to the sample. This quantity is
related to the steplike features in the tunneling conductance
measured in ISTS experiments [42].

The values of the anisotropy constant K , the effective
gyromagnetic ratio γ , and the damping parameter α can be
extracted by fitting the linear behavior of the real and imaginary
part of [χ−+]−1, shown in Eq. (A1), close to ω = 0 [14]. These
values are listed in Table I. The fitted values of K differ slightly
from the ones calculated using the band energy variation—
while the latter captures the energy difference between two
orthogonal directions of the magnetic moment, the former
represents the curvature of the energy around its equilibrium
direction. Note, however, that the gyromagnetic factor γ shifts
considerably from the expected value of 2. This induced delay
occurs due to the high hybridization with the surface [14],
which leads to large spin currents pumped out of the adatom
[28]. This strong hybridization is also responsible for the high
value obtained for the Gilbert damping α. The shift of the

(c)

(b)

(a)
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1
)
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1
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Fe →
Fe-Cu

FIG. 4. Dynamical excitations of single magnetic impurities.
(a) Imaginary part of the transverse dynamical susceptibility χ−+
as a function of the energy. The inset displays a magnification of the
responses for negative energies. (b) and (c) illustrate the amplitude
A and eccentricity of the precession e, as defined in Eq. (16), as
a function of the energy when a circularly polarized magnetic field
is applied. L, E, and C indicate the regions with linear, elliptical,
and circular oscillations. The curves for the three different magnetic
adatom structures are color coded as follows: isolated Fe adatom
(blue), isolated Fe adatom with in-plane magnetic field (red), Fe
adatom with a neighboring Cu adatom (green). See Fig. 2 for an
illustration.

resonance energy to imaginary values, Im γ+B‖ = −αγB‖
1+α2 , is

proportional to the damping parameter and is responsible for
the broadening of the response functions seen in Fig. 4(a).
This effect can also be seen from the time dependence of the
transverse magnetization components obtained in Eq. (B7),

TABLE I. Parameters from the ground state DFT calculations
(upper half) and from fitting the TDDFT susceptibility (lower half)
for the three different Fe adatom structures deposited on Cu(111)
investigated: single Fe adatom without external field, single Fe
adatom with large field along n̂y′ , Fe-Cu dimer. For the adatom in
the presence of magnetic field, α is highly anisotropic: αxx = 0.34,
while αyy = 0.39, in the local frame of reference.

Fe adatom Fe adatom Fe-Cu dimer
(no Bext) (Bext) (no Bext)

↑ → ↖
M (μB) 3.24 3.24 3.19
Morb (μB) 0.55 0.24 0.41
K�E

x (meV) 4.95 0.02 2.48
K�E

y (meV) 4.95 −5.46 3.40
Kx (meV) 4.98 0.07 2.49
Ky (meV) 4.98 −5.43 3.37
γ 1.72 1.71 1.71
α 0.33 0.39* 0.29
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where this contribution appears as an exponential decay of
their amplitude.

Since the susceptibility matrix is diagonal, the amplitude
of oscillation A(ω) = |A+(ω)| = |A−(ω)|, and the eccentricity
e = 0 for every frequency. These quantities are shown in the
blue curves of Figs. 4(b) and 4(c), and describe a circular
precessional motion—reflecting an effective field with equal
transverse components acting on the magnetization. The max-
imum amplitude of oscillation presented in Fig. 4(b) is close to
the maximum density of spin excitations obtained in Fig. 4(c),
although the former presents a much broader peak due to
contribution of the real part of χ−+ in this quantity, see Eq. (15).

B. In-plane magnetization

In the presence of spin-orbit coupling, the symmetry of
the system can be broken with external magnetic fields. By
applying a large Bext along the n̂y ′ direction of the global
frame of reference, we rotate the magnetization of the adatom
to lie in the surface plane along this direction (which defines
the local n̂z). We chose a static magnetic field of 90 T such
that the spin excitation resonance is similar to the one obtained
for the out-of-plane magnetization. Although this represents an
artificially large magnetic field, it enables an easy comparison
between both cases.

The strong magnetic field has only a minor impact on the
ground state properties of the adatom. The spin moment is
unchanged, but the orbital moment is less than half of the
value of the out-of-plane case. This reduction occurs as the spin
moment is now perpendicular to the C3v symmetry axis, which,
due to the spin-orbit coupling, leads to a lowering of symmetry.
In the local frame of reference, the magnetic anisotropy matrix
can now be described by Eq. (10) with Kx = 0, Ky = −K .

