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Frustration and the associated phenomenon of “avoided criticality” have been proposed as an explanation for
the dramatic relaxation slowdown in glass-forming liquids. To test this, we have undertaken a Monte Carlo study
of possibly the simplest such problem, the two-dimensional XY model with frustration corresponding to a small
flux f per plaquette. At f = 0, there is a Berezinskii-Kosterlitz-Thouless transition at T ∗, but at any small but
nonzero f , this transition is avoided and replaced (presumably) by a vortex-ordering transition at much lower
temperatures. We thus have studied the evolution of the dynamics for small and moderate f as the system is
cooled from above T ∗ to below. Although we do find strongly temperature-dependent slowing of the dynamics
as T crosses T ∗ and that simultaneously the dynamics becomes more complex, neither effect is anywhere nearly
as dramatic as the corresponding phenomena in glass-forming liquids. At the very least, this implies that the
properties of supercooled liquids must depend on more than frustration and the existence of an avoided transition.
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I. INTRODUCTION

The quest for a simple compelling theoretical framework
for understanding the spectacular dynamical phenomena ex-
hibited “universally” by supercooled liquids as they approach
the glass transition has been long and arduous [1–3]. Surely
the most dramatic of these phenomena is the super-Arrhenius
temperature (T ) dependence of the relaxation rates in the range
of T between the melting temperature and the glass transition
temperature Tg . One set of theoretical ideas seeks to identify
these dynamical phenomena with the growth of thermody-
namic correlations of some sort with the notion that geometric
frustration f can be invoked to account for ultimately limiting
the growth of these correlations and precluding a transition to
a broken symmetry (crystalline) state [4–6]. Specifically, one
concrete proposal of this variety suggests that the phenomena
should be thought of as deriving from proximity to an “avoided
critical point” T ∗, a point at which a transition to an “ideal”
solid phase would occur in the absence of frustration but which
is forbidden for any nonzero f [7–10].

At the most optimistic level, one could then hope that any
model with tunable frustration and an avoided critical point
would automatically show the salient features of supercooled
liquids. Besides the already mentioned spectacular increase
of the relaxation time, whose temperature dependence is
described by a super-Arrhenius form, the main qualitative
features that one would like to reproduce are a nonexponential
time dependence of the relaxation functions and the appear-
ance of several relaxation regimes, both effects becoming more
marked as one cools the liquid toward the glass transition. To
test this, we have undertaken a Monte Carlo study of possibly
the simplest such problem, the two-dimensional (2D) XY

model with frustration corresponding to a small flux f per
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plaquette. At f = 0, there is a Berezinskii-Kosterlitz-Thouless
(BKT) transition at T ∗ ≈ 0.89J , but at any small but nonzero
f , this transition is avoided and replaced (presumably) by
a vortex-ordering transition at much lower temperatures. We
thus have studied the evolution of the (Monte Carlo) dynamics
for small f as the system is cooled from above T ∗ to below.

Although we do find strongly temperature-dependent slow-
ing of the dynamics as T crosses T ∗ and that simultaneously
the dynamics becomes more complex (i.e., not describable
as a single exponential), neither effect is anywhere nearly
as dramatic as the corresponding phenomena in supercooled
liquids. At the very least, this implies that the properties
of supercooled liquids must depend on more than the mere
existence of an avoided transition. Conversely, it should be
mentioned that, in the slightly more involved example of
a one-component atomic liquid in curved space (where the
curvature of space is a measure of the frustration f ), the
properties near T ∗ much more closely resemble those of
supercooled liquids, including the occurrence of a range
of temperatures in which super-Arrhenius slowing down is
observed [11,12].

II. MODEL AND SIMULATIONS

The Hamiltonian of the uniformly frustrated 2D XY model
is given by [13]

H = −J
∑
〈ij〉

cos(θi − θj − Aij ), (1)

where J > 0 is the coupling constant, θi is the angle of the
XY spin at site i, and 〈ij 〉 denotes a sum over distinct pairs
of nearest-neighbor sites. The bond variables Aij satisfy the
constraint that their sum going counterclockwise around any
unit-cell C of the lattice is constant,∑

C
Aij = 2πf, (2)

where without loss of generality, f can be restricted to the
range of [0,1/2]. Here we consider a square lattice.
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The same model has been used to describe an array of
Josephson junctions in a uniform transverse magnetic field
[13,14]; in this case the Aij ’s can be interpreted, up to some
constant prefactor, as the line integral of the vector potential
along the bonds, and f is the number of flux quanta of magnetic
field per unit cell [14].

The system is frustrated in that nonzero f , no matter
how small, induces an irreducible density of topological
defects, i.e., vortices all of the same sign. Whereas the
2D XY model (i.e., the model with f = 0) undergoes the
well-known BKT transition to a low-temperature state with
quasi-long-range order at T = T ∗, for nonzero f the gas of
irreducible defects eliminates this transition. These defects
can crystallize, resulting in an ordered state analogous to the
Abrikosov vortex lattice in a type-II superconducting film, but
this transition occurs at a temperature Tcrys that is more than
an order of magnitude lower than T ∗ in the limit of small
frustration f [15–17]. The parameter f therefore quantifies
the frustration that is present in the system. This frustration
is not associated with site-dependent quenched disorder: It is
uniform. Furthermore, because the Hamiltonian in Eq. (1) is
gauge invariant, physical properties depend on the Aij ’s only
through f [18].

