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Dynamical localization and the effects of aperiodicity in Floquet systems
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We study the localization aspects of a kicked noninteracting one-dimensional (1D) quantum system subject to
either time-periodic or nonperiodic pulses. These are reflected as sudden changes of the on-site energies in the
lattice with different modulations in real space. When the modulation of the kick is incommensurate with the
lattice spacing, and the kicks are periodic, a well known dynamical localization in real space is recovered for large
kick amplitudes and frequencies. We explore the universality class of this transition and also test the robustness
of localization under deviations from the perfect periodic case. We show that delocalization ultimately sets in
and a diffusive spreading of an initial wave packet is obtained when the aperiodicity of the driving is introduced.
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I. INTRODUCTION

Quantum localization is a topic of long-standing interest
that is manifest on a broad range of contexts, either in
time-independent systems [1] as well as in time-periodic ones
[2]. The possibility of experimentally testing the theoretical
predictions with highly tunable experiments, as provided by
optical lattice setups [3,4] or in photonic lattices [5,6], has
led to a boost on the investigation of this phenomenon.
Noninteracting quantum systems with static quenched disorder
[7] (or quasidisorder [8]) are well known to display localization
of all its single-particle states in low dimensions [9]. In the
realm of time-periodic driven quantum systems, frequently
called Floquet quantum systems, dynamical localization,
where in spite of the periodic pumping of energy into the
system its total energy remains maximally bounded, has been
also widely observed, as, e.g., in two-level systems [10] and in
quantum kicked rotors [11–15]. Another remarkable example
of the theory and experimental connection in the investigation
of dynamical localization is the case of a charged particle in
a lattice subjected to a sinusoidal force in time [16] that was
later realized with ultracold Bose-Einstein condensates [17,18]
trapped in optical lattices.

In ergodic interacting systems, on the other hand, it has been
shown that a periodic driving leads the system to a featureless
infinite temperature regime, characterized by a nonequilibrium
steady state that is locally identical to a state with maximal
Gibbs entropy [19]. Thus, it typically leads to thermalization
(and therefore absence of localization) once the periods of
the driving are sufficiently large [20–23]. Other integrable
systems, which possess an extensive number of integrals of
motion, do not heat up and exhibit localization in energy space
at infinite times [24,25] even in the case of specific types
of aperiodic driving [26]. A third class of interacting sys-
tems under periodic driving are the ones with an emerging
integrability as in the case of disordered systems displaying
the many-body localization phenomenon [27–29] that were
recently experimentally investigated [30]. In these cases, the
(many-body) localization under the driving is stable only at

*tilen.cadez@csrc.ac.cn
†rmondaini@csrc.ac.cn
‡pdss@cefema.tecnico.ulisboa.pt

large frequencies and a fully mixed featureless state entails
after increasing the drive period.

Here our purpose is to study the dynamical localization
(and its breakdown) of noninteracting lattice systems which
are driven by global pulses affecting the site energies. These
global pulses are instantaneous and hereafter we refer to them
as kicks in the lattice. This has been the recent focus of studies
when the kicks in real space are either incommensurate with
the lattice periodicity [31], or when they are commensurate
but with wavelengths which are twice the lattice spacing [32].
In both cases, it leads to dynamical localization, characterized
by the halt of the spreading of an initial wave packet when
the frequency of the kicks is large and their magnitudes
are either sufficiently large [31] or when they meet resonant
conditions [32]. Our goal is to provide a broader picture of the
dynamical localization in real space with a systematic study
of two different kick protocols in a tight-binding Hamiltonian,
observing its manifestation. Besides this, we aim to investigate
whether the dynamical localization is robust when the periodic
driving is slightly altered, say by performing drivings at
nonfixed periods.

This latter aspect has been experimentally investigated
in the cases of the atomic [33] and molecular quantum
kicked rotors [34,35], whose dynamical localizations are
obtained in momentum and angular momentum, respectively.
Deviations on the periods of the driving were shown to lead
to decoherence, ultimately recovering ergodic behavior. We
test these ideas in a lattice model where the localization is,
however, manifested in real space.