The density of spin excitations is depicted by the red
curve of Fig. 4(a). For positive frequencies, the curves are
very similar with a slightly larger broadening when the
magnetization points in the plane. A more detailed picture is
provided by the parameters listed in Table I, obtained from the
fits of the different components of the inverse susceptibilities
to Eq. (A2). The shift of the gyromagnetic factor away
from 2 is very similar to the one obtained before, indicating
that the spin pumping mechanism is essentially isotropic. In
contrast, the damping parameter is substantially anisotropic,
with (αxx − αyy)/αyy ∼ 13%, where αμμ was obtained from
the χ−1

μμ component of the susceptibility.
Surprisingly, there appears to be a new excitation peak

manifested at negative energies. Even though the value of
the response function is small, it represents a fundamental
difference in the spin dynamics and in the precessional shape.
It originates from the anisotropic effective field along the
transversal directions. This can be understood from the expres-
sion for the transverse susceptibility matrix, Eq. (A2). We find

χ−+ = γ+M (ω + γ ∗
+B∗

‖ )

ω+ − ω−

(
1

ω − ω− − 1

ω − ω+

)
, (18)

where the components of the effective field are
B‖ = Bext − K/M and B⊥ = K/M , defining the poles

ω± = i Im(γ+B‖) ±
√

[Re(γ+B‖)]2 − |γ+B⊥|2. (19)

This result explains why, besides the resonance at ω+, there
is also a signal at ω−, as seen in the red curve of the inset of
Fig. 4(a). For the uniaxial case (B⊥ = 0), the second peak is
absent because the numerator is proportional to ω + γ ∗

+B∗
‖ =

ω − ω− and so the first term in Eq. (18) becomes a constant.
Furthermore, the precession becomes circular. We can then dis-
tinguish circular and elliptical precession directly from χ−+,
by inspecting how many resonances it displays. In addition,
B⊥ reflects the ellipticity of the transverse effective field, and it
lowers the resonance frequency in comparison to the uniaxial
case. As before, the imaginary part obtained in Eq. (19) is pro-
portional to the damping parameter α and is responsible for the
decay of the magnetization back into the equilibrium direction.

As described in Appendix B, even though there are two
resonant energies of the system, they both represent a single
elliptical precession. The amplitude of the motion followed by
the transverse component of the magnetization is illustrated in
the red curve of Fig. 4(b). Although the amplitude is smaller
than the out-of-plane case at the resonance, the peak is broader
and the response is larger for negative frequencies close to ω =
ω−. In this region, the oscillation is close to linear, as evidenced
by the eccentricity close to e = 1 displayed in Fig. 4(c). For
higher frequencies, the precession amplitude and eccentricity
decays, approaching a circular shape.

For this last scenario, we applied a large magnetic field to
rotate the magnetization and make use of different anisotropy
energies along the transverse directions to induce elliptical
motion of the magnetization precession. In the next section,
we show how this can be achieved by manipulating the
surroundings of the magnetic unit.

C. Engineering magnetic anisotropy

As an alternative to an external magnetic field, we now
explore the impact of a neighboring nonmagnetic Cu atom on
the spin excitations of the Fe atom. The rotational symmetry
is broken in real space and, due to the spin-orbit coupling, also
in spin space, resulting in a tilt of the equilibrium direction
of the spin moment away from the surface normal. The
spin and orbital magnetic moments decrease compared to the
out-of-plane case, reaching M = 3.19μB and Morb = 0.41μB.
The latter represent a 25% decrease in the orbital moment,
which indicates a strong influence from the additional atom.
The symmetry lowering is confirmed by the variation of band
energy of the system when the magnetization angle is rotated
along the three different axes, illustrated in Fig. 5. The intricate
energy landscape leads to a tilt of the spin moment of θ ∼ 18◦
and φ ∼ 177◦, in spherical coordinates, close to the x ′z′
plane. In the local frame of reference, K�E

x = 2.48 meV and
K�E

y = 3.40 meV, which corresponds to a biaxial anisotropy,
with the magnitude of the anisotropy constants reduced from
the isolated Fe adatom case. Extra Cu atoms decrease their
values even more.

This is also reflected on the spin excitation spectra, green
curve in Fig. 4(a), in which the resonance is shifted to
lower frequencies, leading also to a higher amplitude of
precession, Fig. 4(b). The phenomenological parameters are
again obtained by fitting the first-principles results to Eq. (A3),
with the values listed in Table I. The gyromagnetic factor and
the damping parameter are very similar to the out-of-plane
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FIG. 5. Variation of the band energy for a Fe-Cu dimer on
the Cu(111) surface. The energy is plotted as a function of the
magnetization direction, taking as a reference the self-consistent
calculation where M‖n̂z′ , i.e., �E = Eband(M) − Eband(Mn̂z′ ). The
system is schematically illustrated in the central diagram, with dark
gray spheres representing Cu atoms, and transparent spheres are
vacuum positions around the Fe (1) and Cu (2) dimer. The anisotropy
constants defined for the model Hamiltonian given in Eq. (9) are
obtained by fitting the energy curves when the magnetization is
rotated along the z′x ′ plane (red circles), the z′y ′ plane (green
squares), and along the x ′y ′ plane (blue triangles). The values of
the magnetic anisotropy components in the local frame of reference
of the ground state magnetization are listed in Table I.

adatom case, but the biaxial anisotropy is manifested in the
elliptical precession indicated by the peak at negative energies
[inset of Fig. 4(a)]. It is also seen from the eccentricity plotted
in Fig. 4(c) that reaches close to e = 1—linear oscillation—at
ω = ω− and decreases away from this frequency. Our results
demonstrate that atomic manipulation not only of the magnetic
unit but also of its environment can be used to control and tune
possible magnetic excitations and may be used to operate static
and dynamical aspects of nanostructures.