We have investigated the uniformly frustrated 2D XY model
described by Eq. (1) for small-to-intermediate frustration f

both by analytical and by numerical approaches. We have
performed Monte Carlo simulations for linear size L = 34
with several values of the frustration, f = n/L2 where n

is the irreducible number of flux quanta, corresponding to
f = 5/342, 10/342, 1/34, 5/34, and 13/34. (Recall that the
maximum value is f = 1/2 which corresponds to the so-called
“fully frustrated” XY model [14].)

Our Monte Carlo simulation uses single-site updates in
which each spin variable is updated according to the Metropo-
lis method. (This corresponds to a “model-A” [19] dynamics
for a nonconserved order parameter.) Spins are updated by
selecting a random angle with a range chosen to maintain
an acceptance ratio of approximately 0.5. A single sweep
corresponds to updating each spin once. In the simulations
discussed here, correlation functions were measured after
every sweep. We have used a gauge choice such that Aij = 0
for vertical bonds and Aij = 2πfyi for horizontal bonds,
where yi is the ordinate of site i. We also have studied the
system in the absence of frustration (f = 0) as a function of
system size for L = 10–40.

In the present paper, we have concentrated on dynamical
rather than spatial correlations. We have therefore computed
the spatially averaged spin-spin autocorrelation function,

Css(t) ≡ 1

L2

L2∑
i=1

〈Si(0) · Si(t)〉

= 1

L2

L2∑
i=1

〈cos[θi(0) − θi(t)]〉, (3)

and the current-current autocorrelation function,

Cjj ≡ 1

L2

L2∑
i=1

〈sin �i(0) sin �i(t)〉, (4)

where

�i(t) ≡ θi(t) − θi+x̂(t) − Ai,i+x̂. (5)

Autocorrelation functions were computed by averaging over
100–1000 configurations, depending on temperature and frus-
tration.

III. AVOIDED CRITICALITY: PREDICTIONS FOR THE
DYNAMICS

We consider the dynamical behavior of the system when it
relaxes to equilibrium in the limit of small frustration f → 0+.
As mentioned above, there is a large range of temperature from
around T ∗ down to Tcrys. In the unfrustrated model (f = 0),
the physics near and below T ∗ can be described in terms
of thermally induced defects (vortices) of both positive and
negative topological charges subject to a global constraint
of charge neutrality. The density of these defects decreases
with decreasing temperature, and below T ∗ they only appear
in dipoles formed by pairs of two nearby oppositely charged
defects. The system then displays quasi-long-range order.
The defect picture can be introduced conveniently through
the duality transformation that modulo some approximations
maps the original model of XY spins into a Coulomb lattice
gas now with the vortices as variables.

For f �= 0, but small, the system may locally have a
tendency to behave as if unfrustrated, but this cannot extend
beyond an intrinsic frustration length which is of the order of
� = f −1/2. Indeed, frustration-induced defects must be present
in addition to thermally generated ones, and the irreducible
density of such vortices, which all have the same topological
charge of +1, is precisely f . One may therefore expect that, for
some range of temperatures near and below T ∗ and in the limit
of small f , the frustrated model behaves as an unfrustrated one
in a box of linear size of the order of � = f −1/2 (with periodic
boundary conditions). This is indeed what has been found for
the thermodynamic properties [20].

At still lower temperatures but above the freezing transition
to a vortex lattice, the system should behave as a fluid of +1
vortices with density f in a neutralizing background, i.e., a
“one-component plasma.” The vortices interact with the 2D
lattice Coulomb potential V , which at large separation r has a
logarithmic dependence: V (r) ∼ −2πJ ln(r/a) with a of the
order of a lattice constant.

To make progress we first derive the finite-size scaling of
the dynamics of the unfrustrated model (f = 0) in the region
below T ∗ which is dominated by spin-wave excitations. The
magnetization in a finite-size system of linear size L has
a characteristic magnitude of M∞ � L−η(T )/2 with η(T ) =
T/(2πJ ) [21,22]. One may then define two different time
scales: A first time τ1 to go from a magnetization of order
O(1) to a magnetization of order M∞ and a second one τ2,
which characterizes the long-time orientational fluctuations of
the magnetization.