The presentation is structured as follows: In Sec. II we
introduce the model and describe the basics of Floquet systems.
Section III explores the dynamical localization under periodic
driving and the universality class of the transition, while Sec.
IV generalizes the problem for the situations where the kicks
in the lattice are no longer equally spaced in time. Lastly, Sec.
V summarizes our findings.

II. MODEL AND METHODS

We consider a 1D model of spinless fermions, in a lattice
with periodic boundary conditions, whose Hamiltonian reads

Ĥ = Ĥ0 + λ
∑

τ

δ(t − Tτ ) V̂ , (1)
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where Ĥ0 = −J
∑L

i=1 ĉ
†
i ĉi+1 + ĉ

†
i+1ĉi is the kinetic energy,

with ĉ
†
i (ĉi) a particle creation (annihilation) operator at site

i and J , the nearest-neighbor hopping amplitude, that we set
to unity (J = 1), defines the energy scale of the problem.
The second term V̂ = ∑L

i=1 Vi ĉ
†
i ĉi is the potential which is

applied onto the system at times Tτ . These act as kicks in time
by quenching the on-site energies of the lattice whose maximal
amplitude is given by λ. Note that τ is an integer, counting the
number of applied kicks.

We study two types of kicks where the site energies Vi are
either uncorrelated, as provided by an Anderson-like potential
V A

i with randomly selected energies within a symmetric
interval [−1,1], or in correlated cases as in a quasiperiodic
disordered case V AA

i = cos(2παi + ϕ), which emulates the
Aubry-André potential [8,36,37], acting only at instants of
time Tτ . We set α as the inverse golden ratio (

√
5 − 1)/2 and

the phase ϕ ∈ [0,2π ) allows a “disorder” average which can
reduce statistical and finite-size effects.

We will start by describing the physics that results on the
application of these kicks periodically in time, i.e., when Tτ =
τT . In this case, the Hamiltonian (1) is periodic and the Floquet
formalism will aid in the stroboscopic description of, e.g.,
the time evolution of a wave packet to determine whether
dynamical localization takes place or not.

Floquet basics

According to the Floquet theorem, the time-evolution
operator of a periodically driven system, described by a
time-periodic Hamiltonian Ĥ (t + T ) = Ĥ (t) with period T ,
can be written (in units where h̄ = 1) as [38–42]

Û (t) = P̂ (t) e−iĤeff t , (2)

where P̂ (t) = P̂ (t + T ) is a time-periodic operator with
P̂ (0) = Î being the identity and Ĥeff is the time-independent
Floquet Hamiltonian. After one driving period, the time-
evolution operator is

Û (T ) = e−iĤeffT =
∑
m

e−iεmT |θm〉〈θm|, (3)

where εm are the Floquet quasienergies, which are connected
to the eigenvalues of Û (T ), and |θm〉 are its eigenvectors,
that are stationary states at stroboscopic times of the driven
system. Note, however, the ambiguity in the definition of the
effective Hamiltonian in (3) since the Floquet quasienergies
can be shifted by a multiple of ω = 2π/T without affecting
the eigenvalues of Û (T ). In the case of time-periodic kicks,
the time-evolution operator can be written as a quantum map
[43] Û (T ) = e−iĤ0T e−iλV̂ . In general, there is no guarantee
that one can write down a closed form of the effective
time-independent Hamiltonian [42] which could potentially
represent an undriven physical system. For that, the Floquet
Hamiltonian should be in a form of a local operator and this
issue is related to the convergence of the Magnus expansion
often used to explicitly obtain Ĥeff in the high-frequency
limit (1/T � 1). Here, on the other hand, the simple form
of the stroboscopic evolution operator allows us to write
down the Floquet Hamiltonian by making use of the Baker-
Campbell-Hausdorff (BCH) formula exp X̂ exp Ŷ = exp{X̂ +

Ŷ + 1
2 [X̂,Ŷ ] + 1

12 [[X̂,Ŷ ],Ŷ ] + 1
12 [X̂,[X̂,Ŷ ]] + · · · }, as

Ĥeff = Ĥ0 + λ

T
V̂ − i

λ

2
[Ĥ0,V̂ ]

− λ2

12
[[Ĥ0,V̂ ],V̂ ] − T λ

12
[Ĥ0,[Ĥ0,V̂ ]] + · · · . (4)