IV. MAGNETIC DIMERS

We focus now on magnetic dimer structures and how
their ground state properties affect the possible excitation
modes of the system. The energy of these structures may be
mapped into a model given by Eq. (8). By manipulating the
separation between the Fe adatoms and taking advantage of the
distance-dependent oscillatory exchange interaction between
the adatoms, we design two different structures:

(1) Dimer I—adatoms separated by the nearest-neighbor
distance on the surface have a strong ferromagnetic coupling.

(2) Dimer II—adatoms separated by twice the nearest-
neighbor distance on the surface have a weak antiferromag-
netic coupling.

For dimer II, we investigate excitations starting from the
metastable FM state and from the AFM ground state. The
three cases we consider are depicted schematically in Fig. 6.

When bringing two adatoms together to form a dimer, the
symmetry is lowered from C3v to Cs , leaving only one mirror

m1 m2 m1

m2

m1 m2

FIG. 6. Diagrams of the three different Fe dimers deposited
on Cu(111). Nearest neighbor distance with large ferromagnetic
coupling (blue); twice the nearest neighbor distance with small
antiferromagnetic coupling, starting from a ferromagnetic state (red)
or from an antiferromagnetic state (green).

plane. The system presents a biaxial anisotropy that can be
mapped into the K matrix given by Eq. (10). The values of
K�E

x and K�E
y (per Fe atom) are obtained from the change

of the band energy when the magnetic moments are rotated
simultaneously along the different directions.

In dynamical studies of nanostructured systems, a central
role is played by the coupling between the magnetic moments.
For the dimers considered in this paper, the spin-orbit interac-
tion does not lead to appreciable anisotropic pair interactions,
such as the Dzyaloshinskii-Moriya interaction. Their values,
obtained from the calculated susceptibilities, are two orders
of magnitude smaller than the exchange interaction—as one
would expect for systems with low spin-orbit coupling such as
Cu. Hence, we consider only the simpler isotropic Heisenberg
exchange in our phenomenological model. As there are several
ways of estimating J , we first provide an overview of the
methods before analyzing each dimer structure.

A. Exchange coupling

A first definition of J is given by assuming that the
Heisenberg coupling appropriately describes the energetics
of our dimers. Identifying the first-principles total energy
difference between the antiferro- and the ferromagnetic states
with the value expected from the model we find

2J�E = EAFM − EFM. (20)

In this convention, a positive (negative) value of J�E favors a
ferromagnetic (antiferromagnetic) ground state.

The mapping between the Heisenberg coupling and the
total energy difference of the two magnetic states assumes
that the coupling constant (and the electronic structure) is not
substantially affected by the angle between the two magnetic
moments—which, in practice, may not be a reasonable
assumption. To avoid this problem, the exchange coupling
may also be derived via infinitesimal rotation of the magnetic
moments taking into account the magnetic force theorem
[55,56], which can be written for ferro- and antiferromagnetic
alignments as

J0 = ∓(
MKxc

T

)2
χKS

1−,2+. (21)

See Sec. II A for a description of these quantities.
This result, however, does not take into account many-

body effects. Here we introduce yet another method to
obtain the coupling parameter, based on the mapping of the
susceptibilities calculated in TDDFT to those obtained from
the LLG model, Eqs. (A4) and (A5). For ferromagnetic or
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TABLE II. Parameters from the ground state DFT calculations
(upper half) and from fitting the TDDFT susceptibility (bottom half)
for the three Fe dimer structures deposited on Cu(111) investigated:
nearest neighbor distance and twice the nearest neighbor distance
with both ferromagnetic and antiferromagnetic alignments. Values
are given per atom.

Dimer I Dimer II Dimer II
↑↑ ↑ ↑ ↑ ↓

M (μB) 3.12 3.24 3.24
Morb (μB) 0.19 0.53 0.55
K�E

x (meV) 1.79 4.36 4.89
K�E

y (meV) 1.12 4.38 4.80
J �E(meV) 239 −3.9 −3.9
J0 (meV) 193 −2.4 −3.9
Kx (meV) 1.82 4.45 4.91
Ky (meV) 1.14 4.44 4.82
J (meV) 206 −2.8 −4.3
γ 1.85 1.69 1.71
α 0.12 0.32 0.30

antiferromagnetic ground states, one finds

J = ∓M2[χ−1]1−,2+, (22)

where 1 and 2 label the two magnetic moments for which the
coupling constant is determined, and the sign − (+) is used
for the ferro- (antiferro-) magnetic alignment.

The expressions for the exchange couplings obtained in
Eqs. (21) and (22) are related by

J = J0

[
1 ± 2J0

M2Kxc
T

]−1

, (23)

where + and − signs account for a FM and an AFM alignment
of the two involved magnetic moments, respectively. The form
of Eq. (23) has been discussed in the literature [57,58]: Similar
to the connection between χ and χKS via Kxc

T , the exchange
coupling constant J can be seen as a renormalization of J0 by
Kxc

T , the exchange-correlation kernel. Since the spin splitting
is much larger than the spin excitation energies for the systems
we investigate, we expect the values of J0 and J to be quite
similar to each other [58]. In the following sections, we analyze
the ground state and dynamical properties of the different
dimer configurations and how the coupling constant and the
initial magnetic configuration affect the excitation energies.

