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The theory of Bloch electron dynamics for carriers in homogeneous electric and magnetic fields of arbitrary
time dependence is developed in the framework of the Liouville equation. The Wigner distribution function
(WDF) is determined from the single-particle density matrix in the ballistic regime, i.e., collision effects are
excluded. In the theory, the single-particle transport equation is established with the electric field described in the
vector potential gauge, and the magnetic field is treated in the symmetric gauge. No specific assumptions are made
concerning the form of the initial distribution in momentum or configuration space. The general approach is to
employ the accelerated Bloch state representation (ABR) as a basis so that the dependence upon the electric field,
including multiband Zener tunneling, is treated exactly. Further, in the formulation of the WDF, we transform
to a new set of variables so that the final WDF is gauge invariant and is expressed explicitly in terms of the
position, kinetic momentum, and time. The methodology for developing the WDF is illustrated by deriving the
exact WDF equation for free electrons in homogeneous electric and magnetic fields resulting in the same form
as given by the collisionless Boltzmann transport equation (BTE). The methodology is then extended to the case
of electrons described by an effective Hamiltonian corresponding to an arbitrary energy band function; the exact
WDF equation results for the effective Hamiltonian case are shown to approximate the free electron results when
taken to second order in the magnetic field. As a corollary, in these cases, it is shown that if the WDF is a wave
packet, then the time rate of change of the electron quasimomentum is given by the Lorentz force. In treating
the problem of Bloch electrons in a periodic potential in the presence of homogeneous electric and magnetic
fields, the methodology for deriving the WDF reveals a multiband character due to the inherent nature of the
Bloch states. The K0 representation of the Bloch envelope functions is employed to express the multiband WDF
in a useful form. In examining the single-band WDF, it is found that the collisionless WDF equation matches
the equivalent BTE to first order in the magnetic field. These results are necessarily extended to second order in
the magnetic field by employing a unitary transformation that diagonalizes the Hamiltonian using the ABR to
second order. The unitary transformation process includes a discussion of the multiband WDF transport analysis
and the identification of the combined Zener-magnetic-field induced tunneling.
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I. INTRODUCTION

A central problem in the theory of solids is the question of
how to construct the correct quantum-mechanical transport
equation for charge carriers under the influence of both
electric E and magnetic B fields. The first attempt at doing
so was provided by Bloch in his fundamental paper [1] on
the application of the quantum theory to transport phenomena.
Bloch showed that electrons moving in solids could be treated
as quasiparticles having an altered energy-momentum relation,
ε(k), different from the usual free-electron dispersion relation.
The corresponding velocity of the electron wave packet
constructed from a superposition of states from a single band
centered at wave vector k is given by

v(k) = h̄−1∇kε(k), (1)

*Author to whom correspondence should be addressed:
gjiafrate@ncsu.edu

which reduces to the usual expression for the velocity in the
free-electron limit. Bloch then argued that the correct transport
equation is the Boltzmann transport equation (BTE) where v is
given by Eq. (1) and the scattering rates are calculated quantum
mechanically using Fermi’s golden rule of time-dependent
perturbation theory. Thus the BTE for the single-particle
distribution function should be written as

∂f

∂t
+ v · ∇xf + h̄−1FL · ∇kf =

(
∂f

∂t

)
c

, (2)

where FL is given by the Lorentz force

FL = e

(
E + 1

c
v × B

)
(3)

and v is given in Eq. (1); also, e is the electron charge, c

is the speed of light, h̄ is the reduced Planck constant, t is
the time, x is the position vector, and (∂f/∂t)c represents the
collision integral. Equation (2) has been very successful in
providing the basic theoretical framework for analyzing low-
field galvanomagnetic effects in semiconductors [2], although
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its justification is based only on quasiclassical considerations,
i.e., it is not directly derived from the fundamental equations
of quantum mechanics, but rather from the employment of
classical dynamics applied to electron quasiparticles.

Nearly three decades after Bloch’s seminal work, the
quantum-mechanical derivation of Eq. (2) from the Liouville
equation for the density matrix was given by Kohn and
Luttinger [3] for electrons scattered by impurities in a weak
uniform electric field; this work was later extended to the
case of phonon scattering [4]. This density matrix approach
was generalized to higher electric fields by Levinson [5]
and by Barker [6], using the effective-mass approximation
with the resulting inclusion of the intracollisional field effect.
Subsequently, Krieger and Iafrate [7] have extended the
previous results of Levinson [5] and Calecki and Pottier
[8] to the multiband case for arbitrary electron energy
dispersion relations including the effects of Zener tunneling,
and demonstrated that the scattering matrix elements entering
the collision term are both field and time dependent.

The formal justification of Eq. (2) for nonzero magnetic
field has not been so straightforward. It is well known that even
for free electrons, the electron energy eigenvalues are quan-
tized in steps of h̄ωc (Landau levels) where ωc = eB/mc is the
electron cyclotron frequency. Also, in the high-field limit, i.e.,
h̄ωc � kBT (kB is the Boltzmann constant, T is ambient tem-
perature), the electron distribution function can be expected
to change significantly from one quantum level to the next
with experimentally detectable consequences. This is the well-
known origin of the de Haas-van Alphen oscillations in the
magnetic susceptibility of metals in zero electric fields. In an
effort to take into account the existence of quantizing magnetic
fields in the transport phenomena for free electrons, Adams and
Holstein [9] employed as a basis the harmonic oscillator states
corresponding to Landau levels. They then showed how the
current could be calculated from the Liouville equation in this
representation. This formulation significantly departs from the
quasiclassical description given by Eq. (2) in that the current
depends on the off-diagonal elements of the density matrix.

Rhetorically, the questions arise as to whether Eq. (2)
is valid for relatively high magnetic fields, and, further, is
it possible to derive a transport equation for a quantum
distribution function which is defined within a classical
phase space picture. In zero magnetic field, Krieger, Kiselev,
and Iafrate [10] made use of the effective Hamiltonian to
derive the Wigner distribution function (WDF) equation for a
random distribution of impurities. However, if one wants to go
beyond an effective Hamiltonian approach for Bloch electron
dynamics in the electric and magnetic fields so that both
interband tunneling and the proper field- and time-dependent
scattering matrix elements may be included as previously done
by Krieger and Iafrate [7] for the case of electric field alone,
then a description in terms of a classical phase space WDF
approach would be desirable since the exact solution to the
Schrödinger equation for a Bloch electron in electric and
magnetic fields is not known. Therefore we are motivated [11]
to address this subject.

In this paper, the theory of Bloch electron transport in
homogeneous electric and magnetic fields of arbitrary time
dependence is developed within the framework of the Liouville
equation. The phase space WDF is determined from the

single-particle density matrix within the ballistic regime, i.e.,
collision effects are excluded, although the methodology for
including such effects is straightforward. The electric field is
treated in the vector potential gauge and the magnetic field
is described in the symmetric gauge. No specific assumptions
are adopted concerning the form of the initial distribution in
momentum or configuration space. The general approach is
to utilize the accelerated Bloch state representation (ABR)
as a basis so that the dependence upon the electric field,
including the multiband Zener tunneling, is treated exactly. In
the formulation of the WDF, we transform to a set of variables
based on position, kinetic momentum, and time to ensure the
gauge invariance of the WDF in our problem.

In Sec. II, the methodology for developing the WDF is
described and illustrated by deriving the exact WDF equation
for free electrons in homogeneous electric and magnetic fields
resulting in the same form as given by the collisionless BTE. In
Sec. III, the methodology is extended to the case of electrons
described by an effective Hamiltonian corresponding to an
arbitrary energy-band function. The exact equation for the
WDF is obtained in this case and is shown to approximate
the free-electron results when taken to second order in the
magnetic field. As a corollary, it is shown that if the WDF of
Secs. II and III is a wave packet, then the time rate of change of
the electron quasimomentum is given by the Lorentz force. In
Sec. IV, the problem of Bloch electrons in a crystal potential
in the presence of electric and magnetic fields is treated. The
methodology for deriving the WDF reveals a multiband struc-
ture due to the inherent nature of the Bloch states. Use is made
of the so-called “K0 representation′′ outlined in Appendix
A to express the multiband WDF in a user friendly form.
In order to obtain results beyond first order in the magnetic
field, it is necessary to employ a unitary transformation that
diagonalizes the Hamiltonian using the ABR to second order
in the magnetic field. The unitary transformation process
results in an analysis for the single-band WDF equation and a
discussion of multiband transport properties leading to the
identification of a combined Zener magnetic field induced
tunneling. Results also include the explicit development of
the multiband WDF to first order in (K − K0).

II. DYNAMICS OF FREE ELECTRONS IN
HOMOGENEOUS ELECTRIC AND MAGNETIC FIELDS

It has been established previously [7] that given an arbitrary
initial distribution at t = t0, when the fields are turned on, the
equation for the density matrix operator f̂ (t) may be written
as

ih̄
∂f̂

∂t
− [Ĥ ,f̂ ] = Cs{f̂ (t)}, (4)

where Cs{f̂ (t)} involves the scattering Hamiltonian and Ĥ is
the Hamiltonian in the absence of scattering. Equation (4) was
first derived by Levinson [5] for the case in which electrons
initially in thermal equilibrium are interacting with phonons.
Our extension [7] of his result permits the use of Eq. (4)
even for initial nonequilibrium distributions and multiband
dynamics.

For free electrons interacting with spatially homogeneous
but arbitrarily time-dependent electric and magnetic fields the
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Hamiltonian is

Ĥ = 1

2m

[
p̂ − e

c
A(x,t)

]2
, (5)

where m is the free-electron mass and p̂ = −ih̄∇x is the oper-
ator of the electron momentum p. The vector potential A(x,t)
includes the homogeneous but arbitrarily time-dependent
external electric and magnetic field contributions as

A(x,t) = A1(t) + A2(x,t), (6)

with

A1(t) = −c

∫ t

0
E(t ′)dt ′ (7a)

and

A2(x,t) = 1
2 B(t) × x. (7b)

Consistent with Maxwell’s equations, we find that Eq. (6)
yields

−1

c

∂A(x,t)

∂t
= E(t) − 1

2c
Ḃ(t) × x ≡ E(x,t) (8a)

and

∇x × A(x,t) = B(t). (8b)

In E(x,t) of Eq. (8a), the first term is the external electric field,
and the second term is the induced electric field resulting from
Faraday’s law; if B(t) were assumed to be constant, then the
induced term would be non-existent and E(x,t) reduces to E(t)
alone. Note that taking the “curl” of E(x,t) in Eq. (8a) results
in

∇x × E = −1

c

∂B
∂t

,

so that the vector potential of Eq. (6) yields the Maxwell
equation for Faraday’s law.

In using Eqs. (5) and (6) and expanding the kinetic term
while noting that p̂ and A2 commute, we see that

Ĥ = Ĥ0 − e

mc
A2 ·

(
p̂ − e

c
A1

)
+ e2

2mc2
A2

2 ≡ Ĥ0 + V1 + V2,

(9)

where the Hamiltonian

Ĥ0 = 1

2m

[
p̂ − e

c
A1(t)

]2
(10)

describes the free electron in the external electric field alone,
and the next two terms in Eq. (9), V1 and V2, are first and
second order in the magnetic field.

To adopt an appropriate basis set with which to evaluate
Eq. (4), we see in Eqs. (9) and (10) that a natural basis to
proceed would be the accelerated state representation which
are the instantaneous eigenstates of Ĥ0 in Eq. (10). As such,
the accelerated states are

ψK(x) = �−1/2eiK·x ≡ |K〉, (11a)

with eigenvalues ε0(k(t)) = h̄2k2(t)/2m, and where k(t) is the
time-dependent wave vector due to acceleration by the electric

field,

k(t) = K − e

h̄c
A1(t) ≡ K + kc(t), (11b)

with kc(t) = (e/h̄)
∫ t

0 E(t ′)dt ′. Here, � is the normalization
volume, k = |k|, and K is chosen such that ψK(x) satisfies
periodic boundary conditions. It is noted that the choice of
|K〉 as a basis allows us to work in a representation in which
the electron motion is indexed by the momentum p = h̄K;
if we had chosen to work in the representation based on the
instantaneous eigenstates of the full Hamiltonian in Eq. (5),
we would then have oscillator states which are inconvenient in
that they are not eigenfunctions of the momentum operator.