In the high-frequency (1/T � 1) and small kick-amplitudes
(λ � 1) limits, the effective Hamiltonian thus assumes a
closed form,

Ĥeff = Ĥ0 + λ

T
V̂ . (5)

This effective time-independent Hamiltonian is reminiscent of
well known models of static quenched disorder as in the An-
derson [7] and Aubry-André [8] models, in the situation where
the associated kick-operator V̂ is now static and specified by
V A

i and V AA
i , respectively. Note, however, that the disorder

amplitudes become renormalized by the driving period T .
While the BCH formula gives us insights on the problem
in the high-frequency and small kick-amplitude limits, for
general parameter values, we use exact diagonalization of
the time-evolution operator to probe localization for different
parameters and in regimes not necessarily obeying these limits.

III. DYNAMICAL LOCALIZATION IN PERIODICALLY
KICKED SYSTEMS

A. Nonergodicity in the eigenstates

Dynamical localization can be probed in different ways.
From the experimental point of view, for example, one is
interested in checking if an initially localized wave packet
spreads or not in real space after subsequent kicks in the
system. While this can also be investigated theoretically
[31], one can easily infer localization (delocalization) by just
recalling its connections with nonergodic (ergodic) properties
[12]. In turn, the level of ergodicity can be quantified by the
inverse participation ratio (IPR) of the eigenvectors of the
time-evolution operator after one period (the Floquet operator)
Û (T ), which we define as Rm = 1/

∑
i |θm

i |4. In Fig. 1 we
report the average IPR, R = 〈1/

∑
i |θm

i |4〉m,r , as a function

0 1 2 3 4

λ

0.5

1.0

1.5

2.0

T

(a)

0 1 2 3 4

λ

0.5

1.0

1.5

2.0

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
R̄/L

FIG. 1. The mean IPR R/L as a function of the potential strength
λ and period T for Anderson (a) and Aubry-André (b) periodic
potential kicks as a contour plot. The purple (dark) regions denote the
regime where nonergodicity, and hence dynamical localization, takes
place while the yellow (light) regions where the system is ergodic
and delocalized. The system size is L = 1000 and we average over
10 realizations of disorder.
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of λ and T for the two kick protocols considered. Here 〈·〉m,r

denotes the average over all the eigenstates |θm〉 = ∑
i θ

m
i |i〉

in the site basis |i〉, also averaged over different realizations
r , where different realization consist of different choices of
random on-site energies and different ϕ’s, for Anderson and
Aubry-André potentials, respectively.

The average IPR quantifies the average spreading of the
eigenvectors in real space. In the absence of the potential
(λ = 0), all |θm〉 are plane waves, for which R = L and for
general delocalized states R ∼ O(L), whereas for perfectly
localized states R = 1. It has the advantage of not relying
on any specific details of initial states in which the system is
prepared but it is, however, basis dependent. That does not
constitute a problem since we aim in investigating dynamical
(de)localization in the real-space (site) basis which is also the
computational basis.

In Figs. 1(a) and 1(b), where we report the results for the
two disordered kick protocols (V A

i and V AA
i , respectively),

we notice that localization R ∼ O(1) is robust in the high-
frequency regime. In fact, with the prescription of the effective
Floquet Hamiltonian [Eq. (5)] valid when T � 1 and λ � 1,
we see that the critical values for the onset of dynamical
localization are λ/T = 0+ and λ/T = 2 that correspond to
the onset of localization in the static disordered Anderson and
Aubry-André models in one dimension, respectively, when
the disorder energy scale is renormalized by T . When the
frequency of the kicks decreases, the effective Hamiltonian
description given by (5) no longer holds and a more compli-
cated outcome of the ergodicity ensues with higher order terms
in (4) being necessary to explain its details.