B. Dimer I

The spin and orbital magnetic moments per site, M and
Morb are given in Table II. Comparing with the isolated Fe
adatom case (see Table I), the spin moment decreases slightly
while the orbital moment is drastically reduced by 65%. Due
to the broken rotation symmetry in the plane, the system
presents biaxial anisotropy—as demonstrated by the band
energy variation when the moments are rotated simultaneously
along all directions, shown in Fig. 7. The anisotropy constants
per atom are listed in Table II. Their magnitudes are 3–4
times smaller than for the isolated adatom and about half of
those for the Fe-Cu dimer, revealing the impact of the strong
hybridization between the d orbitals of the two Fe atoms.

0 30 60 90 120 150 180

0

2

4

z → x

x → y
z → y

Rotation angle (degrees)

Δ
E
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eV

)

FIG. 7. Variation of the band energy for the dimer I structure.
The energy is plotted as a function of the magnetization direction
of the parallel alignment, M = (M1 + M2)n̂, taking as a reference
the self-consistent calculation where M‖n̂z′ , i.e., �E = Eband(M) −
Eband(Mn̂z′ ). The dimer is composed by two nearest-neighbor Fe
atoms (1 and 2) on the Cu(111) surface, as illustrated in the central
diagram. Dark gray spheres represent Cu atoms, and transparent
spheres are vacuum positions around the nearest neighbor Fe-Fe
dimer. The anisotropy constants are obtained by fitting the energy
curves when M is rotated along the z′x ′ plane (red circles), the z′y ′

plane (green squares), and along the x ′y ′ plane (blue triangles). The
values of the magnetic anisotropy components in the local frame of
reference are listed in Table II.

The strong d-d hybridization is also evident in the large
values of the ferromagnetic coupling J . From the total energy
difference, Eq. (20), we obtain J�E = 239 meV, while from
the magnetic force theorem, Eq. (21), J0 = 193 meV. This
sizable difference reflects the change in the electronic structure
going from the FM to the AFM state.

We also obtain the phenomenological parameters by fitting
the results to the inverse susceptibility obtained in Eq. (A4).
Their values are listed in Table II. The anisotropies are in very
good agreement with the ones obtained by the band energy
variation, and J is very close to J0, as expected. We obtain
relatively small values for the damping parameter, α = 0.12,
which will be discussed below. The gyromagnetic ratio γ is
closer to 2 than before, which indicates that the spin pumping
mechanism is less efficient.

For a ferromagnetic dimer, we expect two precessional
modes: a uniform mode where the magnetic moments precess
in-phase (acoustic mode) and one mode where they precess
with a phase difference of π (optical mode). By linearizing the
equation of motion given in Eq. (A4), the poles corresponding
to the acoustic and optical mode are

ω±
ac

γ ′ = −iα(Kx + Ky) ±
√

4KxKy − α2(Kx − Ky)2

ω±
op

γ ′ = −iα(Kx + Ky + 2J )

±
√

4(Kx + J )(Ky + J ) − α2(Kx − Ky)2, (24)
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FIG. 8. Dynamical excitations of dimers. (a) Imaginary part of
the local transverse dynamical susceptibility χ−+ as a function of
the energy. The inset displays a magnification of the responses
for negative energies. (b) and (c) illustrates the amplitude A and
eccentricity of the precession e, as defined in Eq. (16), as a function
of the energy when a circularly polarized magnetic field is applied.
L, E, and C indicate the regions with linear, elliptical, and circular
oscillations. The curves for the three different dimer structures are
color coded as follows: dimer I (blue), dimer II with FM alignment
(red), dimer II with AFM alignment (green). See Fig. 6 for an
illustration.

where γ ′ = γ

M(1+α2) . Since J � Kx,Ky , the optical mode
is located at 2γ J/M ∼ 250 meV. If ω � J , the two spin
moments stay parallel to each other, and the system behaves
as a macrospin with biaxial magnetic anisotropy. In this case,
χ−+ can be described by Eq. (18) with B‖ = (Kx + Ky)/M
and B⊥ = (Kx − Ky)/M , and the excitations follow similar
dynamics as the adatom with magnetization in-plane and the
Fe-Cu dimer described in Sec. III. The expressions for the
acoustic and optical frequencies, Eq. (24), show that in biaxial
systems the damping may play an important role, lowering the
resonance frequency. These results are not captured by the so-
called Kittel’s formula [59], which neglects damping effects.

