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Anderson localization in generalized discrete-time quantum walks
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We study Anderson localization in a generalized discrete-time quantum walk—a unitary map related to a
Floquet driven quantum lattice. It is controlled by a quantum coin matrix which depends on four angles with
the meaning of potential and kinetic energy, and external and internal synthetic flux. Such quantum coins can be
engineered with microwave pulses in qubit chains. The ordered case yields a two-band eigenvalue structure on
the unit circle, which becomes completely flat in the limit of vanishing kinetic energy. Disorder in the external
magnetic field does not impact localization. Disorder in all the remaining angles yields Anderson localization. In
particular, kinetic-energy disorder leads to logarithmic divergence of the localization length at spectral symmetry
points. Strong disorder in potential and internal magnetic field energies allows one to obtain analytical expressions
for spectrally independent localization length, which is highly useful for various applications.
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I. INTRODUCTION

Quantum random walks were introduced by Aharonov
et al. [1] as a counterpart to classical random walks, with
the quantum version having much larger path length due
to quantum interference. The quantum computing commu-
nity developed these concepts substantially, e.g., in order
to implement a variety of quantum logical elements and
protocols [2,3]. One should differentiate between so-called
continuous-time quantum walks and discrete-time quantum
walks (DTQW). Continuous-time quantum walks are essen-
tially time-dependent Schrödinger equations on tight-binding
networks generated by corresponding Hamiltonians. Discrete-
time quantum walks (DTQW) are the subject of the present
work. DTQW are unitary maps on certain networks (graphs).
The generating Hamiltonian is not known and needed, al-
though DTQW can be loosely related to the procedure of
integrating a certain Hamiltonian over a finite time. DTQW
realizations are closely related to a number of concepts
in condensed-matter physics, including chirality and bulk-
boundary correspondence [4], novel topological phases [5],
and the impact of disorder on the DTQW dynamics [6–9].
DTQW were implemented in numerous experimental setups,
including quantum optical systems [10], ion traps [11], and
nuclear magnetic resonance systems [12].

The DTQW have two ingredients—a quantum coin and
a shift (register) operation. So far, quantum coins have
been chosen mainly from single-parameter (angle) operator
distributions, including the well-known case of the Hadamard
coin [13,14]. However, the most general quantum coin belongs
to a four-parameter (angle) family of operators, as shown
below. It has been shown [15] that generalized coins allow for
improved control and optimization. Such a general coin can be
implemented in an optical setup utilizing beam splitters [16],
and some parameters may be controlled in other setups [17].
We will study the impact of disorder in any of the angles
on the DTQW dynamics. We find Anderson localized phases
and rigorously derive scaling relations for weak and strong
disorder, and close to symmetry-related values in the spectrum.
DTQW turn out to be versatile machines not only for quantum

computing, but also as model systems for condensed-matter
problems, which can be efficiently addressed by avoiding a
number of computational troubles known from Hamiltonian
dynamics.

The paper is organized as follows: in Sec. II, we present the
model, elaborate the quantum mechanical dynamic equations,
calculate the dispersion relationship ω(k) for a generic type of
discrete-time quantum walk, provide a symmetry analysis of
dynamic equations, and introduce a transfer matrix approach
for a discrete-time quantum walk. In Sec. III, we present
numerical results on the localization length dependence on
the model parameters. In Sec. IV, we perform analytical
derivations of the localization length in the limit of weak and
strong disorder, and at symmetry points in the spectrum. We
discuss and conclude in Sec. V.

II. MODEL

Let us consider a single quantum particle with an internal
spin degree of freedom, moving on a one-dimensional lat-
tice. The dynamics of the quantum particle is characterized
by a time- and lattice-site-dependent two-component wave
function. Assume that it evolves under the influence of some
periodic Floquet drive. Then, its evolution can be mapped
onto a sequence of unitary maps. As a result, the components
of the quantum particle wave function transfer to the right or
to the left, and the quantum mechanical amplitudes of such
hopping are determined by quantum coin operators acting
independently on each site (Fig. 1).