In obtaining the WDF for the density matrix, we note that
the WDF, f (x,p), is fundamentally defined [12] as the off-
diagonal matrix elements of the density matrix operator, f̂ (t),
in Eq. (4). As such,

f (x,p) = (2πh̄)−3
∫

dy〈x − y/2|f̂ |x + y/2〉eip·y/h̄. (12)

Then, for the complete set of basis states defined in Eq. (11a),
we see that Eq. (12) can be expressed as

f (x,p) =
∑
K1K2

〈K1|f̂ |K2〉(2πh̄)−3
∫

dyψ∗
K2

(x + y/2)

×ψK1 (x − y/2)eip·y/h̄. (13)

Using the explicit spectral dependence for ψK(x) in the integral
over y of Eq. (13), and utilizing (2πh̄)−3

∫
dyeip·y/h̄ = δ(p),

we obtain

f (x,p) = �−1
∑
K1K2

ei(K1−K2)·x〈K1|f̂ |K2〉

× δ[p − h̄(K1 + K2)/2]. (14)

Letting

K1 = K + u
2
, K2 = K − u

2
(15)

in Eq. (14), the WDF becomes

f (x,p) =
∑

K

f 0(x,K)δ(p − h̄K) = f 0(x,K)|p=h̄K, (16a)

where

f 0(x,K) = �−1
∑

u

〈
K + u

2

∣∣∣f̂ ∣∣∣K − u
2

〉
eiu·x; (16b)

here, p = h̄K, and 〈K1|f̂ |K2〉 are the momentum matrix
elements of the density matrix operator in Eq. (4) evaluated at
K1,K2 of Eq. (15). Finally, in Eq. (16b), we make the change
of variables [13]

k(x,t) = K − e

h̄c
A(x,t), (17)

where the Jacobian of the transformation from k to K is unity,
and where h̄k(x,t) is the (x,t)-dependent kinetic momentum;
then we obtain

F (x,k,t) ≡ f (x,K,t), (18)

the gauge invariant WDF [5,13] in the k representation for an
electron subjected to the vector potential A(x,t) of Eq. (6).
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For the Hamiltonian of Eq. (9), we determine the equation of
motion for the WDF as outlined in Eqs. (13)–(18) considering,
for simplicity, the case of ballistic or collisionless transport for
which Cs{f̂ } ≡ 0 in Eq. (4). Then, we basically start with

ih̄〈K1|∂f̂

∂t
|K2〉 = 〈K1|[Ĥ ,f̂ ]|K2〉. (19)

Since |K〉 is independent of time, we note that
〈K1|∂f̂ /∂t |K2〉 = ∂〈K1|f̂ |K2〉/∂t ; as well the Hamiltonian
in Eq. (9) is reexpressed as

Ĥ = Ĥ0 − e

2mc

(
p̂ − e

c
A1

)
· (B × x) + e2

8mc2
(B × x)2.

(20)

Using the vector identity a · (b × c) = (a × b) · c in the second
term, we can write

Ĥ = Ĥ0 − e

2mc

[(
p̂ − e

c
A1

)
× B

]
· x + e2

8mc2
(B × x)2.

(21)

Noting that (p̂ − (e/c)A1)|K〉 = (h̄K − (e/c)A1)|K〉 and
x|K〉 = 1

i
∇K|K〉, we obtain the term on the right-hand side

of Eq. (19) as

〈K1|[Ĥ ,f̂ ]|K2〉 = [ε+(K1) − ε−(K2)]f (K1,K2,t), (22)

where

ε(K)± = 1

2m

{(
h̄K − e

c
A1

)2
± e

c

[(
h̄K−e

c
A1

)
×B
]

· 1

i
∇K

+ e2

4c2

(
B × 1

i
∇K

)2}
and f (K1,K2,t) ≡ 〈K1|f̂ (t)|K2〉.

Next, we change the variables as prescribed by Eq. (15)
while noting that

∇K1f (K1,K2,t) =
(

1

2
∇K + ∇u

)
f

(
K + u

2
,K − u

2
,t

)
,

∇K2f (K1,K2,t) =
(

1

2
∇K − ∇u

)
f

(
K + u

2
,K − u

2
,t

)
.

(23)

Thus, using (15) and (23), Eq. (22) becomes

〈
K + u

2

∣∣∣∣[Ĥ ,f̂ ]

∣∣∣∣K − u
2

〉
= 1

m

{(
h̄K − e

c
A1

)
· h̄u + e

2c

[(
h̄K − e

c
A1

)
× B

]
· 1

i
∇K + e

2c
(h̄u × B) · 1

i
∇u

+ e2

4c2

(
B × 1

i
∇K

)
·
(

B × 1

i
∇u

)}
f

(
K + u

2
,K − u

2
,t

)
. (24)

Noting that (B × ∇K) · (B × ∇u) = [(B × ∇u) × B] · ∇K and (u × B) · ∇u = u · (B × ∇u), then Eq. (24) becomes〈
K + u

2

∣∣∣∣[Ĥ ,f̂ ]

∣∣∣∣K − u
2

〉
= 1

m

{
h̄u ·

(
h̄K − e

c
A1 + e

2c
B × 1

i
∇u

)
+ e

2c

[(
h̄K − e

c
A1 + e

2c
B × 1

i
∇u

)
× B

]
· 1

i
∇K

}
× f

(
K + u

2
,K − u

2
,t

)
. (25)

In following the definition of the WDF in (16a) and (16b), we multiply Eq. (25) by eiu·x/� and sum over u; we then integrate
the ∇u term by parts, noting that

∑
u eiu·xi∇uf (K,u,t) =∑u xeiu·xf (K,u,t) where the surface term goes to zero as u tends to

infinity; we also use ueiu·x = −i∇xe
iu·x and ∇x · (B × x) = 0 to obtain for Eq. (25),

�−1
∑

u

〈
K + u

2

∣∣∣∣[Ĥ ,f̂ ]

∣∣∣∣K − u
2

〉
eiu·x

= h̄

m

[
h̄K − e

c
A(x,t)

]
· 1

i
∇xf (x,K,t) +

{
e

2mc

[
h̄K − e

c
A(x,t)

]
× B

}
· 1

i
∇Kf (x,K,t). (26)

For ih̄(∂f̂ /∂t) in Eq. (4), we obtain, using (16a), that

�−1
∑

u

ih̄

〈
K + u

2

∣∣∣∣∂f̂

∂t

∣∣∣∣K − u
2

〉
eiu·x = ih̄

∂f (x,K,t)

∂t
. (27)

Thus the WDF in variables (x,K,t) is determined by the equation

�−1
∑

u

〈
K + u

2

∣∣∣∣ih̄ ∂f̂

∂t
− [Ĥ ,f̂ ]

∣∣∣∣K − u
2

〉
eiu·x

≡ ih̄

{
∂

∂t
+ 1

m

[
h̄K − e

c
A(x,t)

]
· ∇x + e

2h̄mc

[(
h̄K − e

c
A(x,t)

)
× B

]
· ∇K

}
f (x,K,t) = 0. (28)

144303-4



QUANTUM TRANSPORT AND THE WIGNER DISTRIBUTION . . . PHYSICAL REVIEW B 96, 144303 (2017)

Lastly, we change variables in Eq. (28) as noted in (17) and
(18) and use the following transformation properties:

∂f

∂t
= ∂F

∂t
+ ∇kF · k̇ = ∂F

∂t
+ h̄−1eE(x,t) · ∇kF, (29a)

∇Kf (x,K,t) = ∇kF (x,k,t), (29b)

and

∇xi
f = ∇xi

F + ∂F

∂k
· ∂k
∂xi

= ∇xi
F + e

2h̄c
(B × ∇kF )i .

(29c)

Therefore the equation for the WDF from Eq. (28) becomes
∂

∂t
F (x,k,t) + v(k) · ∇xF (x,k,t)

+ h̄−1

[
eE(x,t) + e

c
v(k) × B

]
· ∇kF (x,k,t) = 0, (30)

where v(k) = h̄k/m and E(x,t) is given in Eq. (8a). Equation
(30) for F (x,k,t) is the exact equation for the collisionless
WDF obtained with the Hamiltonian of Eq. (9); it is also the
identical form of the collisionless BTE for the same problem.
We also note here that the change of variables from K to
k(x,t) = K − (e/h̄c)A(x,t) has introduced the total E(x,t)
from Eq. (8a) into the gauge invariant form of the WDF through
the transformations of Eq. (29a).

For simplicity in our continued analysis, we hereafter
consider B to be a constant so that the Ḃ(t) term vanishes
in Eq. (8a) and thus E(x,t) ≡ E(t), the external electric field
alone. However, if we had chosen to assume that B were time
dependent, then E(t) would have to be replaced by E(x,t) in
the final results in accordance with Eq. (29a).

We point out that Levinson [5] asserts Eq. (30) [for B
constant and therefore E = E(t)] without proof. He also only
considers the case in which the system is initially in thermal
equilibrium, and under such conditions, the WDF is a function
of (k,t) alone so that the term v · ∇xF (x,k,t) in Eq. (30) is
missing. In our derivation, the initial condition F (x,k,t = t0)
is completely arbitrary for an admissible Wigner distribution
function, so we can discuss the motion of wave packets in the
presence of arbitrarily large electric and magnetic fields in the
absence of collisions. This follows if one multiplies Eq. (30)
[with B assumed to be constant so that E = E(t)] by ki(t), the
ith component of k(t), and integrate by parts to get

d

dt
〈h̄ki〉 =

∫ (
eE + e

c
v × B

)
i

F (x,k,t)dxdk, (31)

where

〈h̄ki〉 = h̄

∫
kiF (x,k,t)dxdk.

Thus, if the function

F (k,t) =
∫

F (x,k,t)dx

is peaked about some k(t), then it follows from 〈h̄ki〉 that

h̄
d

dt
k(t) = eE(t) + e

c
v(k(t)) × B (32)

for arbitrary strengths of E and B. Thus not only is the
classical phase space description possible, but the results are
exactly the same as those given by the quasiclassical approach.

However, unlike the Boltzmann distribution function, the
WDF, F (x,k,t), need not be positive everywhere; its exact
structure depends on the initial conditions, and F (x,k,t) may
be negative in certain regions of configuration and momentum
space due to quantum effects.

III. EXTENSION TO ELECTRONS IN SOLIDS DESCRIBED
BY AN EFFECTIVE HAMILTONIAN

We now proceed as described in Sec. II, except here the
Hamiltonian of Eq. (5) is replaced by the effective Hamiltonian

Ĥ = ε([p̂ − (e/c)A(x,t)]/h̄), (33)

and the zero magnetic field Hamiltonian is replaced by

Ĥ0 = ε([p̂ − (e/c)A1(t)]/h̄). (34)

Here, it is assumed that ε(K) is a physical single energy
band and therefore Ĥ comes from a properly symmetrized
Hermitian operator. We once again make use of the instanta-
neous eigenstates |K〉 of Ĥ0 given by

Ĥ0|K〉 = ε(K − (e/h̄c)A1(t))|K〉, (35)

with eigenvalues ε(K − (e/h̄c)A1(t)), which are still given
by |K〉 of Eq. (11a); they also satisfy the properties
p̂|K〉 = h̄K|K〉 and 1

i
∇K|K〉 = x|K〉 so that A(x,t)|K〉 =

A( 1
i
∇K,t)|K〉. Thus, following the previous prescription for

calculating the WDF from Eq. (19) for Ĥ in Eq. (33), we have

〈K1|[Ĥ ,f̂ ]|K2〉f (K1,K2,t)

= [ε+(K1) − ε−(K2)]f (K1,K2,t), (36)

where

ε±(K) = ε

[
K + kc(t) ± e

2h̄c

(
B × 1

i
∇K

)]
and kc(t) is defined in Eq. (11b). Changing variables from K1,2

to K ± u/2 and using (23), we obtain〈
K + u

2

∣∣∣∣[Ĥ ,f̂ ]

∣∣∣∣K − u
2

〉
=
[
ε+

(
K + u

2

)
− ε−

(
K − u

2

)]
× f

(
K + u

2
,K − u

2
,t

)
, (37a)

where

ε±

(
K ± u

2

)
= ε

[
K±u

2
+kc(t)± e

2h̄c
B×1

i

(
1

2
∇K±∇u

)]
.

We multiply Eq. (37a) by eiu·x/� and sum over u; then using
the relation ueiu·x = 1

i
∇xe

iu·x and integrating over u by parts,
we obtain

�−1
∑

u

eiu·x
〈
K + u

2
|[Ĥ ,f̂ ]|K − u

2

〉
=
{
ε

[
K − e

h̄c
A + 1

2i

(
∇x + e

2h̄c
B × ∇K

)]
− ε

[
K − e

h̄c
A − 1

2i

(
∇x + e

2h̄c
B × ∇K

)]}
f (x,K,t).

(37b)
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Again, changing variables to k and F (x,k,t) as in Eqs. (17)
and (18) and using the relations (29a)–(29c), we get

�−1
∑

u

eiu·x
〈
K + u

2

∣∣∣∣[Ĥ ,f̂ ]

∣∣∣∣K − u
2

〉
= {ε(k + q) − ε(k − q)}F (x,k,t), (38)

where q = 1
2i

(∇x + e
h̄c

B × ∇k) and ∇x commutes with ∇k.
Now, it follows from Eqs. (19) and (38) as well as from the
use of Eq. (29a) that the equation for the WDF takes the form

ih̄

{
∂

∂t
+ h̄−1eE(t) · ∇k

}
F (x,k,t)

= {ε(k + q) − ε(k − q)}F (x,k,t). (39)

This is the exact equation for the collisionless quantum
transport WDF for the effective Hamiltonian in homogeneous
electric and magnetic fields. In noting that for a single band,
the periodic function ε(k) can be represented by the Fourier
expansion

ε(k) =
∑

l

ε(l) eik·l,

so that ε(k ± q) becomes

ε(k ± q) =
∑

l

ε(l) ei(k±q)·l;

we can then write the energy difference on the right-hand side
of Eq. (39) as

ε(k + q) − ε(k − q) = 2i
∑

l

ε(l) eik·l sin(q · l)

	 2h̄v(k) · q + O(q3), (40)

where v(k) = h̄−1∇kε(k). Making use of (40) in (39) results in{
∂

∂t
+ h̄−1eE(t) · ∇k

}
F (x,k,t)

= −v(k) ·
(

∇x + e

h̄c
B × ∇k

)
F (x,k,t) + O(B3).

Then to O(B2), the equation to the WDF is found to be

∂

∂t
F (x,k,t) + v(k) · ∇xF (x,k,t)

+ h̄−1

[
eE(t) + e

c
(v × B)

]
· ∇kF (x,k,t) = 0, (41)

where we have used the relations v · (B × ∇k)F = (v × B) ·
∇kF and (B × ∇k) · v = 0.