We imagine that an STM tip is placed above atom 1 and
that the tunneling electrons induce spin-flip excitations locally,
which then lead to an inelastic contribution to the tunneling
current [42]. We associate the dynamical spin excitations
driven by this process in atom 1 with the local susceptibility
χ1−,1+ ≡ χ−+. In Fig. 8(a) we show the imaginary part of the
local χ−+ component as a function of the frequency for the
nearest neighbor dimer (blue curve). The optical mode is out
of the range of the figure. As before, the small peak at negative
frequencies reveals an elliptical precession. The properties of
the precessional motion can be gleaned from Figs. 8(b) and
8(c). For the peak at positive frequencies, the amplitude is
large, while the movement is slightly elliptical (e ∼ 0.5). On
the other hand, for the negative resonance, the amplitude is
small but significant, while the precession becomes linear
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FIG. 9. Stability of the two possible magnetic alignments for
dimer II from the variation of the band energy. The energy is
plotted as a function of the angle between the magnetic moments
of the impurities with M1 fixed to n̂z′ while M2 is rotated in
the x ′z′ plane. We take as a reference the ferromagnetic state,
i.e., �E = Eband(M1n̂z′ ,M2) − Eband(M1n̂z′ ,M2n̂z′ ). Red and blue
curves are obtained starting from a self-consistent ferromagnetic and
antiferromagnetic states, respectively.

for frequencies close to ω−. The low value of the damping
obtained for this dimer leads to a relatively sharp peak in
the blue curve of Fig. 8(a). This is due to the strong d-d
hybridization, which creates bonding and antibonding states,
thus lowering the density of states near the Fermi energy. As the
damping parameter is very sensitive to the electronic structure
around the Fermi energy [52], this explains its reduction to
about a third of the values for the Fe adatoms.

In the following section, we uncover the dynamical
behavior when the interatomic exchange coupling is now
of the same order of magnitude as the magnetic anisotropy
constants. The two spin moments are no longer forced to be
parallel to each other, and this has important consequences
for the precessional motion.

C. Dimer II

When the two Fe atoms are pulled apart, their properties
quickly recover those of isolated units. For a separation of
twice the nearest neighbor distance, the spin and orbital
moments are very close to the ones obtained for the single Fe
adatom, as seen in Table II. Their coupling is weakened and
even changes sign, as indicated by the value obtained from
the total energy difference J�E and from the magnetic force
theorem J0. As these values are lower than the anisotropy
constants of the isolated adatoms, the interplay between
these two kinds of magnetic interactions may give rise to a
metastable state. This is confirmed by Fig. 9, where we plot
the band energy variations starting from two self-consistent
states, FM (red curve) and AFM (blue curve), as a function of
the angle between the magnetic moments. We see that the AFM
alignment is the ground state but also that the FM alignment
is a local minimum of the energy.

As both magnetic states are accessible, we characterize
their magnetic anisotropic energy as done before for dimer I.
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FIG. 10. Variation of the band energy for magnetic anisotropy
energy of the dimer II structure. (a) The energy is plotted as a
function of the magnetization direction of the parallel alignment
(as in the central diagram), M = (M1 + M2)n̂, taking as a reference
the self-consistent calculation where M‖n̂z′ , i.e., �E = Eband(M) −
Eband(Mn̂z′ ). (b) Change of the band energy as a function of the
magnetization direction of the antiparallel alignment (as in the central
diagram), M = (M1 − M2)n̂, taking as a reference the self-consistent
calculation where M‖n̂z′ , i.e., �E = Eband(M) − Eband(Mn̂z′ ). The
dimer is composed of two Fe atoms (1 and 2) situated at twice the
nearest neighbor distance on the Cu(111) surface, as illustrated in
the central diagram. Dark gray spheres represent Cu atoms, and
transparent spheres are vacuum positions around the Fe sites. The
anisotropy constants are obtained by fitting the energy curves when
the magnetization of both sites are rotated simultaneously along the
z′x ′ plane (red circles), the z′y ′ plane (green squares), and along the
x ′y ′ plane (blue triangles). The values of the magnetic anisotropy
components in the local frame of reference are listed in Table II.

The variation of the energy when the moments are rotated
together in the FM or the AFM alignments, shown in Fig. 10,
indicates an almost uniaxial magnetic anisotropy energy, with
Kx � Ky . The obtained values are given in Table II. The
anisotropy constants are essentially independent from the

magnetic alignment and are very close to the values found for
the isolated adatom, which shows that the Fe adatoms weakly
disturb each other.

We can access two qualitatively different kinds of spin
excitations, by starting either from the AFM ground state
or from the FM metastable state. To compare with dimer
I, we consider again the local susceptibility χ1−,1+ ≡ χ−+
and we first analyze the FM case. The corresponding density
of spin excitations is the red curve of Fig. 8(a). As before,
we have the two modes, acoustic and optical, described by
Eq. (24). Since J < 0, the optical mode has lower energy
than the acoustic mode: While the latter is located at ∼5 meV,
the former resonates at ∼2 meV. Note that, unlike the biaxial
case of dimer I, no signal can be seen for negative energies in
the inset of Fig. 8(a), indicating a nearly circular precession.
The amplitude of the motion for the optical mode is larger than
for the acoustic, see Fig. 8(b). The eccentricity of precession,
represented by the red curve of Fig. 8(c), reaches a maximum
value of e ∼ 0.5 close to ω−

op. This confirms that the precession
is slightly elliptical.

A completely different excitation spectrum is obtained
when the initial state is, instead, the AFM ground state, as
seen in the green curve of Fig. 8(a). Note that even for the
almost uniaxial anisotropy case considered here, the transverse
susceptibility presents a peak at negative energies. However,
Fig. 8(b) shows that the amplitude of precession is significant
only for the peak at positive frequencies and is featureless for
negative frequencies. In addition, the precessional motion is
only slightly elliptical (e < 0.5), see Fig. 8(c).