To further understand the connection between the Floquet
Hamiltonian and the static disordered correspondents, we
explore the critical exponents of the dynamical localization at
the transition point λc/Tc = 2 for the case of the Aubry-André
potential. Thus we study the scaling properties of the average
IPR and compute the critical exponent ν, which describes the
divergence of the localization length ξ as ξ ∼ |λ − λc|−ν in
the vicinity of the transition. There, the average IPR exhibits

a scaling invariant form as R−1
Ld ∼ f [(λ − λc)L1/ν], where

d is related to the multifractal dimension of the wave function
[44,45]. In Fig. 2(a) we show how the IPR is abruptly reduced
(at λc = 2Tc) after increasing the kick strength for different
system sizes. The collapsed scaling form is depicted in the
inset. To simultaneously extract the critical exponents ν and
d that resulted in this plot, we systematically use the error
stemming from a high-order polynomial fitting of the points
correspondent to different system sizes, for a range of values
of ν and d. When the points coincide in a smooth curve, for the
best set of parameters {ν,d}, the associated error is small. This
linear-square fitting error S(ν,d,n) is depicted as a contour
plot in Fig. 2(b) for polynomial order n = 10. Its minimum
results in ν = 1.00 ± 0.01 (ν = 1 is the exact result [8]) and
d = 0.54 ± 0.01 which is in excellent agreement with the
numerical values obtained for static quasidisordered systems
[45]. The error bars are estimated from a range of ν and d with
compatible values of S.

While one would expect that the eigenvectors of the Floquet
operator U (T ) and of the effective Floquet Hamiltonian to
be equivalent when T � 1 and λ � 1 and, consequently, its
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FIG. 2. (a) The average IPR R/L for periodically kicked AA
model at fixed period T = 0.5 for different system sizes up to
L = 32 000. Inset shows the data collapse of the finite-size scaling.
(b) Contour plot of the fitting error as a function of fractional
dimensionality d and the critical exponent ν, which gives d =
0.54 ± 0.01 and ν = 1.00 ± 0.01. The polynomial fitting used is of
the order n = 10.

scaling properties as well, what is remarkable is that sensitive
quantities as the critical exponents do not suffer appreciable
modifications when one is not exactly in this regime, namely
at T = 0.5 and λ = 1.

B. Wave packet propagation

Besides the properties of the Floquet eigenvectors, we
also study the time evolution of an initially fully localized
state in the middle of the lattice: |ψ0〉 = |L/2〉 = ĉ

†
L/2|∅〉. We

follow the stroboscopic evolution by repeated application of
the Floquet operator Û (T ), i.e., after one period |ψ(T )〉 =
Û (T )|ψ0〉 and after a time t = τT , |ψ(τT )〉 = Û τ (T )|ψ0〉. To
quantify the degree of the initial wave packet spreading, we
use the root mean square of the displacement (RMSD), defined
as

σ (τ ) =
[∑

i

(i − L/2)2|ψi(τ )|2
]1/2

. (6)

An example of the time dependence of σ (τ ) for the case
of incommensurate kicks (Vi = V AA

i ), at fixed period of the
kicking T = 0.5 and for multiple kicking strengths λ, is
presented in Fig. 3(a). Starting with the case of vanishing
strength of the kick (λ → 0), the wave packet propagates
freely (ballistically) on the chain, resulting in a linear growth
of the RMSD with time, i.e., σ (τ ) ∝ τ . Ballistic spreading is
observed almost up to the critical value of the disorder strength
λ = 1, where the dynamical Anderson localization transition
occurs and the slope of σ (τ ) drops to zero. In the localized
regime (λ > 1), small oscillations of the σ (τ ) occur on a time
scale that is proportional to the diffusive spreading of the wave
packet within the localization length [12]. The shaded area
surrounding each curve depicts the standard error of the mean
after the averaging with different phases ϕ.
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FIG. 3. (a) The RMSD σ as a function of the number of kicks τ

for the AA model for various kick strengths λ at fixed period T = 0.5
in a system with L = 1000. The values of λ used are 0.0, 0.1, 0.2, ...,
1.5; 1.7 and 2.0 as schematically represented by the arrow, from darker
to lighter colors. Each line is averaged over ten different realizations
of ϕ, and the shaded area denotes the standard error. The lines can be
fitted by an expression σ ∝ τ γ , where γ is the diffusion exponent.
Black dashed line denotes the value of σ for a plane wave. (b) Fitted
γ as a function of kick strength λ and period T .