The first time τ1 is given by standard finite-size scaling to be
τ1 ∼ Lz with z as the dynamical exponent corresponding here
to model A, i.e., z = 2. This is also obtained as the time for the
spin-spin autocorrelation function to decay from 1 to (M∞)2.
In this regime, the time-dependent correlation function decays
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as t−η(T )/2 for the present dynamics, which leads indeed to

τ1(L) ∼ [L−η]−(2/η) ∼ L2, (6)

with τ1 roughly independent of the temperature.
The second time τ2 is associated with the relaxation of

the magnetization angle θ (t). Since the process is akin to a
random walk, the number of Monte Carlo steps per spin that
are necessary to rotate the angle by an amount of order 2π

goes as (2π )2/〈(δθ )2〉 where 〈(δθ )2〉 = ∫
d δθ (δθ )2p(δθ ) with

p(δθ ) as the probability that an angular change δθ is made.
The probability p(δθ ) is given by a Boltzmann factor

involving the free-energy change associated with the angular
change. Large angular changes are thus strongly (exponen-
tially) suppressed at low temperatures. We therefore consider a
twist of small amplitude 2πδ in one direction across the sample
such that θ (x,y) = (2πδ/L)x. The associated free-energy
change is given by (J/2)

∫∫
dx dy[∂θ (x,y)]2 ∼ (2π2J )δ2 ∼

κδ2 with κ as a constant. One then estimates the mean-squared
angle change as

〈(δθ )2〉 ∼ (2π )2
∫ δc

0
dδ δ2e−(κδ2/T ), (7)

where δc is a cutoff value. At low temperatures, the above
expression behaves as T 3/2, and the relaxation time τ2 then
scales as

τ2(L,T ) ∼ L2

(
T ∗

T

)3/2

, (8)

where L2 accounts for the number of spins in the system. Note
that as expected τ2(L,T ) > τ1(L) below T ∗.

After putting together the above results, one obtains that
the spin-spin autocorrelation function behaves in the following
way:

Css(t) ∼
{
t−(η/2) for t � τ1,

τ
−(η/2)
1 e−[(t−τ1)/τ2] for t  τ1.

(9)

Note that the exponent η(T ) = T/(2πJ ) decreases as T de-
creases so that the initial slope of Css(t) versus log(t) becomes
less and less negative as T decreases. In the macroscopic limit
L → ∞, τ1(L) → ∞, and Css(t) ∼ t−η(T )/2 at all times as
required.

What are the consequences for the frustrated model? As
explained above, for a range of temperatures near and below
T ∗, we expect that the behavior of the weakly frustrated
(f � 1) model in the thermodynamic limit is similar to that
of the unfrustrated model in a finite-size box of linear size
of the order of the intrinsic frustration length, i.e., L ≈ � =
f −1/2. The above predictions should thus apply provided one
replaces L by �. For the thermodynamic quantities, Alba et al.
[20] have found that the finite-size scaling with L ≈ f −1/2

describes their numerical simulations from T ∗ ≈ 0.89J down
to T = 0.2J , which is the lowest temperature they considered.
However, they did not address the validity of this scaling
analysis for the dynamics.

At still lower temperatures (but above Tcrys), we expect
to see behavior characteristic of a one-component plasma
of density f . In the low-temperature correlated-fluid regime
of the three-dimensional (3D) one-component plasma, it has
been observed that the dynamics can be described as an

activated process with a relaxation time following an Arrhenius
temperature dependence [23]. One might anticipate a similar
behavior in two dimensions.

When vortices form a dilute gas, i.e., when the frustration
f → 0+, their motion is nonetheless thermally activated at
low temperatures because of the periodic pinning potential as-
sociated with the (essentially) ordered spins on the underlying
lattice [16,17,24]. This is analogous to the Peierls potential
for dislocations in a crystal. This activation energy has been
estimated by Lobb et al. [24] and found to be of the order of
0.19J for a square lattice: This activation barrier can therefore
be felt only if the system can be cooled in a disordered phase
to very low temperatures significantly below 0.19J . (Note that
Tcrys has been estimated to be around 0.045J [16,17].)

For a larger but still small density f , the one-component
plasma is in a fluid phase, and the activation barrier now also
involves the Coulomb interaction energy between vortices.
However, we expect the activation energy to be essentially
independent of f as in the dilute-gas regime. A crude estimate
of the activation energy is given by the change in the interaction
energy when displacing one vortex by a fraction of the typical
separation � = f −1/2. As � is large compared to the lattice
spacing, the Coulomb potential between the chosen vortex
and the others can be taken as logarithmic, and the change
in the interaction energy is then of O(1) irrespective of f .
[As an illustration, consider for simplicity three vortices at
a distance � from each other. The cost for one vertex to
pass, say, through the middle of the segment joining the two
other vertices to reach another equilibrium configuration is the
difference between −2πJ ln[�/(2a)] and −2πJ ln(�/a), i.e.,
4πJ ln(2).]

For even larger frustration f, � becomes of the order of the
lattice spacing. The system is denser and more akin to a liquid.
The activation energy should then be sensitive to the density
f and as in a simple liquid [25,26] increase with the density.
This will be discussed below.