Equation (41) is the analog of Eq. (30) obtained for free
electrons. The major difference between the two results is
that for free electrons with v = h̄k/m, the derived quantum
transport equation for the WDF is exact, whereas for the
general energy-band function ε(k), the result is approximate,
good to order O(B2), and where v = h̄−1∇kε(k). Also, in
keeping with the discussion in Sec. II on the WDF as a wave
packet, again with no scattering, the rate of change of the
electron quasimomentum is given by the Lorentz force even
to O(B3), since the term of O(B3) (if it is present) in Eq. (41)
does not contribute to the d〈h̄k〉/dt .

IV. BLOCH ELECTRONS IN HOMOGENEOUS ELECTRIC
AND MAGNETIC FIELDS; SINGLE-BAND RESULTS

AND MULTI-BAND CONSIDERATIONS

A. Development of multiband Wigner distribution function

For Bloch electrons interacting with spatially homoge-
neous, but arbitrarily time-dependent, electric and magnetic
fields, the Hamiltonian is

Ĥ = 1

2m

[
p̂ − e

c
A(x,t)

]2

+ Vc(x), (42)

where Vc(x) is the periodic potential of the crystal. The
vector potential A(x,t) includes the electric and magnetic
field contributions given in Eqs. (6)–(7b). Thus, as in Eq. (9),
expanding the kinetic term while noting that p̂ and A2

commute, we arrive at

Ĥ = Ĥ0 − e

mc
A2 ·

(
p̂ − e

c
A1

)
+ e2

2mc2
A2

2, (43a)

where the Hamiltonian term

Ĥ0 = 1

2m

[
p̂ − e

c
A1(t)

]2

+ Vc(x) (43b)

describes the Bloch electron in the electric field alone, and the
next two terms are first and second order in the magnetic field.
[Here, we note that the energy shifts due to the two magnetic
field terms are generally small compared to the Ĥ0 term for
applicable laboratory field strengths; therefore, throughout this
discourse, we consider only changes induced by the magnetic
field to second order, although higher orders can be necessarily
obtained with effort (see J. Callaway [20]).]

To adopt an appropriate basis set with which to evaluate
Eq. (4), we see in Eqs. (43a) and (43b) that a natural basis with
which to proceed here is the ABR, which are the instantaneous
eigenstates of Ĥ0,

ψnK(x,t) = �−1/2eiK·xunk(t)(x) ≡ |n,K; t〉, (44)

with instantaneous Bloch eigenvalues ε0
n(k(t)) = ε0

nk and k(t)
defined in Eq. (11b). Following the WDF analysis from
Eqs. (12)–(14), we insert the complete set of ABR states of
Eq. (44) into Eq. (12) to obtain

f (x,p,t) =
∑

n1K1,n2K2

〈n1,K1; t |f̂ |n2,K2; t〉Tn2K2n1K1 (x,p,t),

Tn2K2n1K1 (x,p,t) = (2πh̄)−3
∫

dyψ∗
n2K2

(
x + y

2
,t

)
×ψn1K1

(
x − y

2
,t

)
eip·y/h̄; (45)

the Tn2K2n1K1 (x,p,t) are commonly referred to as the transition
functions [14], and they form a complete orthonormal set
in phase space. The general properties of Tn2K2n1K1 (x,p,t)
are reviewed by Moyal [14]. The function f (x,p,t) can be
presented in the form of a multiband WDF [15]

f (x,p,t) =
∑
n1n2

fn1n2 (x,p,t), (46a)
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where the multiband components are

fn1n2 (x,p,t) =
∑
K1K2

〈n1,K1; t |f̂ |n2,K2; t〉Tn2K2n1K1 (x,p,t).

(46b)

Using the explicit form of Eq. (44) for ψnK and using K1,2

as defined in Eq. (15), the multiband components can be
expressed in a form comparable to Eqs. (16a) and (16b) as

fn1n2 (x,p,t) = �−1
∑
Ku

eiu·x
〈
n1,K + u

2
; t |f̂ |n2,K − u

2
; t

〉
× In2n1 (x,p; u,K,t), (47a)

where

In2n1 (x,p; u,K,t) = (2πh̄)−3
∫

dyu∗
n2,k(t)−u/2

(
x + y

2

)
× un1,k(t)+u/2

(
x − y

2

)
ei(p−h̄K)·y/h̄.

(47b)

Unlike the WDF of previous cases discussed in Secs. II
and III, namely, Eqs. (16a) and (16b), which were based on
plane-wave instantaneous eigenstates, the WDF of Eq. (47a)
is more complex in that it reflects the multiband character of
the ABR, including the explicit time dependence contained
in the cellular components of the Bloch wave functions.
Therefore fn1n2 (x,p,t) of Eq. (47a) generally manifests its time
dependence from both the matrix elements of f̂ and In2n1 of
Eq. (47b). It follows from Eq. (47a) that the time derivative
of fn1n2 (x,p,t) will depend on the product derivative of
〈n1,K + u/2; t |f̂ |n2,K − u/2; t〉 and In2n1 . The time evolution
of the matrix elements of f̂ is governed by the Liouville
equation as discussed in Secs. II and III and will be continued
further in this section; the derivative of In2n1 will depend
upon the time derivatives of the cellular Bloch functions,
and using i∇kunk(x) =∑n′ 
=n Rn′n(k)un′k(x), where Rn′n(k)
is given in Eq. (53b), we see that ∂In2n1/∂t = k̇ · ∇kIn2n1

promotes tunneling to states beyond n1 and n2. Gener-
ally, this makes the time development of fn1n2 (x,p,t) quite
complex.

Here, in our approach, we unfold fn1n2 (x,p,t) of Eqs. (47a)
and (47b) so as to reflect In2n1 in a relatively useful fashion. In
this regard, use is made of the well-known fact [16] that {unK},
for any K = K0, span a complete set of orthonormal functions
for any function periodic in the unit cell. Therefore we expand
unK(x) in terms of the set {unK0 (x)} in the K0 representation
[17] as

unK(x) =
∑
n′

cnn′ (K − K0)un′K0 (x), (48)

where the coefficients cnn′ (K − K0) are determined by the
method described in Appendix A, and the K0 values are
chosen conveniently to suit the problem at hand (usually, K0

is chosen to be zero thus defining the band edges). Using
this representation, we can express fn1n2 (x,p,t) of Eq. (47a)

as

fn1n2 (x,p,t) =
∑

K

∑
n′n′′

In′′n′(x,p; K,K0)�−1
∑

u

c∗
n2n′′

×
(

k(t) − K0 − u
2

)
cn1n′

(
k(t) − K0 + u

2

)
×
〈
n1,K + u

2
; t |f̂ |n2,K − u

2
; t

〉
eiu·x; (49a)

here,

In′′n′ (x,p; K,K0)

= (2πh̄)−3
∫

�c

u∗
n′′K0

(
x + y

2

)
un′K0

(
x − y

2

)
× ei(p−h̄K)·y/h̄dy, (49b)

independent of time, and k(t) is defined in Eq. (11b). This
is exact provided we know the exact solution to the matrix
equation for cnn′ (K − K0) in Appendix A, Eq. (A8a). Using
ueiu·x = −i∇xe

iu·x, we note that

c∗
n2n′′

(
k(t) − K0 − u

2

)
cn1n′

(
k(t) − K0 + u

2

)
eiu·x

= ĉ∗
n2n′′

(
k(t) − K0 + i

2
∇x

)
ĉn1n′

(
k(t) − K0 − i

2
∇x

)
× eiu·x; (49c)

then, fn1n2 (x,p,t) in Eq. (49a) can be expressed as

fn1n2 (x,p,t) =
∑

K

	̂n1n2 (x,p; k(t),K0,i∇x)f 0
n1n2

(x,K,t),

(50a)

where

f 0
n1n2

(x,K,t) = �−1
∑

u

〈
n1,K + u

2
; t |f̂ |n2,K − u

2
; t

〉
eiu·x

(50b)

and

	̂n1n2 (x,p; k(t),K0,i∇x)

=
∑
n′n′′

In′′n′(x,p; K,K0)ĉ∗
n2n′′

(
k(t) − K0 + i

2
∇x

)

× ĉn1n′

(
k(t) − K0 − i

2
∇x

)
. (50c)

We see that fn1n2 (x,p,t) of Eqs. (50a) and (50b) exhibits a com-
parable form to the plane-wave based f (x,p,t) of Eqs. (16a)
and (16b), although here, 	̂n1n2 reflects the role of interband
cellular Bloch envelope components and f 0

n1n2
(x,K,t) serves

as the reduced multiband WDF. It is seen that the exact
multiband WDF is composed of a momentum superposition
of f 0

n1n2
(x,K,t) and the coefficient 	̂n1n2 of Eq. (50c), where

f 0
n1n2

(x,K,t) is the multiband generalization of the plane-wave
WDF found in Eqs. (16a) and (16b). fn1n2 (x,p,t) in Eq. (50a)
is a key representation of the multiband components of the
WDF for Bloch dynamics in the ABR representation, and
shows the importance of the so-called reduced multiband
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WDF, f 0
n1n2

(x,K,t). 	̂n1n2 in Eq. (50c), which is determined
from the K0 representation, fully accounts for the presence
of In2n1 in Eq. (47a); therefore the WDF dependence on the
complete electric and magnetic field will be reflected in the
quantum behavior of f 0

n1n2
of Eq. (50b).

Finally, from the definition of In′′n′ in Eq. (49b), we note
that in expressing unK0 (x ± y/2) as a Taylor series in (±y/2),
we can therefore express the integrand of In′′n′ as a term by
term explicit function of y and then integrate over dy to obtain
an infinite series of delta functions in δ(p − h̄K) as

In′′n′ (x,p; K,K0) =
∞∑

n=0

(
ih̄

2

)n n∑
m=0

(−1)n−m

m!(n − m)!

× [(∇p · ∇x)n−mu∗
n′′K0

(x)
][

(∇p · ∇x)m

× un′K0 (x)
]
δ(p − h̄K).

This becomes

In′′n′(x,p; K,K0) = I (0)
n′′n′(x,K0)δ(p − h̄K)+I(1)

n′′n′(x,K0)

· ∇Kδ(p − h̄K) + . . . , (50d)

where

I (0)
n′′n′(x,K0) = u∗

n′′K0
(x)un′K0 (x),

I (1)
n′′n′(x,K0) = 1

2i

[
u∗

n′′K0
(x)∇xun′K0 (x) − un′K0 (x)∇xu

∗
n′′K0

(x)
]
,

and so forth. Thus, using In′′n′(x,p; K,K0) of Eq. (50d) in
Eq. (50c) allows for the integral over K in Eq. (50a) to be
evaluated directly. In Sec. IV F, 	̂n1n2 (x,p; k(t),K0,i∇x) of
Eq. (50c) is established explicitly to first order in (K−K0)
[Eq. (87)] although methodology is outlined for easily extend-
ing the approximation to higher orders; all coefficients are
determined at a specific choice of K0.

It follows from Eq. (50a) that the integration of the time
derivative of fn1n2 (x,p,t) allows for the introduction of initial
conditions so that we can write

fn1n2 (x,p,t) = fn1n2 (x,p,t0) +
∑

K

[
	̂n1n2 (x,p; k(t),K0,i∇x)

× f 0
n1n2

(x,K,t) − 	̂n1n2 (x,p; K,K0,i∇x)

× f 0
n1n2

(x,K,t0)
]
. (51a)

Thus fn1n2 (x,p,t), as expressed in Eq. (51a), is the complete
formal result for the multiband WDF in terms of the reduced
multiband WDF, f 0

n1n2
(x,K,t), the operator coefficient 	̂n1n2 ,

and their initial conditions. Further, to transform fn1n2 (x,p,t)
of Eq. (51a) to a gauge invariant form as was done in Secs. II
and III, we make use of the transformation of variables from
K to k(x,t) with f 0(x,K,t) = F 0(x,k,t) as noted in Eqs. (17)
and (18), and then make use of transformations specified in
Eqs. (29a)–(29c) to find that(

K + kc(t) − K0 ± i

2
∇x

)
f 0

n1n2
(x,K,t)

→
[

k(x,t) − K0 ± i

2
∇x + e

h̄c
A2

(
x ± i

2
∇k

)]
×F 0

n1n2
(x,k,t).

Then, Eq. (51a) becomes

fn1n2 (x,p,t) = fn1n2 (x,p,t0)

+
∑

k

[
	̃n1n2 (x,p; k(x,t),K0,i∇x)F 0

n1n2
(x,k,t)

− 	̃n1n2 (x,p; k(x,t0),K0,i∇x)F 0
n1n2

(x,k,t0)
]
,

(51b)

where

	̃n1n2 (x,p; k(x,t),K0,i∇x)

=
∑
n′n′′

In′′n′

(
x,p − e

c
A − h̄k,K0

)

× ĉ∗
n2n′′

(
k(x,t) − K0 + i

2
∇x + e

h̄c
A2

(
x + i

2
∇k

))
× ĉn1n′

(
k(x,t) − K0 − i

2
∇k + e

h̄c
A2

(
x − i

2
∇k

))
.