Due to the finiteness of the system, there is a maximum
RMSD a particle can reach, given as σmax = L/2 (in case
it is localized at either i = 0 or L as well as a quantum
superposition of both cases), whereas for our choice of
initial state the wave function becomes delocalized, thus it
oscillates around the value σpw = [(L2 + 2)/12]1/2 obtained
for a plane wave [dashed line in Fig. 3(a)]. By taking
this limitation into account, we fit the exponent of the
RMSD σ ∝ τ γ at intermediate time scales, avoiding the
short transient behavior at early times and the maximum
spreading at later ones that is manifest in finite-size systems.
Values of γ = 0, 1/2, and 1 indicate localization, diffusive,
and ballistic transport, respectively. The regime 0 < γ < 1/2
(1/2 < γ < 1) corresponds to subdiffusion (superdiffusion).
The phase diagram of the fitted γ is shown in Fig. 3(b)
and its similarity with the phase diagram extracted from IPR
[Fig. 1(b)] is evident: the previous nonergodic and ergodic
regions in the T vs λ diagram are connected to the localized
and ballistic spreading of the wave packet. At large periods
of the driving and large kick amplitudes, the effective Floquet
time-independent Hamiltonian [Eq. (5)], previously obtained,
no longer describes the stroboscopic time evolution and a
mixture of regimes of spreading ensues.

IV. DELOCALIZATION IN NONPERIODICALLY
DRIVEN SYSTEMS

Effects of decoherence in noninteracting systems that
display dynamical localization, as in the paradigmatic quantum
kicked rotor, were also experimentally investigated in the past.
Among these effects, experiments tried to induce additional
spontaneous emission in the trapped atoms that emulate
the quantum kicked rotor [46]; others tried to induce noise
in the amplitude of the periodic kicks [47]. In common,
both mechanisms result in delocalization of the atomic wave
function, leading to a quantum diffusive behavior.

A third type of mechanism which was later shown to induce
an unbounded growth of the total energy of the system is when
there is noise in the time period of the kicks, observed in atomic
and molecular quantum-kicked rotors [33–35]. Analogously,
here we consider a similar situation, by allowing that the
perfect periodicity of the kicks suffers from deviations in
our kicked lattice model. To model that, we assume that
the time between two consecutive kicks Tτ is a stochastic
variable distributed with equal probability between times
T − δt and T + δt . Thus, the time of the τ th kick is given
as tτ = tτ−1 + T + δtτ [48], with δtτ ∈ (−δt,δt), and δt < T

to obey causality. This timing noise scheme was used in the
experimental study of a quantum kicked rotor [33]. The time
evolution operator after τ kicks is

Ûτ = Û (Tτ )Û (Tτ−1) · · · Û (T1), (7)

with Tτ = tτ − tτ−1 and Û (Tτ ) = e−iĤ0Tτ e−iλV̂ . Note that the
randomness in the propagation time Tτ can be similarly
interpreted as randomness in the hopping energy J . This would
correspond to a situation where the energy scale of the problem
changes from kick to kick in a stochastic manner, affecting the
tunneling probabilities of each bond in the lattice.

In the following, we study the average IPR after a number
τ of aperiodic kicks, obtained from exact diagonalization of
Eq. (7). We start by checking how an increasing aperiodicity
δτ affects the “phase diagram” (Fig. 1) originally obtained
for the periodic driving. This is reported in Fig. 4 for a
fixed number (τ = 1000) of aperiodic kicks. We see that at
fixed small aperiodicity [δτ = T/32 in Figs. 4(a) and 4(d)]
the T vs λ diagram is mostly affected in the high average
period regime in comparison to the periodic case, where the
average IPR increases for both types of kicks considered. With
larger aperiodicity, the region of enhanced IPR progresses
towards lower average periods T , signaling that the dynamical
localization becomes less robust when δτ grows.

Now, we focus on another aspect, by fixing the aperiodicity
at δτ = T/2 and comparing the IPR phase diagram for
different number of kicks, as shown in Fig. 5, for the case
of AA potentials. We note that the larger number of aperiodic
kicks increases the area of enhanced average IPR. Thus, both
the aperiodicity and a larger number of kicks suggest to lead
the system to disrupt its original dynamical localization.