One can summarize the predicted behavior for the temper-
ature dependence of the relaxation time τ (f,T ) in the weakly
frustrated XY model as follows:

(1) For Tvl(f ) � T � T ∗ with Tvl as a crossover tempera-
ture whose dependence on f is unknown,

τ (f,T ) ∼ f −1T −3/2. (10)

(2) For Tcrys < T � Tvl(f ), there is a vortex liquid regime in
which

τ (f,T ) ∼ τ0e
�0/T , (11)

with �0 ∼ J is a constant activation energy that is independent
of f in the limit of small frustration (and possibly increases
with f for large enough frustration) and τ0 is a T -independent
but possibly f -dependent elementary time scale. The first
regime is controlled by spin-wave kinetics, whereas the second
one is due to the activated motion of the irreducible frustration-
induced defects.

From the above predictions one can already see the
difference with the glass-forming behavior of supercooled
liquids, including that found in 2D curved space: No
generic super-Arrhenius temperature dependence is expected
for the uniformly frustrated XY model; quite the contrary,
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FIG. 1. Spin autocorrelation function Css(t) versus log10(t)
for the unfrustrated (f = 0) 2D XY model at tempera-
tures from T/J = 1 to 0.1 (from left to right: T/J =
1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1) for different system sizes
from L = 10 to L = 40. System size L = 34 includes one additional
curve at T/J = 0.13.

a sub-Arrhenius behavior should be observed in the first
temperature regime described above.

IV. SIMULATION RESULTS: THE UNFRUSTRATED CASE

The simulation results for the finite-size scaling of Css(t) in
the unfrustrated (f = 0) case are shown in Fig. 1 for several
system sizes from L = 10 to L = 40. Css(t) indeed exhibits
an exponential decay at long times and a power-law time
dependence at shorter times with an exponent that decreases
as T decreases. In Fig. 2 we show a log-log plot of Css for the
largest system size L = 40. The exponent in the power-law

FIG. 2. Log-log plot of Css(t) at short times (first regime of the
data in Fig. 1) for the unfrustrated (f = 0) 2D XY model with L =
40 at several temperatures: T/J = 0.1,0.2,0.3,0.4,0.5 (from top to
bottom). Inset: Extracted slope versus temperature. The dashed line
is the predicted behavior 1/(4π )(T/J ).

FIG. 3. Log-linear plot of Css(t) at long times (second regime of
the data in Fig. 1) for the unfrustrated (f = 0) 2D XY model with
L = 40 at several temperatures T/J = 0.2,0.3,0.4,0.5 from top to
bottom, showing the exponential decay at long times.

regime varies linearly with temperature and is quantitatively
compatible with the predicted value as shown in the inset of
the figure.

From the exponential behavior in the long-time regime (see
Fig. 3) we extract a relaxation time τ2(L,T ). (In practice we
evaluate the slope on the log-linear plot in Fig. 3 through a
least-squares fit and thereby obtain an estimate of (log10 e)/τ2.
In all cases the error bars from the fit are smaller than the
symbol size.) This relaxation time is plotted as a function of
inverse temperature for different values of the system size L

in Fig. 4. As shown on the log-log plot in the inset of Fig. 4, τ2

scales as a power-law T −y at low enough T with the exponent

FIG. 4. Arrhenius plot of the T dependence of the relaxation time,
i.e., log10 τ2 versus J/T , for the unfrustrated (f = 0) 2D XY model
for L = 10,20,34,40 (from bottom to top). Inset: Plot of log10 τ2

versus log10(J/T ) for T � 0.5J , showing a power-law behavior
compatible with T −3/2 (displayed as the dashed straight line). J/T ∗

denotes the BKT transition temperature.
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FIG. 5. Finite-size scaling in the unfrustrated (f = 0) 2D XY

model for L = 10,20,34,40: τ2 versus L2 for a low temperature of
T/J = 0.2.

y ≈ 1.5. Furthermore, at a fixed temperature we also find that
τ2 scales as L2 (see Fig. 5 for T = 0.2J ).

All these observations support the predictions presented in
the previous section.

V. SIMULATION RESULTS: THE FRUSTRATED CASE

We now present the results for the (equilibrium) dy-
namics of the frustrated model for five different values
of frustration: f = 5/(34)2, f = 10/(34)2, f = 1/34, 5/34,
and 13/34. This corresponds to typical distances between
irreducible vortices � = f −1/2 of � ≈ 15.2, � ≈ 10.8, � ≈
5.8, � ≈ 2.6, and � ≈ 1.6, respectively (in units of the lattice
spacing) and thus spans small to quite strong frustrations.
The largest frustration f = 13/34 was previously numerically
investigated by Kim and Lee [27] as an approximation to an
irrationally frustrated model with f = the golden mean, (3 −√

5)/2 [28]. Slow dynamics was found and claimed to be
analogous to the relaxation in supercooled liquids. This will
be discussed further below.

We note that the frustrated model in the range of the
temperature under study has a weak dependence on system
size, contrary to the unfrustrated model which is essentially
always critical at and below T ∗ (for a similar observation,
see Ref. [27]). The results shown here are for a 34 × 34
lattice [29].