(51c)

B. The reduced Wigner distribution function to O(B2)

Given the fundamental role of f 0
n1n2

(x,K,t) as noted in
Eqs. (50a) and (50b), we now proceed by treating the matrix
elements of f̂ and f 0

n1n2
(x,K,t) as the essential components

in examining the WDF in Bloch electron analysis. In order to
obtain the lowest order, nontrivial single-band WDF using the
ABR, we assume that the fields |E| and |B| are sufficiently
small so that we neglect the interband matrix elements of
f 0

n1n2
. Thus we consider the matrix elements of Eq. (4) [with

Cs{f̂ } = 0] as

ih̄〈n,K1; t |∂f̂

∂t
|n,K2; t〉 = 〈n,K1; t |[Ĥ ,f̂ ]|n,K2; t〉, (52)

where 〈n,K; t | are the time-dependent ABR of Eq. (44) for the
energy band n. We can show [7] that

ih̄
∂

∂t
ψnK(x,t) = F(t) ·

∑
n′ 
=n

Rn′n(k(t))ψn′K(x,t), (53a)

with F(t) = eE(t); here, Rn′n(K) = R∗
nn′ (K) is the usual band

mixing integral,

Rn′n(K) = i

�c

∫
�c

u∗
n′K(x)∇KunK(x)dx, (53b)

and where the phases of ψnK are chosen [18] so that
Rnn(k) = 0, a provision which assumes the crystal possesses
an inversion symmetry. If inversion symmetry is broken,
then Rnn(k) is nonzero and therefore needs to be retained;
this gives rise to significant Berry phase effects [19] which
will be considered in a future study. Generally, in using the
instantaneous eigenstates of Eq. (44) to describe the solution of
the time-dependent Schrödinger equation for the Hamiltonian
of Eq. (43b), it is seen that Rn′n band mixing elements play a
direct role in producing transitions between the n → n′ bands.
These transitions give rise to the phenomena of Zener tunneling
and are prominent for only strong electric fields (Ref. [20]
(Callaway) and Ref. [7]). For relatively weak electric fields,
we consider F · Rn′n 	 0 so that (∂ψnK/∂t) 	 0, and the bands
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are effectively uncoupled. Thus, in the weak field, single-band
limit, 〈n,K1; t |∂f̂ /∂t |n,K2; t〉 = ∂〈n,K1; t |f̂ |n,K2; t〉/∂t and
Eq. (52) can be written as

ih̄
∂

∂t
fn(K1,K2; t) = 〈n,K1; t |[Ĥ ,f̂ ]|n,K2; t〉, (54)

where fn(K1,K2,t) ≡ 〈n,K1; t |f̂ |n,K2; t〉. Using Ĥ in
Eq. (43a) along with 〈n,K; t | from Eq. (44), the term
〈n,K1; t |[Ĥ ,f̂ ]|n,K2; t〉 becomes

〈n,K1; t |[Ĥ ,f̂ ]|n,K2; t〉

=
{
ε0
n

(
K1 − e

h̄c
A1

)
− ε0

n

(
K2 − e

h̄c
A1

)
+ e

2c

[(
B × 1

i
∇K1

)
· vn

(
K1 − e

h̄c
A1

)
−
(

B × 1

i
∇K2

)
· vn

(
K2 − e

h̄c
A1

)]}
fn(K1,K2,t)

+O(B2), (55)

where vn(k) = h̄−1∇kε
0
n(k) (necessary matrix elements of

[Ĥ ,f̂ ] can be found in Appendix C). Here, a contributing
term of order O(B2) would come from the Hamiltonian term

e2

2mc2 A2
2, but there are additional terms of O(B2), which have

been excluded because of the interband dependence of f̂ in
Eq. (54). Therefore a more rigorous approach for obtaining
terms of order O(B2) and higher would be to proceed by
employing a unitary transformation [20] of Eq. (4), which
diagonalizes the Hamiltonian (43a) to the desired order, here
to O(B2) in the magnetic field and to all orders in the electric
field by utilizing the ABR. We note that Eq. (55) is the same
result that we obtained for the effective Hamiltonian case of
Eq. (36) when this equation is taken to O(B). To O(B), the
quantum transport equation for the single-band WDF is

∂

∂t
Fn(x,k,t) + vn(k) · ∇xFn(x,k,t)

+ h̄−1

[
eE(t) + e

c
(vn × B)

]
· ∇kFn(x,k,t) + O(B2)

= 0. (56)

If the Hamiltonian of Eq. (43a) were diagonal in the
|n,K; t〉 representation, it would be trivial to calculate the
matrix elements [Ĥ ,f̂ ]n′K′nK in Eq. (4), and, in this case,
only the intraband matrix elements of f̂ would enter into the
problem. However, since this is not the case, we seek a unitary
transformation, eiÛ , with the Hermitian operator Û = Û †, such
that the Hamiltonian transforms as

Ĥ = e−iÛ Ĥ eiÛ , (57)

where Ĥ is diagonal in the ABR to order of O(B2). Then
applying the same unitary transformation to Eq. (4) results in

ih̄
∂f̂

∂t
+ ih̄

[
e−iÛ

(
∂

∂t
eiÛ

)
f̂ + f̂

(
∂

∂t
e−iÛ

)
eiÛ

]
−[Ĥ ,f̂ ]

= Cs{f̂ }, (58)

where f̂ = e−iÛ f̂ eiÛ and Cs is similarly defined. While
operators transform by the unitary transformation defined by
Eq. (57), it follows equivalently that the ABR state vectors
transform as |n,K; t〉 = eiÛ |n,K; t〉. These state vectors could
have been also utilized to establish the transformation of
Eq. (4). An outline of the methodology for diagonalization
of the Hamiltonian in Eq. (43a) and the determination of the
matrix elements of the operator Û to the desired order of
approximation can be found in Appendix B. In the derivations,
we express Ĥ of Eq. (43a) as

Ĥ = Ĥ0 + βV̂1 + β2V2, (59)

where β (dimensionless) refers to the order of the magnetic
field associated with A2 (in the final results, we set β = 1); we
also look for Û as a perturbation expansion in magnetic field

Û = βÛ1 + β2Û2 + O(β3). (60)

The diagonal matrix elements of Ĥ of Eq. (57) are
represented as

(Ĥ )nKnK ≡ εnK(β) = ε0
n + βεn,1 + β2εn,2 + O(β3),

and we find, to O(β2),

εnK(β) = ε0
n(k) + β(V1)nKnK + β2

[
(V2)nKnK

+
∑
n′ 
=n

|(V1)nKn′K|2
ε0
nk − ε0

n′k

]
. (61a)

We note that in Eq. (61a), the term of O(β2) includes not
only (V2)nKnK, which corresponds to (e2/2mc2)A2

2, but also
includes an additional term that depends on states n′ 
= n; this
completes the correction to and including terms of order B2.
In using the calculated matrix elements for V1,2, which have
been derived in Appendix C, we see that εnK(β = 1) ≡ εnK of
Eq. (61a) reduces to

εnK = ε0
n(k) + e

2h̄c

∂ε0
n(k)

∂k

∣∣∣∣
k=k(t)

·
(

B × 1

i
∇K

)

+ 1

2

(
e

2h̄c

)2 3∑
l,m=1

∂2ε0
n(k)

∂kl∂km

∣∣∣∣
k=k(t)

(
B × 1

i
∇K

)
l

×
(

B × 1

i
∇K

)
m

, (61b)

where k(t) = K − (e/h̄c)A1(t) = K + kc(t). The operator de-
pendence of εnK arises typically in the crystal momentum
representation [20].

C. The Liouville equation and unitary transformations

Having established in Appendix B the Û1,2 that diagonalizes

Ĥ through O(B2), we now focus on the specific form and
character of the Liouville equation in Eq. (58) while using
the ABR. We note from Eq. (58) the transformed Liouville
equation of Eq. (4) can be expressed in compact form as

ih̄
∂f̂

∂t
− [Ĥ ,f̂ ] = C{f̂ } + Cs, (62a)
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where

C{f̂ } = −ih̄

[
e−iÛ

(
∂

∂t
eiÛ

)
f̂ + f̂

(
∂

∂t
e−iÛ

)
eiÛ

]
, (62b)

and Cs includes the explicit scattering from phonons [5]. The

term C{f̂ }, which originates from the unitary transformation of
∂f̂ /∂t in Eq. (4), represents an internal pseudocollision term,
which strongly influences the interband mixing effects. In this
particular work, we focus heavily on the canonical kinematics,
so we suppress the term Cs here and consider only ballistic
transport; a thorough analysis of the general behavior of the
term Cs has been given in context with phonons previously
[7], and Cs , including phonons and impurity scattering [10],
will be considered in terms of Wigner transport in the electric
and magnetic fields in a future companion paper.

For the analysis of C{f̂ }, it suffices to calculate the quantity
in question to O(Û 2); this insures that expansion terms up
to and including O(B2) are included. It has been previously
established [21] that the operator terms in Eq. (62b) can be
reduced to

e−iÛ ∂

∂t
eiÛ = i

{
∂Û

∂t
,G(iÛ )

}
,(

∂

∂t
e−iÛ

)
eiÛ =

(
e−iÛ ∂

∂t
eiÛ

)†
= −i

{
G(−iÛ ),

∂Û

∂t

}
;

here {â,b̂} denotes anticommutation and

G(±iÛ ) ≡ e±iÛ − 1

±iÛ
= 1 + 1

2!
(±iÛ ) + 1

3!
(±iÛ )2 + . . . .

(63a)

This allows us to express C{f̂ } as

C{f̂ } = h̄

[{
∂Û

∂t
,G(iÛ )

}
f̂ − f̂

{
G(−iÛ ),

∂Û

∂t

}]
. (63b)

Now, C{f̂ } in Eq. (63b) is an exact expression in terms of the

operator Û . To obtain C{f̂ } to order Û 2, we use Eq. (63a) in
Eq. (63b) and note that{

∂Û

∂t
,G(±iÛ )

}
= 2

∂Û

∂t
± i

2

{
∂Û

∂t
,Û

}
+ O(Û 3).

We see that to O(Û 2), C{f } in Eq. (63b) reduces to

C{f̂ } = h̄[(ĥ1 + iĥ2)f̂ − f̂ (ĥ1 − iĥ2)], (64a)

where

ĥ1 = 2
∂Û

∂t
, ĥ2 = 1

2

{
Û ,

∂Û

∂t

}
, (64b)

with ĥ
†
1 = ĥ1 and ĥ

†
2 = ĥ2. Thus the Liouville equation of

Eq. (62a) with Cs = 0 becomes, to second order in Û ,

ih̄
∂f̂

∂t
− [Ĥ ,f̂ ] = Ĥ ′f̂ − f̂ (Ĥ ′)†, (65a)

where

Ĥ ′ = h̄(ĥ1 + iĥ2), (Ĥ ′)† = h̄(ĥ1 − iĥ2). (65b)

In taking the matrix elements of Eq. (65a) with the ABR,
while remembering that the |n,K; t〉 are time dependent from

Eq. (53a), and Ĥ is diagonal in |n,K; t〉 to second order in B,
we obtain

ih̄
∂

∂t
f n1K1n2K2

= (εn1K1 − εn2K2 )f n1K1n2K2

+
∑
n′K′

(
H ′′

n1K1n′K′f n′K′n2K2

− f n1K1n′K′H̃ ′′
n′K′n2K2

)
, (66a)

where

H ′′
n1K1n′K′ = H ′

n1K1n′K′ − F(t) · Rn1n′(k1)δK1K′ ,
(66b)

H̃ ′′
n1K1n′K′ = (H ′)†n1K1n′K′ − F(t) · Rn1n′ (k1)δK1K′ ,

and εnK is given in Eq. (61b). Here, the effect of the additional
F(t)-dependent electric field term on the right-hand side of
expressions in Eq. (66b) is due to the time dependence of the
ABR and simply adds to the matrix elements of Ĥ ′ and (Ĥ ′)†;
the F(t)-dependent terms generally promote Zener interband
tunneling stimulated by the electric field F(t). In examining
the off-diagonal second-order contributions of Ĥ ′ and (Ĥ ′)†
to the total transition matrices, we will show that these terms
contribute a magnetic component of O(B2) to the interband
tunneling.

Now, it is clear that Eq. (66a) describes all possible matrix
elements of f n1K1n2K2

correct to order Û 2. In an effort to reduce
Eq. (66a) to a more tractable form, one which retains essential
information, we proceed in the spirit of the Wigner-Weisskopf
approximation (WWA) by retaining from the term

∑
n′K′(. . . )

on the right-hand side of Eq. (66a) the terms corresponding
to n1K1,n2K2, while ignoring all others; this will result in
an approximate expression for the diagonal and off-diagonal
matrix elements of f n1K1n2K2

. So, for the sum
∑

n′K′(. . . ) in
Eq. (66a), we get∑

n′K′
(. . . ) = H ′′

n1K1n1K1
f n1K1n2K2

− f n1K1n2K2
H̃ ′′

n2K2n2K2

+H ′′
n1K1n2K2

f n2K2n2K2
− f n1K1n1K1

H̃ ′′
n1K1n2K2

+
∑

n′K′ 
=n1K1,n2K2

(. . . ). (67)

Dropping the sum on the right-hand side of Eq. (67), and
inserting the remainder into Eq. (66a), we get, for n1K1 
=
n2K2,

ih̄
∂

∂t
f n1K1n2K2

= (
εn1K1 − εn2K2

)
f n1K1n2K2

+ h̄
[
(h1 + ih2)n1K1n1K1f n1K1n2K2

− f n1K1n2K2
(h1 − ih2)n2K2n2K2

]
+H ′′

n1K1n2K2
f n2K2n2K2

− f n1K1n1K1
H̃ ′′

n1K1n2K2 ; (68)

here, εnK is given by Eq. (61b), and the off-diagonal elements

of Ĥ ′′, ˜̂H ′′ are given by Eq. (66b). Since Eq. (68) contains

a mix of off-diagonal and diagonal elements of f̂ , closure is
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reached for the diagonal elements of the system by setting
n1K1 = n2K2 = nK in Eq. (66a) to obtain

ih̄
∂

∂t
f nKnK

= h̄
[
(h1 + ih2)nKnKf nKnK − f nKnK(h1 − ih2)nKnK

]
+

∑
n′K′ 
=nK

(H ′′
nKn′K′f n′K′nK − f nKn′K′H̃ ′′

n′K′nK); (69)

here, the diagonal term n′K′ = nK has been extracted from
the term

∑
n′K′(. . . ) to display the diagonal matrix elements

of f̂ explicitly. Thus Eqs. (68) and (69) give a closed set of
equations whereby, in principle, one can self-consistently solve

for the approximate diagonal and off-diagonal elements of f̂ ,
consistent with their respective initial conditions. Moreover,
these equations contain the multiband generalization of the
Liouville equation valid to O(Û 2); the Û dependence is
expressed in the matrix elements of Ĥ ′ and (Ĥ ′)† established
in Eq. (65b). The detail calculations of the matrix elements of
Ĥ ′ and (Ĥ ′)† can be found in Appendix E.