The dynamics of a quantum particle is characterized by a
two-component wave function, ψ̂n(t) = {ψ+,n,ψ−,n}, which is
defined at discrete times (t) and on lattice sites (n). A single-site
coin operator Û is a general unitary matrix of rank 2,

Û =
(

a b

c d

)
= eiϕ

(
eiϕ1 cos θ eiϕ2 sin θ

−e−iϕ2 sin θ e−iϕ1 cos θ

)
. (1)

A generic coin operator is completely determined by four
angles ϕ,ϕ1,ϕ2, and θ . As it will become evident below, they
can also be related to a potential energy, external and internal
synthetic flux, and a kinetic energy, respectively. The coin
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FIG. 1. The schematics of the discrete-time quantum walk. The
arrows indicate the directions of a single step transfer.

operator can be implemented as an arbitrary two-level system
subject to time-dependent perturbations of different durations
[17–20]. The coupling between the coin operators Ûn and the
quantum particle has a form, Ŝ = ∑

n |n〉 〈n| ⊗ Ûn, where the
angles ϕ,ϕ1,ϕ2, and θ can vary from site to site.

The transfer operator is defined as

T̂± =
∑

n

|n〉 〈n + 1| ⊗ |∓〉 〈∓| + |n〉 〈n − 1| ⊗ |±〉 〈±| ,

(2)

and we will use T+ across the paper. Thus, the discrete-time
quantum walk is described as the sequence of successive Ŝ

and T̂+ operators. The schematic of such dynamics is shown
in Fig. 1 and the equations read

ψ̂n(t + 1) = M̂+ψ̂n−1(t) + M̂−ψ̂n+1(t), (3)

where the matrices M̂± for the translationally invariant case of
identical quantum coins are written explicitly as

M̂+ =
(

ei(ϕ1+ϕ) cos θ ei(ϕ2+ϕ) sin θ

0 0

)
(4)

and

M̂− =
(

0 0
−ei(ϕ−ϕ2) sin θ ei(−ϕ1+ϕ) cos θ

)
. (5)

The resulting unitary eigenvalue problem is solved by finding
the eigenvectors {ψ̂n} with ψ̂n(t + 1) = e−iωψ̂n(t) and the
eigenvalues e−iω, where ω is the eigenfrequency of the
discrete-time quantum walker.

A. Ordered case

In the absence of spatial disorder, all coin operators are
identical, and the unitary map equations (3) are invariant under
discrete translations. The eigenvectors are then given by plane
waves, ψ̂n = eiknψ̂(k), where k is the wave vector and ψ̂(k) is
the two-component eigenvector in the Bloch basis (also called
polarization vector). The quantum particle dynamics is then
fully determined by the dispersion relation

cos (ω − ϕ) = cos θ cos (k − ϕ1). (6)

The spectrum consists of two bands. The polarization vectors
are obtained as

ψ+,k

ψ−,k

= ei(ϕ2−ϕ1) cos θ − ei([ω(k)−ϕ]−[k−ϕ1])

sin θ
. (7)

It follows that θ is a kinetic-energy parameter which controls
the width of each band from its maximal value π for θ = 0
to a dispersionless (flat) band with width zero for θ = π/2.
The angle ϕ corresponds to a potential-energy term which

FIG. 2. The dispersion relation ω(k) for different values of θ :
θ = 0 (no gap, black solid line), π/4 (finite gap, blue line), π/2 (flat
bands, red lines). Here, ϕ = ϕ1 = 0.

renormalizes the frequency ω. The angle ϕ1 renormalizes
the wave number k similar to a flux threading a large one-
dimensional chain with periodic boundary conditions. The
angle ϕ2 instead relates to an internal synthetic flux which
impacts the phase shift between the two components of the
polarization vector only.

For a generic value of θ , the two bands have finite width and
are gapped away from each other (e.g., blue lines, θ = π/4
in Fig. 2). For θ = 0, the two bands turn into straight lines
which cross, leading to a vanishing gap and a one-dimensional
Dirac-like cone (black lines in Fig. 2). Finally, for θ = π/2,
the spectrum ω(k) = ϕ ± π/2 consists of two flat bands
(Fig. 2). This corresponds to macroscopic degeneracy. Linear
combinations of Bloch eigenstates are easily shown to allow
for compact (two-site) localized states residing on a pair of
neighboring sites m and m + 1:

ψ̂n = 1√
2

(
1
0

)
δn,m + 1√

2

(
0

ie−iϕ2

)
δn,m+1. (8)

B. Symmetries

For arbitrary unitary coin operators, the quantum walk (3)
possesses bipartite or sublattice symmetry, since even/odd sites
are connected to odd/even sites only. The bipartite lattice sym-
metry implies that the spectrum is invariant under frequency
shifts ω → ω + π with the following transformation rules for
eigenvectors:

{ω , ψ̂n} → {ω + π , (−1)nψ̂n}. (9)
Note that any arbitrary spatial disorder in the coin operators is
preserving the sublattice symmetry.