A. Time-dependent correlation functions

The spin autocorrelation function Css(t) is displayed in
Fig. 6 as a function of the logarithm of time for the five
frustrations and a domain of temperature from T/J = 2 > T ∗
down to T/J = 0.1. As we have checked, the system stays
in the disordered phase over this whole temperature regime,
and the BKT transition is indeed avoided. Furthermore, as
anticipated from previous studies [16,17], there is no sign of
formation of an Abrikosov crystal of vortices. Equilibration
takes longer as the temperature decreases, and for temperatures
below T/J = 0.1 the system falls out of equilibrium on

FIG. 6. Spin autocorrelation function Css(t) versus log10(t)
for the frustrated 2D XY model at several temperatures from
T/J = 2 down to T/J = 0.1 (from left to right: T/J =
2.0,1.8,1.6, 1.4,1.2, 1.0,0.9, 0.8, 0.7,0.6,0.5, 0.4,0.3, 0.2,0.13, 0.1)
for five frustrations: f = 13/34, 5/34, 1/34, 10/(34)2, and 5/(34)2.
Frustration f = 13/34 includes one additional curve at a temperature
of T/J = 0.16.

the time scale of the simulation: The system then becomes
a “glass,” but we do not investigate this out-of-equilibrium
glassy phase.

The shape of the function Css(t) changes both as a function
of temperature and as a function of frustration. For the three
smallest frustrations, the behavior of Css(t) appears quite
similar to that of the finite-size system in the absence of
frustration as can be seen by comparing Fig. 6 with Fig. 1. This
is most visible in the short-time regime, before the appearance
of a knee. In the long-time regime, the frustrated cases
differ from the unfrustrated case; whereas the latter shows
simple exponential decay at long times, the former exhibit
stretched exponential behavior, Css(t) ∼ exp[−(t/τ )β] with
β < 1. However, the dependence of the stretching parameter
β on temperature is unanticipated as β appears to increase
with decreasing temperature from β � 0.5 around T/J = 1
to β ∼ 0.8 at the lowest temperatures. This is at odds with
what is found in supercooled liquids.

For the two largest frustrations f = 5/34 and f = 13/34,
the behavior of Css(t) changes from a simple or compressed
exponential dependence at high temperatures (T > T ∗) to a
two-step relaxation with the last stage being described by a
stretched exponential at low temperatures. This is similar to
what was observed in Refs. [27,33]. In these two cases and
contrary to what is observed for the smaller frustrations, the
stretching parameter decreases as temperature decreases, in
line with what is found in supercooled liquids: β goes from
around 1 at T/J = 1.2 to 0.7 at T/J = 0.1 for f = 5/34, and
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FIG. 7. Test of the so-called time-temperature superposition
principle: Same data as in Fig. 6 plotted versus the logarithm of the
scaled time t/τ (T ). The data are divided into “high T ” and “low T ”
as described in the text. Although superposition is never found for the
three smallest frustrations, it is observed approximately for the two
strongest at high temperatures and then violated at low temperatures.

β goes from around 1 at T/J = 0.9 to 0.6 at T/J = 0.13 for
f = 13/34 (this is compatible with the results of Ref. [33]).
Note however that the signature of the glassy regime in many
simple glass formers, namely, the presence of a well-developed
plateau separating two relaxation regimes, is not found in the
time-dependent correlation function of the present systems.

The different types of behavior for the evolution of the shape
of Css(t) with temperature are also illustrated by considering
plots where time t is rescaled by the relaxation time τ (T )
(extracted as discussed below): See Fig. 7. The collapse on a
single curve corresponds to the “time-temperature superposi-
tion.” We have divided the range of temperatures into “high
T ,” T/J = 0.5–1.0, and “low T ,” T/J = 0.1–0.4. The cutoff
between high and low T ’s was chosen such that high-T data
gave the best collapse. We see that the superposition principle
is never valid for the three smallest frustrations, no matter
the temperature range. For the two strongest frustrations,
time-temperature superposition is roughly obeyed at high T

where the relaxation is essentially exponential (as discussed
above, this is no longer true when going to temperatures around
and above 2T ∗) but is violated at low temperatures where the
relaxation is stretched and the stretching parameter decreases
with decreasing T . This latter pattern is more in line with what
is usually found in glass-forming liquids.

FIG. 8. Arrhenius plot of log10(τ ) versus J/T for f =
5/(34)2,10/(34)2,1/34,5/34,13/34 (from top to bottom). J/T ∗

denotes the BKT transition temperature.

B. Temperature dependence of the relaxation time

We have determined the relaxation time τ either as the
time at which the autocorrelation function is equal to 0.2
or as the parameter entering in the stretched-exponential
description of the long-time decay. Very similar values are
found through the two procedures, and below we illustrate
the trend with temperature by using the second prescription
(stretched-exponential fit).

The logarithm of the relaxation time τ is shown in Fig. 8 as
a function of J/T for the five frustrations. The relaxation time
increases with decreasing temperature, but the dependence is
quite different from what is seen for glass-forming liquids:
In place of a super-Arrhenius dependence with a positive
curvature on the Arrhenius plot, one first finds an opposite
trend with a rapid increase followed by some form of sub-
Arrhenius behavior at intermediate temperatures and finally,
when accessible, a low-T Arrhenius regime.