D. Single-band analysis

We now consider the specific case of single-band analysis
for Eqs. (68) and (69); specifically, we consider the case where
n1 = n2 = n. Then, letting f nK1nK2

≡ f n(K1,K2), Eq. (68)
becomes

ih̄
∂

∂t
f n(K1,K2) = (εnK1 − εnK2 )f n(K1,K2)

+ h̄
[
(h1 + ih2)nK1nK1f n(K1,K2)

− (h1 − ih2)nK2nK2f n(K1,K2)
]

+ h̄
[
(h1 + ih2)nK1nK2f n(K2,K2)

− f n(K1,K1)(h1 − ih2)nK1nK2

]
. (70)

We show in Appendix E that the required diagonal matrix
elements for (ĥ1 ± iĥ2) in Eq. (70) are of O(B2) and have
dependencies only beyond n for n′ 
= n [see Eqs. (E3) and
(E4a)]; thus, in the single-band limit, with Rnn′ 	 0, we see
that

ih̄
∂

∂t
f n(K1,K2) = (εnK1 − εnK2

)
f n(K1,K2), (71)

where εnK is given by Eq. (61b).
In developing the WDF equation from Eq. (71), we first

explicitly write down the expression for εnK in Eq. (61b).
Then in finding the equation for f 0

n (x,K,t), we proceed as in
Secs. II and III; let K1 = K + u/2, K2 = K − u/2, and form

f 0
nn(x,K,t) ≡ f 0

n (x,K,t)

= 1

�

∑
u

fn

(
K + u

2
,K − u

2
,t
)
eiu·x. (72)

Using Eqs. (23) and (29a)–(29c) in the same algebraic
procedure as previously applied, that is, transforming from
(K1,K2) to (K,u) variables, using

1

i
∇ue

iu·x = xeiu·x,
1

i
∇xe

iu·x = ueiu·x,

integrating f 0
n (x,K,t) over u by parts, and transforming to

k(x,t) = K − (e/h̄c)A(x,t) with F 0
n (x,k,t) = f 0

n (x,K,t), we
obtain the gauge invariant equation for F 0

n (x,k,t) as

∂

∂t
F 0

n (x,k,t) + vn(k) · ∇xF
0
n (x,k,t) +

[
eE(t)+e

c
vn(k)×B

]
· 1

h̄
∇kF

0
n (x,k,t) + O(B3) = 0. (73)

Therefore it follows that if we neglect the interband tunneling
terms that arise from both the usual Zener and magnetic-
induced interband tunneling, the residual Liouville equation of
Eq. (71), using εnK of Eq. (61b) so that vn(k) = h̄−1∇kεnK(k),
transforms into the analogous WDF equation of Eq. (56),
but valid through O(B3) in the single-band, collisionless
approximation. One points out here that Eq. (61b) for εnK
is exactly what we would have obtained if we assumed
an effective Hamiltonian Ĥ = ε[(p̂ − (e/c)A)/h̄] = ε[(p̂ −
(e/c)A1 − (e/c)A2)/h̄] and taken the matrix elements with
respect to plane waves where A2 = 1

2 B × x, and then expanded
the result about B = 0 to O(B2), and replaced x by 1

i
∇k. It then

follows that through terms to order B2, the interband matrix

elements of [Ĥ ,f̂ ] with respect to the ABR are diagonal in
band, and are given by the same expression as one would
obtain using an effective Hamiltonian given by Sec. III.

E. Multiband considerations

The multiband consideration requires the analysis of
Eqs. (68) and (69), a closed set of equations for the diagonal

and off-diagonal matrix elements of f̂ derived from the
Liouville equation using the WWA. As observed in Eqs. (68)
and (69), the diagonal elements of (ĥ1 ± iĥ2) present in
these equations give rise to terms of O(B2) and a multiband
dependence as determined in Appendix E. On the other hand,

the off-diagonal matrix elements of Ĥ ′′ and ˜̂H ′′ present in
(68) and (69) as defined by Eq. (66b) give rise to the presence
of interband tunneling promoted by the electric field depen-
dent Zener tunneling as represented by F(t) · Rnn′ (k)δKK′ ,
and the magnetic component of interband tunneling that is
implicitly contained in the off-diagonal matrix elements of
(ĥ1 ± iĥ2).

As defined in Eq. (66b), the interband terms, with n 
= n′,
are

H ′′
nKn′K′ = h̄(h1 + ih2)nKn′K′ − F(t) · Rnn′ (k)δKK′,

H̃ ′′
nKn′K′ = h̄(h1 − ih2)nKn′K′ − F(t) · Rnn′ (k)δKK′ . (74)

Using (h1 ± ih2)nKn′K′ from Appendix E [Eq. (E12)], we see
that Eq. (74) becomes

H ′′
nKn′K′ = h̄

∂

∂t

[
2(βU1 + β2U2)nKn′K′ + i

2
β2δKK′Nnn′ (K)

]
− F(t) · Rnn′ (k)δKK′[1 − 2β2Gnn′ (K)],

H̃ ′′
nKn′K′ = h̄

∂

∂t

[
2(βU1 + β2U2)nKn′K′ − i

2
β2δKK′Nnn′ (K)

]
− F(t) · Rnn′ (k)δKK′[1 − 2β2Gnn′ (K)]. (75)
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As observed in Eq. (75), the first terms are time derivatives
which allow for an integrating factor in Eqs. (68) and (69), and
the second term has an explicit magnetic interband tunneling
contribution of O(B2) to the Zener tunneling term (see E. I.
Blount [20]). Both Gnn′ (K) and Nnn′ (K) are defined in terms
of Û in Eqs. (E9b) and (E11), respectively. A full treatment of
the properties of Eqs. (68) and (69), including the derivation
of the WDF equation, will be discussed in a companion paper;

but here we present an outline of this with salient
features.

The reduction of Eqs. (68) and (69), and the resulting WDF
equation can be obtained to O(B2) by retaining the coefficients
in these equations up to O(B2). To this end, making use of the
commutation properties of Û 2

1 noted in Appendix E, we find
that Eq. (68), in combination with Eq. (69), can be expressed
to O(B2) as

ih̄
∂

∂t
f n1K1n2K2

(t) = (
εn1K1 − εn2K2

)
f n1K1n2K2

(t) + Wn1K1n2K2f n2K2
(t) − f n1K1

(t)Wn1K1n2K2 − Zn1K1n2K2f n1K1n2K2
(t0)

+ (Xn1K1n2K2 − Yn1K1n2K2

)
f n1K1

(t0) + (Xn1K1n2K2 + Yn1K1n2K2

)
f n2K2

(t0), (76a)

with f n1K1n2K2
(t0) assumed to be a constant. Here,

Wn1K1n2K2 = 2h̄
∂

∂t
Un1K1n2K2 − F(t) · Rn1n2 (K1)δK1K2 , (76b)

with Û = βÛ1 + β2Û2, and

Xn1K1n2K2 = β2 ih̄

2
δK1K2

∂

∂t
Nn1n2 (K1),

Yn1K1n2K2 = β2F(t) · Rn1n2 (K1)δK1K2Gn1n2 (K1),

Zn1K1n2K2 = β2 ih̄

2

∂

∂t

[(
U 2

1

)
n1K1n1K1

− 3
(
U 2

1

)
n2K2n2K2

]
. (76c)

In Eq. (76a), the following key points are noted: (1) the multiband equation for f n1K1n2K2
(t) ≡ f

0
n1K1n2K2

(t) [f
0

refers to the

reduced WDF of Eq. (50b)] is an inhomogeneous equation, with the inhomogeneity dependent upon f nKnK(t) ≡ f
0
nK(t), the

instantaneous time-dependent diagonal matrix elements, as well as the initial conditions for f
0
nK(t0) and f

0
nKn′K′(t0); (2) through

the definition of Wn1K1n2K2 in Eq. (76b), we observe the presence of the electric Zener tunneling term,

F(t) · Rn1n2 (K1)δK1K2

(
f n1K1

(t) − f n2K2
(t)
)
, (77a)

which depends on the instantaneous behavior of f n1K1
(t) and f n2K2

(t); as well, the lowest order contribution to magnetic
breakdown is contained in the (∂Û1/∂t) part of Wn1K1n2K2 ; (3) through the definition of Yn1K1n2K2 in Eq. (76c), we observe the
presence of a magnetic-induced electric Zener tunneling term,

F(t) · Rn1n2 (K1)δK1K2Gn1n2 (K1)
(
f n1K1

(t0) − f n2K2
(t0)
)
, (77b)

which depends on the initial conditions for f n1K1
(t0) and f n2K2

(t0), as well as Gn1n2 (K1), a magnetic field-dependent variable
defined in Eq. (E9b).

Lastly, in developing the reduced WDF equation for Eq. (76a), we first utilize εnK in Eq. (61b), with n = (n1,n2), K = (K1,K2),
and then let K1 = K + u/2,K2 = K − u/2 while using the transformations (23), and form f 0

n1n2
(x,K,t) of Eq. (50b); likewise,

we also transform coefficients in Eq. (76a) using

ωn1n2 (x,K,t) = �−1
∑

u

〈
n1,K + u

2
; t

∣∣∣∣W ∣∣∣∣n2,K − u
2

; t

〉
eiu·x, (78)

with inverse 〈
n1,K + u

2
; t |W |n2,K − u

2
; t

〉
=
∫

�

dxe−iu·xωn1n2 (x,K,t). (79)

Thus the equation for the reduced WDF in Eq. (76a) is of the form

ih̄
∂

∂t
f

0
n1n2

(x,K,t) =
{
ε0
n1

(K + kc) − ε0
n2

(K + kc) − ih̄

2

[(
v0

n1
(K + kc) + v0

n2
(K + kc)

) · ∇x

+ e

2c

((
v0

n1
(K + kc) + v0

n2
(K + kc)

)× B
) · ∇K

]
−

3∑
l,m=1

∂2

∂kl∂km

[
ε0
n1

(K + kc) − ε0
n2

(K + kc)
]

×
(

∇x + e

2h̄c
B × ∇K

)
l

(
∇x + e

2h̄c
B × ∇K

)
m

}
f

0
n1n2

(x,K,t) +
∫

dx′[ωn1n2 (x − x′,K)f
0
n2

(x′,K,t)
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− f
0
n1

(x′,K,t)ωn1n2 (x − x′,K)
]−

∫
dx′Zn1n2 (x − x′,K)f

0
n1n2

(K,t0)

+
∫

dx′{[�n1n2 (x − x′,K) − Yn1n2 (x − x′,K)
]
f

0
n1

(K,t0)

+ [�n1n2 (x − x′,K) + Yn1n2 (x − x′,K)
]
f

0
n2

(K,t0)
}+ O(B3). (80)

Here, v0
n(K + kc) = h̄−1∇Kε0

n(K + kc), ωn1n2 (x,K),�n1n2 (x,K), Yn1n2 (x,K), and Zn1n2 (x,K) are the Wigner-reduced transforms
of Wn1K1n2K2 ,Xn1K1n2K2 , Yn1K1n2K2 , and Zn1K1n2K2 as governed by the protocol for transforming from (K1,K2) to (K,u) along with
the transform defined by Eq. (79). For the gauge invariant form of Eq. (80), we change variables from K to k = K − (e/c)A with

f
0
(x,K,t) → F

0
(x,k,t), while using the transformation properties from Eqs. (29a)-(29c), to find{

∂

∂t
+ 1

2

(
v 0

n1
+ v 0

n2

) · ∇x + e

[
E(t) + 1

2c

(
v 0

n1
+ v 0

n2

)× B
]

· h̄−1∇k

}
F

0
n1n2

(x,k,t)

= 1

ih̄

{
ε 0
n1

− ε 0
n2

−
3∑

l,m=1

∂2
(
ε 0
n1

− ε 0
n2

)
∂kl∂km

(
∇x + e

h̄c
B × ∇k

)
l

(
∇x + e

h̄c
B × ∇k

)
m

}
F

0
n1n2

(x,k,t)

+ 1

ih̄

∫
dx′{ω̃n1n2 (x − x′,k)F

0
n2

(x′,k,t) − F
0
n1

(x′,k,t)ω̃n1n2 (x − x′,k) − Z̃n1n2 (x − x′,k)F
0
n1n2

(k(t0),t0)

+ [�̃n1n2 (x − x′,k) − Ỹn1n2 (x − x′,k)
]
F

0
n1

(k(t0),t0) + [�̃n1n2 (x − x′,k) + Ỹn1n2 (x − x′,k)
]
F

0
n2

(k(t0),t0)
}+ O(B3); (81)

here, “tilda′′ indicates transformed variables K → k = K − (e/h̄c)A. It is noted that when n1 = n2 = n, Eq. (81) reduces to
Eq. (73), the single-band equation.