Both analyses provide a good qualitative picture of the lo-
calization (and its progressive destruction) under the aperiodic
driving. However, a more quantitative study is required to
see whether a characteristic number of kicks that leads to
delocalization can be obtained. For that we study the evolution
of the average IPR with the number of kicks τ in Fig. 6,

144301-4



DYNAMICAL LOCALIZATION AND THE EFFECTS OF . . . PHYSICAL REVIEW B 96, 144301 (2017)

0 1 2 3 4

0.5

1.0

1.5

2.0

T

δt = T/32

(a)

0 1 2 3 4

0.5

1.0

1.5

2.0

δt = T/32

(d)

0 1 2 3 4

0.5

1.0

1.5

2.0

T

δt = T/8

(b)

0 1 2 3 4

0.5

1.0

1.5

2.0

δt = T/8

(e)

0 1 2 3 4

λ

0.5

1.0

1.5

2.0

T

δt = T

(c)

0 1 2 3 4

λ

0.5

1.0

1.5

2.0

δt = T

(f)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
R̄/L

FIG. 4. Average IPR as a function of the λ and T after 1000
random kicks in the quantum-kicked Anderson and Aubry-André
model are shown. We compare three different aperiodicity magnitudes
δt = T/32, T/8, and T in (a), (b), and (c) for Anderson type kicks and
in (d), (e), and (f) for Aubry-André kicks, respectively. The system
size used is L = 1000 and we average over ten realizations of both
disorder and time sequence.

for increasing magnitudes of the aperiodicity δτ . We fix the
kick strength λ to 1, where the corresponding critical period
separating the localized and delocalized behavior if the kicks
were periodic in time is equal to Tc = 0.5. In Fig. 6(a) we start
with a very small perturbation of the periodic case δt = T/128
and note that the IPR begins to converge to 0.5 as the number
of kicks is increased. This convergence occurs with smaller
number of kicks when increasing the aperiodicity, as can
be seen in Figs. 6(b) and 6(c). This limit result could be
interpreted as being related to a fully delocalized state in the
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FIG. 5. Average IPR as a function of λ and T after τ = 100 and
τ = 1000 aperiodic kicks in the quantum-kicked Aubry-André model
is shown in (a) and (b), respectively. The system size used is L =
1000, aperiodicity δt = T/2, and we average over ten realizations of
both disorder and time sequence.
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FIG. 6. Average IPR as a function of the number of kicks in
the quantum-kicked Aubry-André model with λ = 1 in a lattice
with L = 1000. We compare three different aperiodicity magnitudes
δt = T/128, T/16, and T/2 in (a), (b), and (c), respectively. The
(black) dashed horizontal line represents the average IPR of a fully
delocalized wave function obtained from a random matrix belonging
to a GOE. In (c) we exemplify the characteristic number of kicks
τc in the delocalization process for the mean periodicity T = 0.45
(see text).

(real-space) basis: If one starts with a random matrix A (whose
eigenstates by definition are maximally delocalized) belonging
to the Gaussian orthogonal ensemble (GOE), we notice that
the average mean IPR of the matrix eiA is exactly 0.5. As a
consequence, delocalization sets in once the number of kicks is
large enough. However, for periods smaller than Tc we notice
that the growth of the average IPR towards the 0.5 limit is rather
slow for small values of δt . Yet, if one increases the aperiodic
effects [Figs. 6(b) and 6(c)] the growth rate deep in the once
localized regime increases, and the dynamical localization is
progressively erased. This absence of localization in real space
due to phase decoherence of the eigenvectors is similar to
what is observed in the atomic and molecular quantum-kicked
rotors [33–35], where the original dynamically localized state
in momentum or in angular momentum is destroyed after the
noise in time is introduced.