This behavior qualitatively corresponds to what we have
predicted in Sec. III. The increase followed by a sub-Arrhenius
dependence corresponds to the power-law temperature depen-
dence predicted by Eq. (10). To check this in more detail we
display a log-log plot of τ (T ) in Fig. 9. As shown in the figure,
the intermediate-temperature regime can indeed be fitted by
a power-law behavior, but we find that the effective exponent
extracted from the slope varies with frustration: It increases
from about 1.9 for the smallest frustration f = 5/(34)2, a
value that is not too far from the exponent 3/2 predicted
in Eq. (10), to 2.2–2.3 for the largest ones. (The results are
very similar when extracting τ from the other prescription:
The values of the effective exponent are within 5% of the
stretched-exponential results.)

We can rationalize the observed behavior as follows. For
the smallest frustrations the activation energy is likely small
enough that it is hard to disentangle Arrhenius from power-law
dependence over the temperature range under study: Recall
that the estimate of the activation energy [see Eq. (11)] when
f → 0+ is 0.19J so that the activated Arrhenius factor in
τ (T ) stays of O(1) for T � 0.1. Actually, a fit to the last three
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FIG. 9. Log-log plot of τ versus J/T . Same data as in Fig. 8:
f = 5/(34)2,10/(34)2,1/34,5/34,13/34 (from top to bottom). The
dashed lines are linear fits to the data with slopes given in the figure.
Inset: Zoom on the low-T region for the two largest frustrations f =
5/34 and f = 13/34. J/T ∗ denotes the BKT transition temperature.

points of the Arrhenius plot in Fig. 8, for 5 � J/T � 10, gives
an effective activation energy on the order of 0.24–0.28J for
the frustrations f � 1/34. For these frustrations it then seems
reasonable to assign the increase in the effective exponent of
the power-law fit to the presence of a very smooth crossover
to the Arrhenius regime.

Over the temperature range that we can access, i.e., T �
0.1J , a crossover to an Arrhenius behavior is unambiguously
detected only for the two largest frustrations f = 5/34 and
f = 13/34. This can be seen from the deviation from the
power-law fit at low T in the inset of Fig. 9, with a
crossover temperature Tvl around 0.2J [log10(J/T ) ≈ 0.7]
for f = 5/34 and around 0.3J [log10(J/T ) ≈ 0.5] for f =
13/34. The range over which the power-law fit is good
appears to extend to lower temperatures as f decreases, so
that the Arrhenius regime is too weak or out of reach for
f � 1/34.

Interestingly, the crossover Tvl does not seem to
correlate with the temperature at which virtually all thermal
defects have disappeared, and only the irreducible vortices
induced by the flux f remain. One can see from Fig. 10 that
this temperature is found rather around T ≈ 0.7J , irrespective
of the value of f . This temperature is better correlated with
the establishment of the power-law regime [see Fig. 9 with
log10(0.7) ≈ 0.155].

For the two largest frustrations we find, as argued in Sec. III,
that the activation energy increases with f : It is equal to 0.45J

for f = 5/34 and to 1.2J for f = 13/34 (and is larger than
the estimate for small frustrations with E ∼ 0.2–0.3J ). This
effect is similar to the increase of the activation energy found
in a liquid with increasing density. Similar values of the order
of J have also been obtained in rather strongly frustrated
XY models in the temperature regime below T/J ≈ 0.2. The
data of Kim and Lee [27] for f = 13/34 can be fitted below
T ≈ 0.25–0.2J with a low-temperature activation energy of
E ≈ 1.3J . (The authors try to describe the T dependence by
a super-Arrhenius dependence, but, as shown in Fig. 8, the

FIG. 10. Number of vortices N minus the number of irreducible
vortices N0 for f = 1/34,5/34,13/34 and for f = 0 with L =
40 (the number of irreducible vertices is 34, 170, 442, and 0,
respectively). At T ≈ 0.7J and below the thermal vortices have
virtually disappeared. T ∗/J denotes the BKT transition temperature.

super-Arrhenius character is not significant and tends to be
mixed with the crossover with the power-law regime.) In the
fully frustrated XY model (f = 1/2), Granato [34] observes
Arrhenius behavior with E ≈ 1.0J , and in a related model
of a curvature-induced frustrated XY model on a hyperbolic
lattice with f = −1/6 (see also below), Baek et al. [35] found
E ≈ 0.92J .

Note finally that the curves appear to converge at high
temperatures above T ∗: See Figs. 8 and 9. This is expected
from the picture of a frustrated model being like an unfrustrated
one in a finite-size L ∼ �. (For the two largest frustrations
there are small deviations for temperatures higher than those
shown in Figs. 8 and 9, but this merely reflects the fact that
the characteristic length �, which is then equal to 1.6 for f =
13/34 and 2.6 for f = 5/34, is so small that bulk behavior is
not recovered.)