F. Results for multiband WDF to first order in (K − K0)

In developing Eq. (50a) to first order in δK = K − K0, we note from Eq. (48) that cnn′ (K − K0) = (un′K0 ,unK), and using the
k · p method for unK in Eq. (A9a), we determine that

cnn′ (K − K0) = δnn′ + (K − K0) · Ln′n(K0) + O[(K − K0)2], (82)

where

Ln′n(K0 ) = h̄

m

pn′n(K0)

εn(K0) − εn′ (K0)
= −iRn′n(K0). (83)

In keeping with Eq. (49c), it follows that

c∗
n2n′′

(
k(t) − K0 − u

2

)
cn1n′

(
k(t) − K0 + u

2

)
= δn2n′′δn1n′ + (k(t) − K0) · [δn2n′′Ln′n1 (K0) + δn1n′L∗

n′′n2
(K0)

]
+ 1

2
u · [δn2n′′Ln′n1 (K0) − δn1n′L∗

n′′n2
(K0)

]+ O[(k − K0 ± u)2]. (84)

Putting (84) with u → −i∇x into Eq. (50a), we find

fn1n2 (x,p,t) =
∑

K

[
I (0)
n1n2

(x,p; K,K0) + (k(t) − K0) · I(1)
n1n2

(x,p; K,K0) − iI(2)
n1n2

(x,p; K,K0) · ∇x
]
f 0

n1n2
(x,K,t), (85)

where f 0
n1n2

(x,K,t) is given in Eq. (50b). I (0)
n1n2

,I(1)
n1n2

, and I(2)
n1n2

are explicitly given by

I (0)
n1n2

(x,p; K,K0) = (2πh̄)−3
∫

dyu∗
n2K0

(
x + y

2

)
un1K0

(
x − y

2

)
ei(p−h̄K)·y/h̄, (86a)

I(1)
n1n2

(x,p; K,K0) = (2πh̄)−3
∫

dy
[
u∗

n2K0

(
x + y

2

)
Dn1K0

(
x − y

2

)
+ un1K0

(
x − y

2

)
D∗

n2K0

(
x + y

2

)]
ei(p−h̄K)·y/h̄, (86b)

and

I(2)
n1n2

(x,p; K,K0) = (2πh̄)−3
∫

dy
[
u∗

n2K0

(
x + y

2

)
Dn1K0

(
x − y

2

)
− un1K0

(
x − y

2

)
D∗

n2K0

(
x + y

2

)]
ei(p−h̄K)·y/h̄, (86c)
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where DnK0 (x) is given in Eq. (A9b). Thus, to first order in δK, the explicit expression for 	̂n1n2 in Eq. (50c) is

	̂n1n2 (x, − i∇x,p; K,K0,t) = I (0)
n1n2

(x,p; K,K0) + (K − K0 + kc(t)) · I(1)
n1n2

(x,p; K,K0) + I(2)
n1n2

(x,p; K,K0) · (−i∇x). (87)

Here, we let K0 = 0 thereby defining the band edges. Then, the quantities I (0)
n1n2

and I(i)
n1n2

(i = 1,2) can be evaluated with

un1,20(x) =
∑

G

A
(n1,2)
G (0)eiG·x, (88)

where (un10,un20) = δn1,n2 . This completes the derivation of fn1n2 (x,p,t) to order δK for K0 = 0. Lastly, we note that to order
δK, we have the time evolution of fn1n2 (x,p,t) as

∂

∂t
fn1n2 (x,p,t) =

∑
K

{
I(1)
n1n2

· ∂

∂t

(
kcf

0
n1n2

)+
[
I (0)
n1n2

+ (K − K0) · I(1)
n1n2

+ I(2)
n1n2

· (−i∇x)

]
∂

∂t
f 0

n1n2
(x,K,t)

}
, (89)

where kc(t) = (e/h̄)
∫ t

0 E(t ′)dt ′. Integrating Eq. (89) allows us to introduce initial conditions:

fn1n2 (x,p,t) = fn1n2 (x,p,t0) +
∑

K

{[
I (0)
n1n2

+ (k(t) − K0) · I(1)
n1n2

+ I(2)
n1n2

· (−i∇x)
]
f 0

n1n2
(x,K,t)

− [I (0)
n1n2

+ (K − K0) · I(1)
n1n2

+ I(2)
n1n2

· (−i∇x)
]
f 0

n1n2
(x,K,t0)

}
, (90)

where k(t) = K + kc(t). Equation (90) shows explicitly that the multiband WDF depends directly upon the reduced multiband
WDF, f 0

n1n2
(x,K,t), and its initial conditions as determined by the Liouville equation of Eq. (62a).

In the single-band case, with n1 = n2 = n in Eq. (90), the WDF fnn(x,p,t) ≡ fn(x,p,t) can be transformed from variable
K to k(x,t) using the transformations of Eqs. (29a)–(29c); then the single-band reduced WDF, F 0

n (x,k,t), will satisfy the
Boltzmann-like equation of Eq. (73) to O(B2). Thus, applying (29a)–(29c) and (50c) to Eq. (90) while keeping terms to O(B2)
only, we find

fn(x,p,t) = fn(x,p,t0) +
∑

k

[
Ĩ (0)
nn + (k(x,t) − K0

) · Ĩ(1)
nn + Ĩ(2)

nn · (−i∇x)
]
F 0

n (x,k,t)

− [Ĩ (0)
nn + (K − K0) · Ĩ(1)

nn + Ĩ(2)
nn · (−i∇x)

]
F 0

n (x,k,t0), (91)

where

Ĩ (0)
nn (x,p; k,K0) = (2πh̄)−3

∫
dyu∗

nK0

(
x + y

2

)
unK0

(
x − y

2

)
ei[p− e

c
A(x,t)−h̄k]·y/h̄, (92a)

Ĩ(1)
nn (x,p; k,K0) = (2πh̄)−3

∫
dy
[
u∗

nK0

(
x + y

2

)
DnK0

(
x − y

2

)
+ u∗

nK0

(
x − y

2

)
DnK0

(
x + y

2

)]
ei[p− e

c
A(x,t)−h̄k]·y/h̄, (92b)

and

Ĩ(2)
nn (x,p; k,K0) = (2πh̄)−3

∫
dy
[
u∗

nK0

(
x + y

2

)
DnK0

(
x − y

2

)
− u∗

nK0

(
x − y

2

)
DnK0

(
x + y

2

)]
ei[p− e

c
A(x,t)−h̄k]·y/h̄. (92c)

In Eq. (91), F 0
n (x,k,t) is satisfied by Eq. (73). We have already noted from Eq. (A9b) that DnK0 (x) is expressed by Eq. (A13a). It

then follows for the single-band case, when in the weak electric field limit Rn′n(K0) 	 0, that Ĩ(1)
nn = Ĩ(2)

nn = 0; therefore Eq. (91)
becomes, to lowest order in δK,

fn(x,p,t) = fn(x,p,t0) +
∑

k

[
Ĩ (0)
nn (t)F 0

n (x,k,t) − Ĩ (0)
nn (t0)F 0

n (x,k,t0)
]
, (93)

where Ĩ (0)
nn (t) is given by Eq. (92a) and F 0

n (x,k,t) is given by
Eq. (73).

V. SUMMARY

Quantum transport and the associated Wigner phase space
analog have been considered for Bloch electrons in ho-
mogeneous electric and magnetic fields of arbitrary time
dependence. We have specifically considered the case of

collisionless or ballistic transport in this work so as to focus
mainly on electron kinematics and transport “streaming” to
second order in the magnetic field while treating the electric
field exactly. In the general formulation, starting from the
Liouville equation for the density matrix, we define the
first-principles WDF in terms of the instantaneous eigenstate
basis and then transform to a new set of variables defined in
terms of the position, kinetic momentum, and time to ensure
the gauge invariance of the WDF for the uniform magnetic
field.
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Our methodology for constructing the WDF and the
associated equation of motion is explicitly demonstrated by
deriving the exact WDF equation for a free electron in
homogeneous electric and magnetic fields; this result is of
the same form as that obtained for the collisionless Boltzmann
transport equation, except that all the consequences of the
WDF approach, including the specification of WDF initial
conditions and associated wave packet analysis, pertains to
the quantum regime. We further extend the methodology to
the case of electrons described by an effective Hamiltonian for
an arbitrary energy-band function. An exact equation for the
WDF is obtained, but results are reduced to second order in the
magnetic field for comparative analysis with the free electron
case; here, we find the same form for the WDF equation as
compared to the free-electron result, except that the velocity
is now defined in terms of the gradient with k of the energy
dispersion instead of free particle velocity. Lastly, we apply
the methodology to the case of Bloch electrons in the presence
of the electric and magnetic field. In using the ABR as our
instantaneous eigenstates, we develop a multiband WDF using
the K0 representation outlined in Appendix A; the leading
term of the k · p method provides the lowest order term of the
multiband WDF, which we use to analyze the single-band and
multiband picture.

We show that in order to obtain results correct to second
order in the magnetic field, we have to introduce the method
of unitary transformations into the analysis to diagonalize the
Hamiltonian using the ABR and simultaneously transform the
Liouville equation to the appropriate order to obtain results.
The single-band analysis using ABR and neglecting interband
effects gives rise to an energy dispersion and WDF equation
correct to second order in the magnetic field; the derived
energy dispersion using the ABR is exactly what one would
have obtained if we assumed the effective Hamiltonian in the
electric and magnetic field, and taken the matrix elements with
respect to plane waves, and then expanded the results to order
B2, and replacing x by 1

i
∇K. In multiband considerations,

we examined the transition matrix elements appearing in the
Liouville transport equation. It is found that, in addition to
the usual electric Zener tunneling term, a magnetic interband
tunneling term appears of O(B2) which shows the influence of
the magnetic field on interband tunneling.

The results of this paper are considered to be the first
of a two-part effort. In a future companion paper, we will
be extending results for the WDF in the combined electric
and magnetic fields to include collisional field effects from
impurities and phonons with application to valley dependent
transport in low-dimensional materials. Further on, we will be
considering the role of broken inversion symmetry and Berry
phase corrections in this problem.

APPENDIX A: THE K0 REPRESENTATION [17]

The Schrödinger equation for the Bloch wave is

Ĥ0ψnK(x) = εnKψnK(x). (A1)

Here, Ĥ0 is the one-electron Hamiltonian which is periodic
in the crystal. If we exclude spin-orbit interaction, the

Hamiltonian is

Ĥ0 = p̂2

2m
+ Vc(x),

where Vc(x) is the periodic potential of the crystal. Since
ψnK(x) = �−1/2eiK·xunK(x), Eq. (A1) may be written in terms
of the cell periodic function unK(x) as

Ĥ (K)unK(x) = εnKunK(x), (A2)

where Ĥ (K) = e−iK·xĤ0e
iK·x, or

Ĥ (K) = Ĥ0 + h̄

m
K · p̂ + h̄2K2

2m
. (A3)

Note that if spin-orbit interaction is included in Ĥ0, then Ĥ (K)
is still a polynomial of second degree in the components of K.
In letting K = K0, we see that Eq. (A2) becomes

Ĥ (K0)unK0 (x) = εnK0unK0 (x), (A4)

where

Ĥ (K0) = Ĥ0 + h̄

m
K0 · p̂ + h̄2K2

0

2m
. (A5)

In solving for Ĥ0 in Eq. (A5) and eliminating it from (A3), we
see that Eq. (A2) becomes[

Ĥ (K0) + h̄

m
(K − K0) · p̂ + h̄2

2m

(
K2 − K2

0

)]
unK(x)

= εnKunK(x). (A6)

It is well known [16] that the unK(x), for any value of
K = K0, span a complete set of orthonormal functions for any
function having the same periodicity of the lattice. Therefore
we can express unK(x) in Eq. (A2) as

unK(x) =
∑
n′

cnn′ (K − K0)un′K0 (x), (A7)

where (unK0 ,un′K0 ) = δnn′ and cnn′ (0) = δnn′ ; the functions
unK0 (x) are presumed known and satisfy Eq. (A4). Putting
(A7) into Eq. (A6), multiplying both sides by u∗

nK0
(x) and

integrating over the unit cell, we obtain

∑
n′

cnn′ (K − K0)

{[
εn′K0 − εnK + h̄2

2m

(
K2 − K2

0

)]
δnn′

+ h̄

m
(K − K0) · pnn′ (K0)

}
= 0, (A8a)

where the subindex n′ sums over all bands and

pnn′ (K0) = 1

�c

∫
�c

u∗
nK0

(x)p̂un′K0 (x)dx. (A8b)