For site-independent angles ϕn ≡ ϕ and ϕ1,n ≡ ϕ1, the
quantum walk (3) possesses an additional particle-hole sym-
metry, which implies that the spectrum is invariant under
frequency shifts ω → −ω + 2ϕ with the following transfor-
mation rules for the eigenvectors:

{ω,ψ+
n ,ψ−

n } →
{

−ω+2ϕ,ψ+∗
n exp

[
2i

(
ϕ2−

n∑
m=−∞

ϕ1,m

)]
,

ψ−∗
n exp

[
−2i

(
n−1∑

m=−∞
ϕ1,m

)]}
. (10)
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C. Disorder and transfer matrix approach

We turn to the disordered case where any of the quantum
coin angles (ϕ,ϕ1,ϕ2) or θ are assumed to be uncorrelated
random functions of the quantum particle position n. In this
case, the transfer matrix approach is useful for both numerical
and analytical approaches of computing the localization
length. With Eq. (3), it follows

e−iωψ+,n = ei[ϕ1,(n−1)+ϕn−1] cos θn−1ψ+,(n−1)

− ei[ϕ2,(n−1)+ϕn−1] sin θn−1ψ−,(n−1) , (11)

e−iωψ−,n = e−i[ϕ2,(n+1)−ϕn+1] sin θn+1ψ+,(n+1)

+ ei[−ϕ1,(n+1)+ϕn+1] cos θn+1ψ−,(n+1) . (12)

The usual transfer matrix for a one-dimensional lattice with
two components per lattice site and nearest-neighbor coupling
is expected to have rank 4. However, the special structure of
the shift operator (2) allows one to reduce the transfer matrix
rank to 2. This can be observed with a redefinition of the
two-component field �̂n = (ψ+,(n); ψ−,(n−1)), which then leads
to the transfer matrix equation

�̂n = T̂n−1�̂n−1, (13)

where the transfer matrix T has a following form:

T̂n = eiϕ1,n

(
eiω+iϕn sec θn eiϕ2,n tan θn

e−iϕ2,n tan θn e−iω−iϕn sec θn

)
. (14)

It follows that disorder in the external synthetic flux ϕ1

does not lead to the localization of the quantum particle
wave function, since such a disorder is only modifying the
phase difference on neighboring sites, while keeping the
amplitude ratio unchanged. However, uncorrelated disorder
in all other quantum coin angles θn (kinetic energy), ϕn

(potential energy), and ϕ2,n (internal synthetic flux) will lead
to Anderson localization, as discussed in what follows. We
will use probability distribution functions

P(x) = 1/(2W ) , x0 − W � x � x0 + W, (15)

and P(x) = 0 elsewhere, where x stands for any relevant
angle and x0 is the corresponding first moment (average). The
disorder strength 0 � W � π .

III. NUMERICAL COMPUTATION OF
THE LOCALIZATION LENGTH

In this section, we numerically compute the localization
length Lloc(ω) using the canonical approach elaborated, e.g.,
in Ref. [21]. We start with a nonzero �̂0 and repeatedly
apply randomly generated matrices (14) to this wave function
according to (13). We use |�̂n| = √|�+,n|2 + |�−,n|2 and
compute the Lyapunov exponent at the N th iteration as

λN = 1

N

N∑
n=1

ln
(∣∣�̂n

∣∣). (16)

The localization length is then obtained as [21]

Lloc = 1/λN . (17)

FIG. 3. The dependence of the localization length on the fre-
quency ω for disorder in ϕ. From top to bottom at ω = π/2: W =
π/20,π/5,π/2,π . Here, θ = π/4. The red vertical lines indicate the
boundaries of the allowed bands (6).

In order to ensure convergence, we used N = 106−109

matrices. The validity of the approach was cross checked by
direct diagonalization for large finite systems. We further note
that for a disorder which is weak as compared to the gap of
the band structure of the ordered case, the density of states
deep in the gap will be strictly zero. Nevertheless, the transfer
matrix approach will generate a certain (finite) localization
length, which will correspond to some additional fictitious
defect state with a corresponding frequency.