Although the increase of the IPR towards the delocalized
result (0.5) after sufficient number of aperiodic kicks is
suggestive of overall delocalization, one needs to check the
sensitivity of the results to finite-size effects, and to see whether
there exists a finite disorder in time that triggers the breakdown
of dynamical localization. To test both conditions, we define
a characteristic number of kicks τc, at which the average IPR
reaches 1/e of the final value, i.e., R(τc)/L = 0.5/e [49]. In
Figs. 7(a) and 7(c) we show the dependence of τc on different
kick aperiodicities δt for different system sizes and mean
kick periods T , in the cases of Anderson and Aubry-André
kicks, respectively. We notice that the characteristic number
of kicks τc is nearly proportional to the system size L in
both schemes, since τc/L does not substantially change for
different values of T and δt . Besides, the ratio τc/L displays
a power-law behavior on the aperiodicity (τc/L) ∝ (δt/T )α ,
with α ≈ −2, as shown by the dashed lines that depict
the fitting using this functional form. This tells us that a
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FIG. 7. Characteristic number of kicks τc (normalized by the
system size L) for the delocalization of eigenstates due to aperiodicity
for Anderson and Aubry-André kicks in (a) and (c), respectively, as
a function of the aperiodicity δt/T ; note the log-log scale used.
The extracted slopes of the linear fit (depicted by the dotted lines
for the smallest system size) are −1.85 ± 0.05 and −1.93 ± 0.02
for T = 0.45 and T = 0.25, respectively, for Anderson kicks shown
in (a) and −1.91 ± 0.02 and −1.99 ± 0.01 for T = 0.45 and T =
0.25, respectively, for Aubry-André kicks shown in (c). Vertical
dash-dotted lines denote the maximum amount of aperiodicity since
δt/T < 1. (b) and (d) The dependence of the ratio τc/L as a function
of T at fixed aperiodicity δt = T/2, for Anderson and Aubry-André
kicks, respectively. Vertical full (dashed) line depicts the transition
value in the case of Aubry-André kicks for λ = 0.3 (1.0). The
characteristic number of kicks for each point was determined from
the average of 10, 100, and 1000 time and disorder realizations
for the cases where τc > 1000, 1000 > τc > 100, and τc < 100,
respectively.

smaller number of kicks are necessary to induce delocal-
ization once the disorder in the time periodicity is enhanced.

Furthermore, we investigate how the delocalization is
affected at fixed aperiodicity δt . If one starts deeper in
the formerly dynamically localized regime, were the kicks
periodic in time [i.e., for values of the ratio λ/T much smaller
than the critical value for the Aubry-André kicks (λ/T )c = 2]
a larger amount of kicks is necessary to induce delocalization.
This is exemplified by the two sets of points in Fig. 7(c),
for T = 0.25 and 0.45. The critical period at the fixed kick
strength λ = 1 is Tc = 0.5, and the number of kicks to reach
τc is approximately one order of magnitude smaller in the latter.
We systematically investigate this in Fig. 7(d), where we show
the ratio τc/L as a function of T at fixed δt = T/2. This ratio
decreases monotonically when approaching the dynamical
localization transition marked by the vertical full (dashed) line
for λ = 0.3 (1.0).

Similarly, in the case of Anderson-type kicks [Figs. 7(a) and
7(b)], we see that a larger τc is necessary to induce delocaliza-

tion if one is close to the robust limit of dynamical localization
for periodic kicks, namely, at high frequencies (T → 0).
Overall, these results suggest that any nonzero aperiodicity
δt leads to eventual delocalization after sufficient number of
aperiodic kicks. However, even for large aperiodicity, we see
that the number of kicks necessary to destroy localization rises
considerably when both moving further in the localized regime
(with smaller periodicity T ) and when increasing the kicking
strength (with larger λ).

Finally, we study the wave packet propagation that is
manifestly relevant for experiments. As in Sec. III B, we
set an initial localized state in the middle of the chain and
follow the stroboscopic evolution after applying a series of
aperiodic kicks. In Figs. 8(a) and 8(b) we show snapshots of the
probability distributions after different number of kicks τ , for
a periodic and a nonperiodically kicked system, respectively.
In the periodic case, the localized state initially spreads until
it becomes exponentially localized, when the wave packet
reaches the localization length for the set of parameters T

and λ used (0.45 and 1.0, respectively), after a sufficient
number of kicks. One can use an exponential fitting of the
form |ψi(τ )|2 ∝ exp (|i − L/2|/ξloc) to find the localization
length to be ξloc = 4.2 ± 0.1, which is much smaller than the
actual system size L = 1000.