Equation (A8a) is the matrix eigenvalue equation for the
point K in K space in the so-called K0 representation [17];
although the equation for cnn′ (K − K0) is exact for any K, it is
most amenable to the approximate solution when K is chosen
near K0, for then, the off-diagonal term can be treated as a
perturbation using the k · p formalism. For simplicity here, we
will consider K0 to be an extremum point in K space such that
(∇KεnK)K=K0 = 0 for all bands; the specific case of K0 = 0 is
considered in Sec. IV F.
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Although the sum
∑

n′ (. . . ) in Eq. (A8a) is over all bands,
and is thus an infinite sum, the equation is amenable to
perturbation theory, with δK · pnn′ (K0) as a perturbation. Then,
we find to first order in δK = K − K0 that

unK(x) = unK0 (x) + δK · DnK0 (x), (A9a)

where

DnK0 (x) = h̄

m

∑
n′ 
=n

pn′n(K0)

εnK0 − εn′K0

un′K0 (x) (A9b)

and

εnK = εnK0 + h̄

m
δK · [pnn(K0) + h̄K0] + h̄2

2m
(δK)2

+ h̄2

m2

∑
n′ 
=n

[δK · pnn′ (K0)][δK · pn′n(K0)]

εnK0 − εn′K0

. (A10)

Note that the linear term vanishes since (ψnK0 ,p̂ψnK0 ) =
pnn(K0) + h̄K0 = mh̄−1(∇KεnK)K=K0 , which is zero since K0

is an extremum point in K space. Equations (A9a)–(A10)
can be simplified. First, noting that the inverse effective-mass
tensor can be expressed as

m−1
ij = m−1δij + 2m−2

∑
n′ 
=n

pnn′,i(K0)pn′n,j (K0)

εnK0 − εn′K0

through the f -sum rule, then Eq. (A10) takes the form

εnK = εnK0 + h̄2

2

3∑
i,j=1

δKiδKj

mij

. (A11)

Now, noting that [x,Ĥ0] = (ih̄/m)p̂, we find that the off-
diagonal matrix elements of x and p̂ are related by

(ψn′K0 ,xψnK0 ) = ih̄

m

(ψn′K0 ,p̂ψnK0 )

εnK0 − εn′K0

, n′ 
= n. (A12a)

However, since, in the Bloch representation,

(ψn′K′ ,xψnK) =
(

δn′n
1

i
∇K + Rn′n(K)

)
δK′K,

(ψn′K′ ,p̂ψnK) = (h̄Kδn′n + pn′n(K))δK′K,

where Rn′n(K) is given in Eq. (53b), it follows that Eq. (A12a)
becomes

Rn′n(K0) = ih̄

m

pn′n(K0)

εnK0 − εn′K0

, n′ 
= n. (A12b)

Thus DnK0 (x) in Eq. (A9b) becomes

DnK0 (x) = −i
∑
n′ 
=n

Rn′n(K0)un′K0 (x). (A13a)

Since ∇KunK(x) is a periodic function of x, we can write

i∇KunK(x) =
∑
n′ 
=n

Rn′n(K)un′K(x); (A13b)

[note that, in this work, the phases of ψnK(x) are chosen so that
Rnn(K) = 0]. Then, DnK0 of Eq. (A13a) becomes DnK0 (x) =

∇K0unK0 (x). Therefore unK(x) of Eq. (A9a) can be formally
expressed as

unK(x) = unK0 (x) + (K − K0) · ∇K0unK0 (x), (A13c)

a first-order Taylor series expansion of unK(x) about (K − K0);
using (A13b), Eq. (A13c) can always be expressed explicitly
in terms of Rn′n(K0).

In using (A12b) in Eq. (A8a), the matrix equation for
cnn′ (K − K0) can be written in a form amenable to high-order
perturbation theory in (K − K0) as∑

n′
cnn′ (K − K0)

×
{(

εn′K0 − εnK0

)
[δnn′ − i(K − K0) · Rnn′ (K0)]

+
[

h̄2

2m
(K − K0)2 − (εnK − εnK0

)]
δnn′

}
= 0, (A14a)

where

cnn′ (K − K0) = cnn′ (0) + ∇Kcnn′ (K − K0)|K=K0 · (K − K0)

+ 1

2!

3∑
i,j=1

∂2cnn′ (K − K0)

∂Ki∂Kj

∣∣∣∣
K=K0

(K − K0)i

× (K − K0)j + O[(K − K0)3] (A14b)

and

εnK − εnK0 = 1

2!

3∑
i,j=1

∂2εnK

∂Ki∂Kj

∣∣∣∣
K=K0

(K − K0)i(K − K0)j

+O[(K − K0)3], (A14c)

with (∇KεnK)K=K0 = 0.
As an alternative to this perturbation approach, one can

expand on the previous result of Eq. (A13c) and expand unK(x)
in a Taylor series about K0 as

unK(x) =
[

1 +
3∑

i=1

(K − K0)i
∂

∂K0i

+ 1

2!

3∑
i,j=1

(K − K0)i(K − K0)j
∂2

∂K0i∂K0j

⎤⎦unK0 (x)

+O[(K − K0)3]; (A15a)

throughout the use of cnn′ (K − K0) = (un′K0 ,unK) and the
repeated use of Eq. (A13b) to establish the coefficients of
cnn′ (K − K0), the Taylor series of unK about (K − K0) can be
found to any desired order. Putting unK of Eq. (A15a) into
cnn′ (K − K0) = (un′K0 ,unK), we get

cnn′ (K − K0) = δnn′ + (K − K0) · (un′K0 ,∇K0unK0

)
+ 1

2!

3∑
i,j=1

(K − K0)i(K − K0)j

×
(

un′K0 ,
∂2unK0

∂K0i∂K0j

)
+ O[(K − K0)3].

(A15b)
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Using (A13b), we find(
un′K0 ,∇K0unK0

) = −iRn′n(K0),(
un′K0 ,

∂2unK0

∂K0l∂K0m

)
= −

∑
n′′

Rl
n′n′′ (K0)Rm

n′′n(K0)

− i
∂

∂K0l

Rm
n′n(K0),

where Rl
n′n(K0) is the lth Cartesian component of Rn′n(K0).

Of course, once cnn′ (K − K0) is determined to a desired order
of (K − K0), then (εnK − εnK0 ) immediately follows from
Eq. (A14a). From Eq. (A7), we use unk(t)(x) =∑n′ cnn′ (k(t) −
K0)un′K0 (x) in Eqs. (47a) and (47b), and we find the expres-
sions for fn1n2 , f 0

n1n2
, 	̂n1n2 , and In′′n′ given in Eqs. (50a)–(50c)

and (49b), respectively.

APPENDIX B: HAMILTONIAN DIAGONALIZATION
BY UNITARY TRANSFORMATION

1. The general scheme

In our problem, as noted in Eq. (59), we have a Hamiltonian
of the form

Ĥ = Ĥ0 + βV̂1 + β2V2, (B1)

in which the unperturbed Hamiltonian Ĥ0 is diagonal in the
accelerated Bloch state representation

〈n′,K′; t |Ĥ0|n,K; t〉 = ε0
n(k(t))δnn′δKK′ . (B2)

At the same time, the full Hamiltonian Ĥ is not diagonal in
this convenient basis due to the perturbation terms of the two
magnetic field potentials, V1 and V2. We now use the unitary
transformation

Ĥ = e−iÛ Ĥ eiÛ (B3)

and

|n,K; t〉 = eiÛ |n,K; t〉 (B4)

to diagonalize Ĥ in Eq. (B1) to second order in B. To this end,
we expand the Hermitian operator Û (Û † = Û ) as follows:

Û = βÛ1 + β2Û2 + · · · , (B5)

where the subindices of Ûi stand for the order of the
appropriate perturbation. We thus look for Û to second order
in B, which diagonalizes the Hamiltonian of Eq. (B1). Using
the well-known formula

e−iÛ Ĥ eiÛ = Ĥ + i[Ĥ ,Û ] − 1
2 [[Ĥ ,Û ],Û ] + O(Û 3), (B6)

and putting (B1) and (B5) into Eq. (B6), we arrive at Ĥ to
O(B2) as

Ĥ = Ĥ0 + βR̂1 + β2R̂2, (B7)

where

R̂1 = V1 + i[Ĥ0,Û1],

R̂2 = V2 + i[Ĥ0,Û2] + i[V1,Û1] − 1
2 [[Ĥ0,Û1],Û1]. (B8)

Since Ĥ0 is already diagonal in the ABR basis, we chose Ûi

such that the off-diagonal matrix elements of R̂1 and R̂2 in

the ABR are zero term by term. Then, from (B8) after matrix
elements are taken, we see that

[Ĥ0,Û1] = iV̂1,

[Ĥ0,Û2] = iV2 − 1
2 [V̂1,Û1]. (B9)

These equations give rise to commutator relations for Ûi with
Ĥ0. The right-hand side of each equation depends on the lower
order terms in Ûi , so we thereby have a hierarchy of relations.
The off-diagonal matrix elements of each operator Ûi can now
be found by taking the matrix elements of (B9) with respect
to 〈n,K; t | . . . |n′,K′; t〉. We note that commutators of the type
[Ĥ0,Ûi] = Âi are such that the appropriate matrix elements
〈n,K; t | ˆ[H 0,Ûi]|n′,K′; t〉 = 〈n,K; t |Âi |n′,K′; t〉 are obtained
as (

ε0
nk − ε0

n′k′
)
(Ui)nKn′K′ = (Ai)nKn′K′ , (B10)

and for nK 
= n′K′

(Ui)nKn′K′ = (Ai)nKn′K′

ε0
nk − ε0

n′k′
; (B11)

here, Âi stands for the right-hand side of equations (B9).
The explicit expressions for matrix elements (Ai)nKn′K′ are
evaluated below.

It is clear that for nK = n′K′, the equation (B10) leaves the
diagonal matrix elements (Ui)nKnK arbitrary and undecided.
To determine the diagonal elements of Ûi we look for
the perturbed wave function for Ĥ such that |n,K; t〉 =
|n,K; t〉 + |�〉, where the change due to the perturbation, |�〉,
is orthogonal to the unperturbed state, |n,K; t〉; then, it follows
that

〈n,K; t |�〉 = 0; (B12)

this is frequently called intermediate normalization. Then,
making use of Eq. (B4), we expand the exponent in this
equation into a series, with Û given in Eq. (B5), and group
terms according to their order in B, and so on. The result for
|n,K; t〉 − |n,K; t〉 = |�〉 is

|�〉 = [β iÛ1 + β2
(
iÛ2 − 1

2 Û 2
1

)]|n,K; t〉. (B13)

The diagonal matrix elements of the transformation matrix
can be found from Eq. (B12) with making use of the obtained
expression for |�〉 (B13).

2. Off-diagonal elements of the transformation matrix

To find the explicit expressions for off-diagonal elements
of the transformation matrix UnKn′K′ , we use Eqs. (B9) and
(B11). Then, we obtain for O(B)

(U1)nKn′K′ = i
(V1)nKn′K′

ε0
nk − ε0

n′k′
(B14)
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and for O(B2)

(U2)nKn′K′ = i

ε0
nk − ε0

n′k′

[
(V2)nKn′K′

+ 1

2

∑
n′′K′′

′
(V1)nKn′′K′′ (V1)n′′K′′n′K′

×
(

1

ε0
nk − ε0

n′′k′′
+ 1

ε0
n′k′ − ε0

n′′k′′

)]
, (B15)

where “prime′′ in the sum means that the summation is over
(n′′K′′) 
= (nK,n′k′).

3. Diagonal elements of the transformation matrix

The diagonal elements of the transformation matrix UnKnK
are evaluated from Eqs. (B12) and (B13) to the considered
order in interaction with magnetic field. We reproduce them
term by term in order according to Eq. (B5). So, in the lowest
order in B, we find

(U1)nKnK = 0; (B16)

in the second order in B, we obtain

(U2)nKnK = − i

2

(
U 2

1

)
nKnK. (B17)

Clearly, it is seen that the term (U1)nKnK is zero, whereas
(U2)nKnK depends on diagonal elements of Û 2

1 . Then, making
use of Eq. (B14), we obtain the diagonal matrix elements for
Û2, in the second order in B, as

(U2)nKnK = − i

2

∑
n′K′ 
=nK

∣∣∣∣ (V1)nKn′K′

ε0
nk − ε0

n′k′

∣∣∣∣2. (B18)

APPENDIX C: DETERMINATION OF KEY
MATRIX ELEMENTS

The required matrix elements of Û are now analyzed in
terms of their perturbation theory contributions defined in
Eqs. (59) and (60). The particular Ûi(β) are derived for each
off-diagonal and diagonal term of perturbation [Eq. (59)] in
the ABR and can be found in Appendix B, Eqs. (B14), (B15),
and (B16)–(B18), respectively. For each Ûi , the key matrix
elements depend on terms in the Hamiltonian of Eq. (43a) [see
also Eq. (9)],

V̂1 = − e

mc
A2 ·

(
p̂ − e

c
A1

)
, V2 = e2

2mc2
A2

2. (C1)

Here, V̂1 is the interaction of the magnetic field with the
dynamic electron, and V2 is the second order term in the
magnetic field. We consider the matrix elements of V̂1 and
V2 in the ABR. This allows for the determination of Ûi for
each perturbation term.