A. Disorder in ϕ

We remind the reader that the angle ϕ can be interpreted
as a potential energy. The corresponding disorder is similar
to diagonal disorder for tight-binding Hamiltonians [21].
Without loss of generality, we can take x0 = 0 in (15). We
observe that the localization length Lloc is always finite for
any finite but nonzero strength of the disorder W ; see Fig. 3.

For weak disorder W � π , we find that Lloc is large as the
frequency ω is inside the allowed bands of the ordered case
(6) and decreases rapidly as the frequency ω moves inside
the gaps, with an anomalous enhancement of Lloc at the band
centers ω = ±π/2. As the strength of disorder increases, the
localization length variations diminish, and remarkably Lloc

becomes independent of ω for W = π . Variation of θ does
not qualitatively change the outcome. However, in the special
case θ = ±π/2, the localization length vanishes, Lloc = 0.
Indeed, the eigenstates are then still compactly localized in
full accord with (8), while the eigenfrequencies simply become
ωn = ±π/2 + ϕn.

B. Disorder in ϕ2

We remind the reader that the angle ϕ2 can be interpreted as
an internal synthetic flux. Without loss of generality, we can
take x0 = 0 in (15). We observe that the localization length
Lloc is always finite for any finite but nonzero strength of
the disorder W ; see Fig. 4. For weak disorder W � π , the
localization length Lloc is almost independent of ω inside the
bands of the ordered case, with a small peak in the center of
each band (ω � π/2). The localization length inside this peak
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FIG. 4. The dependence of the localization length on the fre-
quency ω for disorder in ϕ2. From top to bottom at ω = π/2: W =
π/20,π/5,π/2,π . Here, θ = π/4. The red vertical lines indicate the
boundaries of the allowed bands (6).

can double this value as compared to the plateau values outside
the peak; see Fig. 5. However, according to our computations,
the localization length stays finite at the peak center for finite
disorder strength (inset, Fig. 5). For strong disorder W = π ,
the localization length is frequency independent; see Fig. 4.
Variation of θ does not qualitatively change the outcome.
However, in the special case θ = ±π/2, the localization length
vanishes, Lloc = 0. The eigenstates are then still compactly
localized in full accord with (8), while the eigenfrequencies
simply become ωn = ±π/2 + ϕ.

C. Disorder in θ

We remind the reader that the angle θ can be interpreted
as a kinetic energy of a quantum particle, which controls the
bandwidth. At variance to the previous cases, the localization
length will diverge logarithmically at the band centers ω =
±π/2 [7], and results in general depend on the average x0 =
θ0 in (15). While the divergence is barely seen in Fig. 6, it

FIG. 5. The localization length for weak disorder in ϕ2 near
the band center ω = π/2 (θ = π/4). Here, W = π/50. Symbols
are the results of computations; lines are guides for the eye. Inset:
Same as main figure, but resolving the frequency dependence of the
localization length on a logarithmic scale close to the band center.

FIG. 6. The dependence of the localization length on the fre-
quency ω for disorder in θ . From top to bottom at ω = π/2: W =
π/20,π/5,π/2,π . Here, θ = π/4. The red vertical lines indicate the
boundaries of the allowed bands (6).

becomes evident in the zoom in Fig. 7(a). A further logarithmic
divergence of the localization length is observed at ω = 0,π

for the special case of zero average θ0 = 0; see Fig. 8.

IV. ANALYTICAL RESULTS ON THE LOCALIZATION
LENGTH

In order to provide the analytical results for the localization
length Lloc for different types of disorder, we use methods
of stochastic equations for the phase and amplitude of the
wave function, which has been previously used successfully
for a one-dimensional tight-binding model with diagonal and
off-diagonal disorder [22–24]. These methods allow us to
systematically study the dependence of the localization length
on all relevant parameters.