C. Spin-wave kinetics versus activated vortex motion

We have computed the current autocorrelation function
Cjj (t) to see whether the dynamics of the currents couples dif-
ferently than that of the spins to the two relaxation mechanisms
associated with spin waves and with the frustration-induced
irreducible defects, respectively. One indeed expects that, in
the case of a complete decoupling between the spin waves
and the defects (as in the Villain model [36]), Cjj (t) would
mostly probe the activated motion of the irreducible vortices
rather than the spin-wave kinetics and could be significantly
slower than that of the spin autocorrelation function Css(t).
However, over the range of time and temperature that we
could access, this is not what we have observed. As illustrated
by the log-linear plot in Fig. 11 for f = 1/34 at T/J =
0.3, Cjj (t) rather has a more rapid decay than Css(t): This
is apparent at short times (say for t < 100 in Fig. 11), whereas
at longer times the two functions appear to decay more
in parallel with, however, a slightly faster rate for Cjj (t)
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FIG. 11. Comparison of the time-dependent spin and current
autocorrelation functions for f = 1/34 and T/J = 0.3. The latter
has a faster initial decay, but the relaxation times describing the final
relaxation stage are comparable.

(see also Fig. 12). The absence of any additional slower
relaxation in the current autocorrelation function is in line
with what was found in Ref. [27] where the time-dependent
vorticity autocorrelation function (directly sensitive to the
vortices) and the spin autocorrelation function show a similar
behavior.

To gain more insight, we have considered a system in which
the frustration-induced vortices are pinned. We do so for f =
1/34 at several temperatures, T/J = 0.7, 0.5, 0.3, for which
virtually all thermally induced vortices have disappeared (see
Fig. 10). We have then computed both the current and the spin
time-dependent autocorrelation functions.

In the top panel of Fig. 12 we compare Cjj (t) in the presence
and in the absence of a vortex pinning potential. The first
rapid decay is similar in the two cases but, quite notably, the
current autocorrelation function does not decay to zero in the
presence of pinned vortices, whereas it does in the unpinned
case. (The height of the plateau at long times increases roughly
linearly as temperature decreases as one would expect as
a result of the linear increase of the spin stiffness.) This
clearly indicates that the long-time decay of Cjj (t) in the
unpinned case is due to the motion of the frustration-induced
vortices. At the same time as shown in the bottom panel of
Fig. 12, the spin autocorrelation function Css(t) decays to
zero whether vortices are pinned or not. The initial part of
the decay is similar in the two cases, but the final, and main,
relaxation is significantly slower when the frustration-induced
defects are pinned. Pinning the vortices therefore slows down
the dynamics but does not prevent full relaxation of the
spins.

These observations seem to confirm that, in this temperature
range, which according to Fig. 9 corresponds to a power-law
temperature dependence of the relaxation time, the dynamics
of the currents is controlled by the motion of the frustration-
induced vortices, whereas that of the spins is dominated by
spin-wave kinetics. This makes the above finding about the
comparable decay rate at long times of Cjj (t) and Css(t) in the

FIG. 12. Effect of pinning the frustration-induced vortices in the
uniformly frustrated XY model for f = 1/34 at several temperatures,
T/J = 0.6,0.5,0.3: Time-dependent current (top) and spin (bottom)
autocorrelation functions in the system with and without vortex
pinning. The solid lines are with vortex pinning, and the dashed
lines are without vortex pinning.

absence of vortex pinning even more surprising. This appears
to imply that the two mechanisms at play, spin-wave kinetics
and irreducible-vortex motion, have similar time scales in the
temperature regime under consideration.

VI. DISCUSSION

We have found that the frustration-induced avoidance of
the BKT transition in a uniformly frustrated 2D XY model
generates slow relaxation and complex dynamics in the
system at temperatures near and below the avoided transition.
However, the characteristics of this relaxation slowdown are
qualitatively different than that found in glass-forming liquids.
In particular, the super-Arrhenius temperature dependence of
the relaxation time that is commonly observed in supercooled
liquids is not reproduced by the present model (see the
Introduction). Taken at face value, this means that small
frustration and avoided criticality are not sufficient to generate
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the phenomenology associated with the glass transition. More
ingredients are necessary.

Of special interest then is to contrast the properties of the 2D
uniformly frustrated XY model with those of atomic liquids
in 2D curved space. The scenario of “frustration-avoided
criticality” [7,8] is also realized by a one-component simple
atomic liquid in two-dimensional curved space. With decreas-
ing temperature, the liquid in Euclidean space easily goes
into an ordered or quasiordered phase with sixfold symmetry:
Depending on the nature of the interaction potential, the
liquid crystallizes in a hexagonal phase through one weakly
first-order transition or through a sequence of two continuous
or weakly first-order transitions separated by a narrow bond-
orientationally ordered hexatic phase [6,37]. However, curving
space, i.e., embedding the liquid in a 2D manifold of constant
curvature, thwarts crystallization. The prevalent local order has
a sixfold symmetry (hexatic or hexagonal order), but its spatial
extension is frustrated by the nonzero curvature [6,11], which
then plays the role of the flux f in the frustrated XY model.
The transition or sequence of ordering transitions at or around
a temperature T ∗ is avoided because curvature imposes an
irreducible density of topological defects, “disclinations” and
“dislocations” in the underlying hexatic/hexagonal medium:
The system stays in the liquid phase even below T ∗ and
only (possibly) encounters a defect-ordering phase transition
at a much lower temperature where the irreducible defects
form a lattice. One-component atomic liquids can therefore be
supercooled by applying curvature and can subsequently form
a glass.