1. Matrix elements of V̂1(x,t)

The matrix elements of V̂1(x,t),

(V1)nKn′K′ = − e

mc

∑
n′′K′′

(A2)nKn′′K′′ ·
(

p − e

c
A1

)
n′′K′′n′K′

,

(C2)

where A1 and A2 are defined in Eqs. (7a) and (7b), respectively,
are evaluated as follows:

1

m

(
p − e

c
A1

)
n′′K′′n′K′

= vn′′n′(k′(t))δK′′K′ , (C3)

where vn′′n′ (k′) is well known [7], that is

vn′′n′ (k′) = 1

h̄
∇k′ε0

n′k′ , n′′ = n′,

vn′′n′ (k′) = i

h̄

(
ε0
n′′k′ − ε0

n′k′
)
Rn′′n′ (k′), n′′ 
= n′; (C4)

here

Rn′′n′ (k) = i

�c

∫
�c

u∗
n′′k(x)∇kun′k(x)dx = R∗

n′n′′ (k). (C5)

For A2 from Eq. (7b), the matrix elements are reduced to

(A2)nKn′′K′′ = i

2
B ×

[
∇kδnn′′δKK′′

− 1

�

∫
dx∇ku

∗
nk(x)un′′k′′(x)e−i(K−K′′)·x

]
. (C6)

Since

1

�

∫
dx∇ku

∗
nk(x)un′′k′′(x)e−i(K−K′′)·x

= δKK′′

�c

∫
�c

dx
(∇ku

∗
nk(x)

)
un′′k(x), (C7)

Eq. (C6) becomes

(A2)nKn′′K′′ = 1

2
B ×

[
i∇kδnn′′ − i

�c

∫
�c

dx

× (∇ku
∗
nk(x)

)
un′′k(x)

]
δKK′′ . (C8)

Taking into account that ∇k
∫

u∗
nk(x)un′′k(x)dx = 0, we can

express (C8) as

(A2)nKn′′K′′ = 1
2 B × [i∇kδnn′′ + Rnn′′ (k)]δKK′′ . (C9)

Using (C3) and (C9) in Eq. (C2), it follows that

(V1)nKn′K′ = − e

2c

⎧⎨⎩(B × i∇k) · vnn′ (K)

+
∑
n′′ 
=n

[B × Rnn′′ (k)] · vn′′n′(K′)

⎫⎬⎭δKK′ . (C10)

Noting that the second term on the right-hand side of Eq. (C10)
can be written as

[B × Rnn′′ (k)] · vn′′n′(K′)

= i

h̄

(
ε0
n′′k − ε0

n′k
)
[Rnn′′ (k) × Rn′′n′(k)] · B,

then the sum
∑

n′′ 
=n(. . . ) becomes
∑

n′′ 
=n,n′ (. . . ) because of
the properties of Rnn′′ (k); therefore, within the WWA, we keep
only terms in (n,n′), so that Eq. (C10) becomes

(V1)nKn′K′ = e

2ic
(B × ∇K) · vnn′ (K)δKK′ . (C11)
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2. Matrix elements of V2(x,t)

We consider the matrix elements of V2(x,t),

(V2)nKn′K′ = e2

2mc2

∑
n′′K′′

(A2)nKn′′K′′(A2)n′′K′′n′K′ , (C12)

where the matrix elements (A2)nKn′′K′′ are given in Eq. (C9).
Using these matrix elements in Eq. (C12), we see that

(V2)nKn′K′ = e2

8mc2

{
(B × i∇K)2δnn′

+ [(B × i∇K) · [B × Rnn′ (k)]

+ [B × Rnn′ (k)] · (B × i∇K)]

+
∑

n′′ 
=n,n′
[B × Rnn′′ (k)] · [B × Rn′′n′(k)]

}
δKK′ .

(C13)

Dropping the terms with n′′ 
= (n,n′) in the spirit of the WWA,
Eq. (C13) results in

(V2)nKn′K′

= e2

8mc2
{(B × i∇K)2δnn′ + [(B × i∇K) · [B × Rnn′ (k)]

+ [B × Rnn′ (k)] · (B × i∇K)]}δKK′ . (C14)

The matrix elements (V1)nKn′K′ and (V2)nKn′K′ , reported in
(C11) and (C14), retain only the contributions connecting
(nK,n′K) and neglect contributions for n′′ 
= (n,n′).

3. Matrix elements of the Hamiltonian

Having established all of the relevant matrix elements for
our problem, we are now in a position to determine key physi-
cal quantities of the energy, εnK. In order to express εnK(β) of
Eq. (61a) in terms of the physical kinematic variables, we use
the matrix elements (V1)nKn′K′ and (V2)nKn′K′ , which have been
evaluated in Eqs. (C11) and (C14), respectively. In particular,
it follows from Eq. (C14) that

(V2)nKnK = e2

8mc2
(B × i∇K)2δKK′ . (C15)

Thus all terms in Eq. (61a) are straightforward to calculate
except the term of the order of B2, which can be expressed as

e2

2mc2

⎡⎣(A2)2
nKnK − 2

m

∑
n′ 
=n

3∑
l=1

(A2l)nKnK(pl(K))nn′

×
3∑

m=1

(A2m)nKnK(pm(K))nn′

ε0
n′k − ε0

nk

]
; (C16)

here, A2l and pl(K) are the lth components of A2 and p(K).
Using the f -sum rule,

1

m

∑
n′ 
=n

(pi)nn′(pj )n′n + (pj )nn′(pi)n′n

ε0
n′k − ε0

nk

= δij − m

h̄2

∂2ε0
nk

∂ki∂kj

∣∣∣∣
k=k(t)

, (C17)

we see that the expression in (C16) reduces to

e2

2h̄2c2

3∑
l,m=1

A2lA2m

∂2ε0
nk

∂kl∂km

∣∣∣∣
k=k(t)

, (C18)

where A2 = (1/2i)(B × ∇k).

APPENDIX D: EVALUATING OF (∂U/∂ t)nKn′K′

In evaluating the matrix elements in question, one must
consider the time dependence of the ABR [Eq. (44)] with
which the matrix elements are being taken. As such,(

∂U

∂t

)
nKn′K′

≡
∫

dxψ∗
nK(x,t)

∂Û

∂t
ψn′K′(x,t)

= ∂

∂t

∫
dxψ∗

nK(x,t)Ûψn′K′(x,t) − 
(t), (D1)

where


(t) =
∫

dx
(

∂ψ∗
nK

∂t
Ûψn′K′ + ψ∗

nKÛ
∂ψn′K′

∂t

)
. (D2)

Now, since the explicit time dependence of ψnK(x,t) gives

ih̄
∂

∂t
ψnK(x,t) = F(t) · Rn′n(k)ψn′K(x,t)

+ F(t) ·
∑

n′′ 
=n,n′
Rn′′n(k)ψn′′K(x,t),

then 
(t) in Eq. (D2) becomes


(t) = − 1

ih̄

∫
dxF(t) · [Rnn′ (k)ψ∗

n′KÛψn′K′

+ Rnn′ (k′)ψ∗
nKÛψnK′ ] +

∑
n′′ 
=n,n′

(. . . ). (D3)

Here, in the spirit of the WWA used throughout, we drop the
sum over n′′ 
= (n,n′) and retain only term connecting (n,n′).
Thus Eq. (D1) reduces to(

∂U

∂t

)
nKn′K′

= ∂

∂t
(U )nKn′K′ + 1

ih̄
F(t)

· [Rnn′ (k)Un′Kn′K′ − Rnn′ (k′)UnKnK′]. (D4)

APPENDIX E: MATRIX ELEMENTS OF (ĥ1 ± i ĥ2)

In considering the matrix elements of (ĥ1 ± iĥ2), where ĥ1

and ĥ2 are given by Eq. (64b), and noting that Û of Eq. (60)
is expressed in orders of perturbation theory in the magnetic
field parameter, β, it follows that we can express ĥ1 and ĥ2 in
terms of Û to O(B2) as

ĥ1 = 2

(
β

∂Û1

∂t
+ β2 ∂Û2

∂t

)
,

ĥ2 = β2

2

(
Û1

∂Û1

∂t
+ ∂Û1

∂t
Û1

)
. (E1)

We showed in Appendix D that (∂U/∂t)nKn′K′ can be ex-
pressed, to within the WWA, by Eq. (D4) which is used below.
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In considering the diagonal matrix elements of ĥ1 and ĥ2

in (E1), while using Eqs. (D4), (B16), and (B17), we find

(h1)nKnK = −iβ2 ∂

∂t

(
U 2

1

)
nKnK,

(h2)nKnK = β2

2

∂

∂t

(
U 2

1

)
nKnK. (E2)

Thus, from (E2), we obtain

(h1 ± ih2)nKnK = −i
β2

2

(
a

b

)
∂

∂t

(
U 2

1

)
nKnK, (E3)

where a = 1 and b = 3 refer to “+” and “−,” respectively.
Note that in (E3),(

U 2
1

)
nKnK =

∑
n′K′

(U1)nKn′K′(U1)n′K′nK

=
∑
n′ 
=n

|(U1)nKn′K|2,

where (U1)nKn′K′ is given by Eq. (B14) in Appendix B
and (V1)nKn′K′ , which appears in this equation, is given by
Eq. (C11) in Appendix C. Details of the calculations are found
in Appendices B and C. Thus (U 2

1 )nKnK can be written as

(
U 2

1

)
nKnK =

(
e

2c

)2 ∑
n′ 
=n

∣∣∣∣ [B × ∇K] · vnn′ (k)

ε0
nk − ε0

n′k

∣∣∣∣2, (E4a)

where vnn′ (k) is defined in Eq. (C4) and depends on Rnn′ (k), the
interband coupling matrix element. Also, the time dependence
of (U 2

1 )nKnK in Eq. (E4a) is governed by vnn′ (k)/(ε0
nk − ε0

n′k).
Hence the diagonal matrix elements of (ĥ1 ± iĥ2) depend on
all states n′ 
= n. Since (U 2

1 )nKnK of Eq. (E4a) is a key operator
expression in Eqs. (68) and (69), we note that (U 2

1 )nKnKF

[F = F (x,K,t) is arbitrary] can be written as(
U 2

1

)
nKnKF = F

(
U 2

1

)
nKnK +

∑
n′ 
=n

�nn′ {F } + O(B3), (E4b)

where

�nn′ {F } = ωnn′ · ∇KF + αnn′F + γ 0
nn′ · ∇K(γ nn′ · ∇KF );

(E4c)

here,

ωnn′ =
(

e

2h̄c

)2 1

g2
nn′

(B × ∇K) · (gnn′R∗
nn′γ nn′ + gnn′Rnn′γ ∗

nn′ ),

αnn′ =
(

e

2h̄c

)2 1

g2
nn′

∇K[(B × ∇K) · (gnn′Rnn′ )] · γ ∗
nn′ ,

γ 0
nn′ =

(
e

2h̄c

)2 1

g2
nn′

γ ∗
nn′ , γ nn′ = gnn′Rnn′ × B, (E5a)

with gnn′ = ε0
nK − ε0

n′K. From Eq. (E4b), it follows(
∂

∂t

(
U 2

1

)
nKnK

)
F

= F
∂

∂t

(
U 2

1

)
nKnK +

∑
n′ 
=n

[
∂

∂t
�nn′ {F } − �nn′

{
∂F

∂t

}]
.

(E5b)

In considering the off-diagonal matrix elements of (ĥ1 ±
iĥ2), we again analyze ĥ1 and ĥ2 of Eq. (E1) by utilizing matrix
elements (∂U/∂t)nKn′K′ of Eq. (D4) in Appendix D. First, in the
evaluation of (h1)nKn′K′ , we need to evaluate (∂U1,2/∂t)nKn′K′ .
We observe, to lowest order in the WWA, that(

∂Ul

∂t

)
nKn′K′

= ∂

∂t
(Ul)nKn′K′ + 1

ih̄
F(t)

· [Rnn′ (k)(Ul)n′Kn′K′ − Rnn′ (k′)(Ul)nKnK′],

(E6)

where l = 1,2. Since (U1)nKn′K′ is given in (B14) and (C11),
which gives (U1)nKnK′ = 0, it then follows(

∂U1

∂t

)
nKn′K′

= ∂

∂t
(U1)nKn′K′ . (E7)

Now, from normalization condition, (U2)nKnK =
−(i/2)(U 2

1 )nKnK, and(
U 2

1

)
nKnK′ =

∑
n1K1

(U1)nKn1K1 (U1)n1K1nK′

=
∑
n1 
=n

|(U1)nKn1K|2δKK′ . (E8)

It then follows(
∂U2

∂t

)
nKn′K′

= ∂

∂t
(U2)nKn′K′ + 1

h̄
F(t) · Rnn′ (k)Gnn′ (K)δKK′, (E9a)

where

Gnn′ (K) = 1

2

∑
n1 
=n,n′

[|(U1)nKn1K|2 − |(U1)n′Kn1K|2]. (E9b)

Thus, we obtain, by making use of (E7) and (E9a),

(h1)nKn′K′ = 2

[
β

∂

∂t
(Û1)nKn′K′ + β2 ∂

∂t
(U2)nKn′K′

+ β2

h̄
F(t) · Rnn′ (k)Gnn′ (K)δKK′

]
(E10a)

and

(h2)nKn′K′ = β2

2
δKK′

∂

∂t
Nnn′ (K); (E10b)

here,

Nnn′ (K) =
∑

n1 
=n,n′
(U1)nKn1K(U1)∗n′Kn1K. (E11)

It then follows from (E10a) and (E10b) that

(ĥ1 ± iĥ2)nKn′K′

= ∂

∂t

[
2β(U1)nKn′K′ + 2β2(U2)nKn′K′ ± i

β2

2
δKK′Nnn′ (K)

]
+ 2β2

h̄
F(t) · Rnn′ (k)Gnn′ (K)δKK′ . (E12)
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