FIG. 7. The numerically calculated dependence of the localiza-
tion length Lloc on the characteristic frequency ω near the band
center ω = π/2 for disorder in θ . The average angle θ0 = π/4 and
the strength of disorder W = π/2. Symbols: results of numerical
computations; lines are a guide for the eye. Inset: Resolving the
frequency dependence of the localization length on a logarithmic scale
close to the band center. Symbols: results of numerical computations.
The straight line is a linear fit of the data.
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FIG. 8. The numerically calculated dependence of the localiza-
tion length on the frequency close to ω = 0 for disorder in θ . The
strength of disorder W = π/2, and the average angles θ0 = 0 (red
circles) and θ0 = π/4 (blue squares). Symbols: results of numerical
computations; lines are a guide for the eye. Inset: Same as main figure,
but resolving the frequency dependence of the localization length on
a logarithmic scale close to ω = 0. The straight line is a linear fit of
the data.

A. Weak disorder

For weak disorder W � π , we rewrite the transfer matrix
in the following form: T̂ = T̂0 + T̂d , where the matrix T̂0 is
the transfer matrix of the discrete-time quantum walk in the
absence of disorder. T̂0 contains the average angle θ0, and the
average values of the angles ϕ,ϕ2 can be zeroed without loss
of generality. The matrix T̂d randomly changes from site to
site.

As a next step, we choose a basis in which T̂0 is diagonal.
The corresponding unitary matrix is

Ŝ =
(

tan θ0 iξ

−iξ tan θ0

)
, (18)

where ξ = sin ω sec θ0 − sin k, and k is determined by disper-
sion relationship for a fixed value of ω in (6). In the new basis,
the transfer matrix T̂0 is written as

ˆ̃T0 = Ŝ−1T̂0Ŝ =
(

eik 0
0 e−ik

)
. (19)

Similarly, the disorder-dependent part of the transfer matrix
Td results in ˆ̃Td = Ŝ−1T̂d Ŝ:

ˆ̃Td =
(

αn βn

β∗
n α∗

n

)
, (20)

where the parameters αn and βn are functions of the random
quantum coin angles and the average θ0.

We obtain a stochastic equation for the wave function �̃+,n,

�̃+,n = [eik + αn]�̃+,n−1 + βn�̃
∗
+,n−1. (21)

Introducing the amplitude rn and phase χn of the wave function
�̃+,n as �̃+,n = rne

iχn , we arrive at

rn

rn−1
ei[χn−χn−1−k] = 1 + e−ikαn + ei[−2χn−1−k]βn. (22)

Thus, if the frequency ω is located inside of the frequency
band gap (see Fig. 2), the corresponding wave vector k takes

an imaginary value and, therefore, one can conclude that the
localization length Lloc is bounded from above by 1/|Im(k)|.

If the frequency ω is located in the allowed frequency range
of the ordered case, the wave vectors k take real values. For
weak disorder W � π , the values of αn and βn are small
and of the order of W . Then it follows that rn and (χn −
χn−1) vary weakly from site to site. Replacing the discrete-site
variable n by a continuous variable u and replacing differences
by differentials, e.g., rn−1 → r(u) − dr/du, we arrive at the
following differential equations:

d(lnr)

du
= Re[α(u)] cos(k) + Im[α(u)] sin(k) + Re[β(u)]

× cos(2χ + k) + Im[β(u)] sin(2χ + k),

dχ

du
= k − Re[α(u)] sin(k) + Im[α(u)] cos(k) + Im[β(u)]

× cos(2χ + k) − Re[β(u)] sin(2χ + k). (23)

For uncorrelated disorder, we solve Eqs. (23) by using a
standard perturbation analysis. In particular, we integrate the
second equation in (23), insert the result into the first equation,
expand up to second-order terms in α(u) and β(u), and discard
fast oscillating terms. After a final averaging over disorder, we
obtain an exponential increase of the amplitude of the wave
function, 〈ln(r)〉 = u/Lloc, with the localization length

Lloc = 4

〈|β(u)|2〉 . (24)

Here, 〈|β(u)|2〉 ≡ N−1 limN→∞
∑N

n=1 |βn|2. Note that the
perturbation analysis and Eq. (24) are not valid if the wave
vector k is close to the special points k = 0,±π/2,±π .

1. Disorder in ϕ

For disorder in ϕ, the random transfer matrix T̂d takes a
diagonal form,

T̂d = sec θ0

(
eiω[eiϕn − 1] 0

0 e−iω[e−iϕn − 1]

)
. (25)

Rotating this matrix to the new basis, we obtain the parameter
βn as

βn = tan θ0

sin k
[cos k sin ϕn − sin ω sec θ0(1 − cos ϕn)] .