We can interpret this behavior as reflecting the different pre-
ferred precessional senses of the two Fe atoms composing the
dimer. If the two atoms were uncoupled (J = 0), the intrinsic
precessional sense of atom 1 would be counterclockwise, while
atom 2 (being antiparallel to atom 1) would naturally precess
clockwise, in a common frame of reference. We assume that
the tunneling current is exciting the precessional motion of
atom 1. For positive frequencies, the excitation spectrum of
atom 1 is similar to that of the isolated adatom, cf. Fig. 4(a),
which indicates that the coupling J to atom 2 is not playing
a significant role. For negative frequencies, if atom 1 was
isolated, we would not expect any resonant behavior. However,
the unfavorable precession driven in atom 1 is transferred to
atom 2 via J , triggering its natural precessional motion, which
then feeds back to atom 1 (again via J ) leading to the observed
enhanced response. In fact, the presence of the excitation at
negative energies indicates that the classical antiferromagnetic
state |↑↓〉, for which we obtain the spectra, is not the true
ground state of the system [33].

As done for dimer I, we can obtain analytical expressions for
the resonances considering biaxial anisotropy and damping:

ω±
1

γ ′ = −iα(Kx + Ky − J )

±
√

4Kx(Ky − J ) − α2(J + Kx − Ky)2

ω±
2

γ ′ = −iα(Kx + Ky − J )

±
√

4Ky(Kx − J ) − α2(J − Kx + Ky)2, (25)
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where γ ′ = γ

M(1+α2) . Here, Kx,Ky > 0 and J < 0 for the AFM
ground state. There are four solutions that correspond to two
distinct precessional modes (the + and − solutions generate
the same precessional motion, as explained in Appendix B).
If the biaxial character is very weak, Kx ∼ Ky , the solutions
become degenerate and we observe only two peaks in the
spectrum instead of the expected four. This is precisely the
behavior that we obtain for dimer II.

The damping plays a much more important role for
antiferromagnets than for ferromagnets, especially when the
coupling is relatively large. Increasing the damping strength,
the resonance frequency lowers, as follows from Eq. (25). For
simplicity, we explore this scenario for uniaxial anisotropy,
Kx = Ky = K . When α > 2

√
K(K + |J |)/|J |, one of the

modes moves to zero frequency, recovering the Goldstone
mode, with the other one moving to the imaginary frequency
axis, corresponding to an overdamped precession. Although
this condition is not fulfilled for our case, it may happen for
dimers with the coupling |J | � |K| (for example, a Mn dimer
deposited on metallic substrates).

Finally, we consider the possible impact of the spin
excitations on the stability of the classical AFM ground state.
In Ref. [35], it was argued that the AFM dimer was able to
access the two degenerate Néel states |↑↓〉 and |↓↑〉, since
the zero-point fluctuations (involving the coupling J ) were
larger than the energy barrier between them (proportional to
K). In that work, the energy of the zero-point fluctuations was
connected to the energy of the lowest spin excitation mode.
This description is also in accordance with Ref. [33], where
the zero-point energy was found to vanish for an AFM dimer
with zero anisotropy. Nevertheless, neither of these works
have considered the effects of damping. Our results obtained
in Eq. (25) show that the damping reduces the frequency
of the lowest excitation mode for antiferromagnetic dimers
with large coupling. Counterintuitively, this implies that the
zero-point energy is also lowered when the damping increases,
following the argument of Ref. [35]. This may then prevent
the fluctuations over the energy barrier between the two Néel
states and stabilize them. This can be contrasted with the
behavior found in Ref. [60], in which the damping increases
the zero-point spin fluctuations of single magnetic adatoms
deposited on metallic surfaces.

V. CONCLUSIONS

In this paper, we have presented a semiclassical in-
terpretation of the dynamical spin excitations in magnetic
nanostructures computed using a first-principles approach. A
crucial role is played by the spin-orbit coupling, responsible for
nontrivial magnetic anisotropies, which in turn lead to complex
precessional motion. A description of the general elliptical
precession was provided and connected to the spectral features
of the transverse magnetic susceptibility. As the latter is
intimately related to the inelastic contribution to the tunneling
conductance, we believe this formalism can provide useful
insights on the nature and properties of spin excitations
detected experimentally.

Considering a single Fe adatom deposited on the Cu(111)
surface, we showed how the ground state and also the
excitation properties can be controlled by an external magnetic

field or by atomic manipulation of its environment (the
formation of a Fe-Cu dimer). We found that the signature
of noncircular precessional motion is the appearance of a
secondary peak at negative frequencies in the density of spin
excitations. In the vicinity of this peak, the precession becomes
highly elliptical. Our results indicate that the spin pumping
mechanism is quite isotropic, while the precessional damping
is large, anisotropic, and tunable.

We next considered a different kind of atomic manipulation,
where the Cu atom is replaced by a second Fe atom. When
the two Fe atoms are nearest neighbors, they are strongly
ferromagnetically coupled, behaving as a single magnetic
unit when the frequency is much lower than their coupling.
The magnetic anisotropy is now of biaxial nature, leading
to elliptical spin excitations. The dynamical properties can
be understood from the strong d-d hybridization, which is
responsible for lowering both the spin pumping efficiency and
the magnetic damping.