These model glass-forming liquids in curved space have
been investigated by analytical and numerical means both for
constant negative curvature (the hyperbolic plane H 2 that is
of infinite extent and cannot be embedded in 3D Euclidean
space) [11,12] and for constant positive curvature (the more
familiar sphere S2 of finite extent) [38]. It was found that
crystallization is indeed avoided and that the dynamics of the
“supercooled” liquid slows down as one lowers the temper-
ature below T ∗ at constant curvature. However, contrary to
what we observe here for the uniformly frustrated XY model,
the relaxation time apparently displays a super-Arrhenius
temperature dependence. The “fragility,” which characterizes
how quickly the relaxation time and the transport coefficients
increase with decreasing temperature [39], changes with the
curvature, i.e., the frustration: The more frustrated, the less
fragile. Other characteristics of the relaxation slowdown in
glass-forming liquids, such as the marked nonexponential time
dependence of the relaxation functions and the increasingly
heterogeneous character of the dynamics with the coexistence
over an extended period of time of fast and slow regions [2,3],
are also observed.

Why are the dynamics of liquids in curved space and
uniformly frustrated XY systems so different despite the fact
that the spatial dimension of the manifold is the same? The
frustration f is of course not produced by the same mechanism
in the two cases, being associated with the curvature in the
former and with the flux in the latter. However, Baek et al.
[35] have studied, with Monte Carlo simulations, the XY

model on a hyperbolic lattice in which a uniform frustration
with f = −1/6 (corresponding to a typical frustration length
of � ≈ 2.45) is generated by the curvature. The model

shows no significant differences with the uniformly frustrated
XY model in flat space with a similar frustration length
(i.e., our study for the largest frustrations). In particular, it
does not display the super-Arrhenius behavior found for the
liquid.

The difference seems to rather stem from the nature of the
degrees of freedom: spins in one case, with phase fluctuations
(i.e., spin waves) and vortex fluctuations; particles in the other,
with both translational and bond-orientational fluctuations and
the associated defects, dislocations, and disclinations. Discli-
nations are akin to vortices in the XY model. Dislocations,
however, have been argued to play a crucial role in the
physics of liquids in curved space at low enough temperatures,
including the relaxation via thermal activation [12]. They have
no direct counterparts in the uniformly frustrated XY model
at low temperatures. It is then possible that the latter system
misses this important piece of liquid physics, the intertwining
of translational and rotational degrees of freedom, and displays
a relaxation slowdown associated with avoided criticality that
is too dominated by spin-wave kinetics to be a minimal model
for generic glass-forming liquids.

Further evidence pointing to a qualitative difference be-
tween the 2D uniformly frustrated XY model and 2D glass-
forming liquids comes from the role of “soft modes” in the
dynamics. The latter are the remains of the long-wavelength
excitations present in the absence of frustration, i.e., spin waves
in the XY model and density fluctuations in liquids, which have
a drastic influence on the ordering behavior in two-dimensional
systems [40]. These soft modes have recently been shown to
have a strong effect on the dynamics of 2D glass-forming
liquids [41–45]. However, they can be disentangled from the
more proper glassy component of the dynamics, which then
appears similar to what is generically found in 3D supercooled
liquids [42–45]. This is in contrast to what we have found here
in the case of the uniformly frustrated XY model.

Based on the above discussion, one may then wonder
whether there are generalizations of the 2D uniformly frus-
trated models that are better suited for describing glass-
forming liquids and yet still tractable, and, more generally,
what are the additional ingredients to be added to frustration-
avoided criticality to produce a minimal theory of glass
formation. Whether or not this is possible is yet to be seen. It
could be that a theory based on small frustration and avoided
criticality is not the best zeroth-order description of glass
formation. This discussion however goes beyond the scope
of this paper.

Finally, it is worth mentioning that the uniformly frustrated
2D XY model studied in this paper has experimental realiza-
tions either in the form of arrays of Josephson junctions or of
periodic networks of superconducting wires and that the relax-
ation of the system can therefore be accessed experimentally
as a function of both temperature and frustration. There have
been many studies of this kind in the past [46–52], focusing,
for instance, on the resistive behavior of the system, but most
of them focused on either the very low-temperature regime
where a transition to an ordered vortex phase may appear or
to the immediate vicinity of the BKT transition. A consistent
experimental description of the whole temperature range as a
function of frustration, i.e., magnetic flux, would therefore be
of great interest.
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