In contrast, the aperiodic kicking causes diffusion of
the initial state, and the probability distribution can be
approximated by a Gaussian function of the form |ψi(τ )|2 =
[2πσ 2(τ )]−1/2 exp[− (i−L/2)2

2σ 2(τ ) ] (dotted lines) at subsequent
times. The width σ of the wave packet has a power-law depen-
dence on the number of kicks in the case of diffusive spreading.
This is confirmed in Fig. 8(c), where we compare the fitted
wave function spreading σf (τ ) with the one calculated by
Eq. (6). Both curves give the dependence σ (τ ) ∝ τ γ with
γ = 0.49 and 0.5 for calculated and fitted data, respectively,
confirming the diffusive aspects in the nonperiodic setting of
the kicks. Note that for a Gaussian wave packet one can also
calculate the IPR RG in the limit σ (τ ) � L, which gives
RG(τ ) = 2

√
πσ (τ ), thus the IPR of the Gaussian state is

proportional to σ (τ ) as presented in Fig. 8(c). Lastly, we
revisit in Fig. 8(d) the dependence on the number of kicks
of the average mean IPR for the aperiodic case. This is to be
compared to Fig. 6(c), with a similar set of parameters. We now
identify, however, the increasing IPR of the eigenstates of the
time evolution with the correspondent density distributions by
the circles with compatible colors of Fig. 8(b), representing the
same number of kicks. We see that after the wave packets start
reaching the ends of the lattice, the saturation to a fully delocal-
ized state (R/L ∼ 0.5) is asymptotically approached. In this
regime, this would correspond to the flattening of the Gaussian
distribution which will be only obtained when τ → ∞.

V. SUMMARY

We studied the phenomenon of dynamical localization
and its breakdown in a driven lattice model. The driving,
consisted of kicks in time that quench the on-site energies
of the lattice, leads to localization in real space provided
that it is periodic and its frequency is large. We evaluate this
for two types of kicks, where the on-site energies are either
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FIG. 8. Probability density distributions of an initially localized state after various numbers of kicks, for periodic and aperiodic case, with
δt = T/2, are shown in (a) and (b), respectively. The probabilities are displayed after τ = 100, 1000, 10 000, 40 000 kicks in (a) and after
τ = 100, 1000, 10 000, 20 000, 30 000, 40 000 aperiodic kicks in (b); note the logarithmic scale on the y axis. Dotted lines in (a) and (b) denote
exponential and Gaussian fits, respectively. (c) The wave function spreading σ as a function of the number of aperiodic kicks, calculated by
Eq. (6) in full black line and obtained from fitting a Gaussian function to the probabilities (red dotted line). (d) The average IPR as a function
of the number of aperiodic kicks. The characteristic number of kicks in this case is τc ≈ 756. The circles in (c) and (d) highlight the values of
σ and R/L, respectively after the same number of kicks as in (b). The parameters used are λ = 1, T = 0.45, and system size L = 1000.

instantaneously disordered or when they are quasiperiodic in
space. By finding a time-independent effective Hamiltonian
in the high-frequency regime, we identify the transitions to
dynamical localization to be correspondent to the ones in
static cases, provided one rescales the kick amplitudes by
the period of the driving. When we consider the kicks to be
no longer regularly spaced in time, we notice an unbounded
increase of the widths of the probability distributions of
the wave packets in real space after successive kicks, when
starting from an initially localized state. That is similar to
the observed decoherence effects obtained for atomic and
molecular quantum kicked rotors. Moreover, we notice that
an effective delocalization takes more kicks to develop if
the system is in regimes of parameters that are deep in the
dynamically localized phase, were the kicks periodic in time.
Although the number of kicks that leads to delocalization

increases, our results suggest that any finite aperiodicity lead
to the destruction of localization for long enough drivings and
this conclusion is not systematically affected by finite size
effects.
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Tτ = T + δt̃τ , where δt̃τ = δtτ−1 − δtτ , i.e., δt̃τ is a convolution
of two stochastic distributions. For example, the extracted
power-law exponents α in the expression (τc/L) ∝ (δt/T )α ,
as given in Fig. 7(c) are −1.88 ± 0.01 and −1.98 ± 0.01 for
T = 0.45 and T = 0.25, respectively, for Aubry-André kicks
which is in close agreement with the results for the other
aperiodic scheme used.

[49] Other definitions of characteristic critical values for models
of exponential saturation could be used as, for example,
R(τ̃c)/L = 0.5(1 − e−1). We notice though that this latter
definition results in computationally prohibitively large values
of the characteristic number of kicks related to delocalization,
if one investigates the situation that were originally deep in the
localized regime for periodic kicks.
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