When the Fe adatoms are pulled apart, their coupling
weakens and becomes antiferromagnetic, being now compa-
rable in magnitude to the magnetic anisotropy energy. This
special configuration gives access to two different magnetic
states: the antiferromagnetic ground state and the metastable
ferromagnetic state. The two Fe atoms weakly influence each
other, and their local properties are very similar to those of
isolated Fe adatoms. The metastable FM state leads to two
kinds of spin excitations: an acoustic mode where the spins
precess in-phase and an optical mode where they precess
in anti-phase. The optical mode actually has lower energy
than the acoustic one, as a consequence of the metastable
nature of the ferromagnetic alignment. By inverting the spin
alignment, we arrive at the antiferromagnetic ground state,
which has completely different excitation characteristics. We
find only one broad excitation peak at positive energies, instead
of the two for the ferromagnetic alignment. The antiparallel
Fe atoms have opposite intrinsic precessional motion, which
leads to a secondary peak at negative energy. This does not
represent elliptical precession, in contrast to the strongly
ferromagnetic dimer. We obtain the excitation energies of the
system and show that the damping contribution lowers the
resonance frequency, specially for antiferromagnetic dimers
with large coupling. The lowest energy mode is connected
to the zero-point fluctuation energy, which indicates that this
lowering may inhibit fluctuations over the barrier between
different Néel states.

Our results shed light on how the spin excitations can be
engineered by bringing atoms together or separating them
apart. We demonstrate how the external fields, magnetic
anisotropy energies, exchange couplings and damping, as well
as the initial alignment between the magnetic units can be
used to design a diverse range of precessional motions. Two
particular outcomes may be used as experimental guidance.
First, we propose a pump-probe-like experiment [43] to access
the influence of the magnetic alignment on the dynamical spin
excitations, while keeping all the other quantities essentially
unchanged: The system is put into the metastable state by an
initial perturbation (pump) followed by a measurement of its
excitations by a probe. They can be compared to the excitations
from the ground state, when the pump is switched off. Second,
the effect of the damping on the zero-point fluctuation energy
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indicate that STM experiments made on dimers with similar
magnetic interactions but different damping strengths (e.g.,
deposited on insulators or metals) may present rather different
magnetic signals. The effect of the damping on the excitation
modes also impacts the field of antiferromagnetic spintronics.
A naive expectation is that ultrafast antiferromagnetic devices
shall involve large coupling between the units, to make them
switch together, and high damping, to quickly relax the
magnetization to a new switched state. Our results demonstrate
that the correct picture is more subtle, and a combination of
anisotropy, coupling, and damping must be taken into account.

The interplay between the different magnetic interactions
offers multiple tools to control processing speeds and polar-
ization of magnetic units and emitted spin currents, which may
lay the foundations of the building blocks of future devices.
Our first-principles description of the dynamical properties of
magnetic nanostructures provides a predictive approach to the
design and engineering of those building blocks.
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APPENDIX A: PHENOMENOLOGICAL EXPRESSIONS
FOR THE DYNAMICAL SUSCEPTIBILITIES OF

NANOSTRUCTURES

By linearizing the LLG equation of motion [Eq. (7)], they
can be written in the local frame of reference as [χ−1(ω)]δM =
δBext. In this Appendix, we list the inverse susceptibilities χ−1

used to fit the TDDFT results and obtain the parameters of the
phenomenological model. In the following, we use γ± = γ

1±iα .

1. Single atom

For adatoms, δM and δBext are vectors containing the
transverse circular components +,− of the magnetization and
the external field, respectively.

a. Uniaxial, no magnetic field

When the magnetization points perpendicularly to the
surface, the symmetry of the system is C3v and the anisotropy
is uniaxial—in our convention, Kx = Ky = K and Kz = 0.
The inverse susceptibility for this case is given by

χ−1(ω) =
(

2K
M2 + ω

γ−M
0

0 2K
M2 − ω

γ+M

)
. (A1)

b. Uniaxial, magnetic field along n̂ y′

The in-plane magnetic field saturates the magnetization
along the n̂y ′ direction in the global frame of reference.
Transforming to the local frame of reference, where it points
along n̂z, we find Kx = Kz = 0 and Ky = −K . The inverse
susceptibility is

χ−1(ω) =
(

MBext
0 −K

M2 + ω
γ−M

K
M2

K
M2

MBext
0 −K

M2 − ω
γ+M

)
. (A2)

c. Biaxial

Placing a Cu atom close to the Fe adatom, we break the
symmetry and change the magnetic anisotropy landscape of
the system. By a suitable choice of the local frame of reference,
the anisotropy matrix can be written in the diagonal form given
in Eq. (10). χ−1 is then

χ−1(ω) =
(

Kx+Ky

M2 + ω
γ−M

Kx−Ky

M2

Kx−Ky

M2
Kx+Ky

M2 − ω
γ+M

)
. (A3)

2. Dimer

Dimer structures naturally break the symmetry of the
system. The linearized equation of motion includes the
transverse components of both magnetic units in the global
frame of reference, δM = (M1+,M2+,M1−,M2−).

a. Parallel alignment

When the moments are pointing parallel to each other, the inverse susceptibility is