With Eq. (24) this leads to the final result,

Lloc = 4 sin2(k) cot2(θ0)

(W 2/3) cos2 k + sin2 ω sec2 θ0(W 4/20)
. (26)

We obtain that the localization length Lloc ∼ 1/W 2. However,
for ω = ±π/2, this scaling is replaced by Lloc ∼ 1/W 4, which
leads to a strong enhancement of the localization length. This
is the explanation for the observed anomalous enhancement of
the localization length in Fig. 3. In addition, the special gapless
case θ0 = 0,π yields complete delocalization Lloc → ∞, as
can be also easily observed from the original equations (11)
and (12).

These features are in a good agreement with the numerical
computations from the previous section (see Fig. 3). In
particular, the analytical result (26) is in excellent agreement
with the computed dependency of Lloc(ω = π/2) on the
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FIG. 9. The localization length as a function of the disorder
strength for disorder in ϕ for ω = π/2 (band center). Solid lines:
the analytical result (26); symbols: numerical computations. Here,
θ0 = π/8,π/4,3π/8, from top to bottom. The predicted scaling
Lloc ∼ 1/W 4 is observed.

strength of disorder for different values of θ , as shown in
Fig. 9.

We proceed with estimating the localization length on
the boundaries of the spectrum ω(k) of the ordered case by
choosing, e.g., the limit k � 1 (ω ≈ θ0). Using (26), we obtain
Lloc = 12k2/(tan2 θ0W

2). On the other hand, for ω values
located inside of the gap, Lloc � 1/|k|. Both equations can
be satisfied by the following scaling of the localization length
on the boundaries of the spectrum:

Lloc = η tan−2/3(θ0)W−2/3, (27)

where η is an unknown prefactor of the order of one. In
Fig. 10, we compare the numerically calculated dependence
of Lloc(ω = θ ) on W with the analytical prediction (27) for
various values of θ0. We find excellent agreement with just
one fitting parameter η = 1.36 for all cases.

FIG. 10. The localization length as a function of the disorder
strength for disorder in ϕ for ω = θ0 (band edge). Solid lines: the an-
alytical result (27) with η = 1.36; symbols: numerical computations.
Here, θ0 = π/8,π/4,3π/8, from top to bottom. The predicted scaling
Lloc ∼ 1/W 2/3 is observed.

FIG. 11. The mean localization length inside the band as a
function of the disorder strength for disorder in ϕ2. Solid lines: the
analytical result (29) with an additional fitting parameter η = 0.5;
symbols: numerical computations. Here, θ0 = π/8,π/4,3π/8, from
top to bottom. The predicted scaling Lloc ∼ 1/W 2 is nicely observed.

2. Disorder in ϕ2

For disorder in ϕ2, the random transfer matrix T̂d has only
nonzero off-diagonal terms,

T̂d = tan θ0

(
0 eiϕ2,n − 1

e−iϕ2,n − 1 0

)
. (28)

Rotating this matrix to the new basis, we obtain the parameter
βn as

βn = −iϕ2,n tan θ0.

With Eq. (24), this leads to the final result,

Lloc = 12

tan2 θ0W 2
. (29)

The localization length is independent of ω for frequencies
ω inside the bands, which explains the observed plateaus in
Fig. 4. The predicted scaling with W and θ0 is in excellent
agreement with computational results as shown in Fig. 11,
with the numerical prefactor being 6 instead of 12.

3. Disorder in θ

For disorder in θ , the random transfer matrix T̂d takes the
following form:

T̂d = θn

cos2 θn

(
eiω sin θ0 1

1 e−iω sin θ0

)
. (30)

Rotating this matrix to the new basis, we obtain the parameter
βn as

βn = sin ω

sin k cos θ0
θn.