χ−1(ω) =

⎛
⎜⎜⎜⎜⎝

(Kx+Ky )+J

M2 + ω
γ−M

− J
M2

(Kx−Ky )
M2 0

− J
M2

(Kx+Ky )+J

M2 + ω
γ−M

0 (Kx−Ky )
M2

(Kx−Ky )
M2 0 (Kx+Ky )+J

M2 − ω
γ+M

− J
M2

0 (Kx−Ky )
M2 − J

M2
(Kx+Ky )+J

M2 − ω
γ+M

⎞
⎟⎟⎟⎟⎠. (A4)

b. Antiparallel alignment

In the case of antiparallel alignment of the magnetic moments, we have

χ−1(ω) =

⎛
⎜⎜⎜⎜⎝

(Kx+Ky )−J

M2 + ω
γ−M

J
M2

(Kx−Ky )
M2 0

J
M2

(Kx+Ky )−J

M2 − ω
γ+M

0 (Kx−Ky )
M2

(Kx−Ky )
M2 0 (Kx+Ky )−J

M2 − ω
γ+M

J
M2

0 (Kx−Ky )
M2

J
M2

(Kx+Ky )−J

M2 + ω
γ−M

⎞
⎟⎟⎟⎟⎠. (A5)
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APPENDIX B: ELLIPTICAL MODE OF SINGLE ATOMS IN
A CIRCULAR BASIS

To obtain the natural precessional modes of a single adatom,
we linearize the time dependence of the magnetic moment (see
Sec. II C). The small transverse components can be found from
the associated LLG equation χ−1δM = δBext. The normal
modes of precession are obtained by solving the secular
problem δBext = 0, which leads to the eigenvalue problem
D|u〉 = ω|u〉, or(

γ+B‖ γ+B⊥
−γ−B∗

⊥ −γ−B∗
‖

)(
u1

u2

)
= ω

(
u1

u2

)
. (B1)

D is the dynamical matrix written in the circular basis with
eigenmodes given by the poles of the susceptibility, obtained
in Eq. (19). Since ω− = −(ω+)∗, the eigenvectors are obtained
from

|u+〉 : (γ+B‖ − ω+)u+
1 + γ+B⊥u+

2 = 0

|u−〉 : (γ+B‖ − ω+)u−∗
2 + γ+B⊥u−∗

1 = 0, (B2)

which shows that u−∗
2 = u+∗

1 and u−∗
1 = u+

2 . Therefore, we
can write for the normalized eigenvectors

|u+〉 =
(

ei(φ0−φ) cos ξ

ei(φ0+φ) sin ξ

)
, |u−〉 =

(
e−i(φ0+φ) sin ξ

e−i(φ0−φ) cos ξ

)
, (B3)

where we have defined

ei(φ0−φ) cos ξ = −γ+B⊥√|γ+B⊥|2 + |γ+B‖ − ω+|2

ei(φ0+φ) sin ξ = γ+B‖ − ω+√|γ+B⊥|2 + |γ+B‖ − ω+|2 . (B4)

Notice that, since the dynamical matrix D is not Hermitian,
the eigenvectors |u+〉 and |u−〉 are not orthogonal to each other
but rather to the left eigenvectors. These may be obtained by

〈v|D = ω〈v|.
〈v+| = (e−i(φ0−φ) cos ξ −e−i(φ0+φ) sin ξ )

〈v−| = (−ei(φ0+φ) sin ξ ei(φ0−φ) cos ξ ). (B5)

The left and right eigenvectors are orthogonal, i.e., 〈v+|u−〉 =
〈v−|u+〉 = 0, and 〈v+|u+〉 = 〈v−|u−〉 = cos2 ξ − sin2 ξ . The
dynamical matrix can then be written as

D = ω+ |u+〉〈v+|
〈v+|u+〉 + ω− |u−〉〈v−|

〈v−|u−〉 . (B6)

Since D is written in the circular basis, the eigenvectors
represent the transverse components of the magnetization δM−
and δM+. Both |u+〉 and |u−〉 lead to the same time dependence
of the magnetization. Making use of Eq. (12), we finally
find

δM(t) = Mδθ

2
Re{[(e−iφ cos ξ + eiφ sin ξ )n̂x

+ i(e−iφ cos ξ − eiφ sin ξ )n̂y]ei(φ0−ω′t)}eω′′t , (B7)

where we have used ω± = ±ω′ + iω′′, with ω′ and ω′′ the real
and imaginary part of the frequency (ω′′ < 0), respectively.

In general, the modes are elliptical, as both δM+ and δM−
are finite. When applying time-dependent magnetic fields, the
susceptibility can also be written in terms of the normal modes
as (

δM−
δM+

)
=

[
M

ω+ − ω

|u+〉〈v+|
〈v+|u+〉

+ M

ω− − ω

|u−〉〈v−|
〈v−|u−〉

](
δBext

−
δBext

+

)
. (B8)

A counterclockwise circularly polarized external field δBext
0 (1

0)

is not orthogonal to either 〈v+| or 〈v−| in general, which leads
to peaks in the transverse dynamical susceptibility χ−+(ω) at
both ω+ and ω− (as discussed in Secs. III and IV).
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