With Eq. (24), this leads to the result

Lloc = 12 sin2 k cos2 θ0

W 2 sin2 ω
. (31)

We find that the localization length scales as Lloc ∼ 1/W 2,
similar to the previous cases. At the band edge k � 0 (ω �
±θ ), the localization length scales similar to the case of ϕ

disorder as Lloc � (tan2 θ0W
2)−1/3.
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However, at the band center, we observed a logarithmic
divergence of the localization length from numerical computa-
tions; see Fig. 7. The divergence of the localization length at the
precise band center was derived in Ref. [25]. This follows from
the fact that the parameter αn in Eq. (20) is strictly vanishing
at the band center. Therefore, αn is a higher-order perturbation
term and can be neglected close to the band center as well.
Equation (21) is then reduced to

�̃+,n = eik�̃+,n−1 + βn�̃
∗
+,n−1. (32)

The corresponding differential equations (23) modify into

d(lnr)

du
= β(u) sin[2χ ],

dχ

du
= π/2 + δω − β(u) cos[2χ ]. (33)

Excluding β(u), we find 〈ln r〉 = 〈δω tan(2χ )〉u, and, there-
fore, the corresponding localization length is Lloc =
[〈δω tan(2χ )〉]−1. In order to compute the average, we intro-
duce a new variable z = 2 ln[tan(χ − π/4)] and rewrite the
second equation in (33) as

dz

du
= 4(δω) cosh z + 4β(u), (34)

with Lloc = [〈(δω) sinh(z/2)〉]−1. In order to find the average
value of z, we transfer from the stochastic Eq. (34) to the
corresponding Fokker-Planck equation for the probability
P (z), which satisfies

16W 2

cos2 θ0

d2P (z)

dz2
− 4(δω)

d

dz
[cosh(z/2)P (z)] = 0, (35)

with the normalization condition
∫ 2π

0 dχP (z) = 1. It follows
that Lloc

−1 = δω
∫

dz sinh(z/2)P (z). In the limit δω � W 2,
we obtain a logarithmic enhancement of the localization length
as

Lloc = S ln | δω

W 2
|, S = 12 cos2 θ0

W 2
. (36)

This dependence on θ0 and W agrees excellently with
the numerical data in Fig. 12, with a numerical prefactor
being different. Notice here that this logarithmical divergence
resembles a well-known Dyson-Wigner singularity obtained
previously in the electronic transport of a one-dimensional
disordered tight-binding chain in the presence of off-diagonal
disorder [22–24,26].

B. Strong disorder

We start with noting that the linear transfer matrix equations
(13), which define a linear two-dimensional map, can be
equivalently rewritten as a one-dimensional map, which is,
however, nonlinear. We introduce the variable yn,

yn = �̂+,n

�̂−,n

, (37)

in order to rewrite the two-component wave function �̂n as

�̂n = An

(
yn

1

)
. (38)

FIG. 12. The numerically (symbols) and analytically (solid lines)

calculated dependence of the coefficient S = η
12 cos2 θ0

W 2 [see Eq. (36)]
on the strength of disorder W , with the numerical fitting parameter
η = 0.22. Here, θ0 = π/8,π/4,3π/8, from top to bottom. The
predicted scaling Lloc ∼ 1/W 2 is observed.

This definition allows one to reduce the two-dimensional map
defined by the transfer matrix (14) to a one-dimensional map,

yn+1 = M(yn) = e2iϕ2,n
cne

iλnyn + 1

yn + cne−iλn
,

c = 1/ sin(θn), λn = ω + ϕn − ϕ2,n. (39)

The complex variable yn takes random values and is
characterized by a stationary probability distribution P (y)
[27,28]. Taking into account that the absolute value of the
two-component wave function shows an exponential increase
as n goes to infinity, we obtain the localization length Lloc as

1/Lloc = lim
N→∞

1

N

N∑
n=1

ln(|�̂n+1|/|�̂n|). (40)

By making use of (13), we obtain

1/Lloc = 〈ln(|T̂ �̂|/|�̂|)〉=
∫

dμ(ζ )
∫ ∞

0
dρ

∫ π

−π

dφ P (ρeiφ)

× ln

[∣∣∣∣T̂ (ζ )

(
ρeiφ

1

)∣∣∣∣/√1 + ρ2

]
, (41)

where we define y = ρeiφ and ζ is a random angle (ϕ, ϕ2, or
θ ), and μ(ζ ) is its measure.

The map (39) reduces the absolute value ρ if ρ > 1 and
increases it if ρ < 1. Thus, ρ = 1 for the stationary distribution
of P (y). Then P (y) has the following form:

P (y) = p(φ)δ(ρ − 1). (42)

The dynamics of the phase φn (which is defined mod 2π ) is
determined by the following stochastic equation:

φn+1 = m(φn) = 2 arg[κ(λn,φn)] + 2ϕ2,n − φn,

κ(λn,φn) = sin(θn) + ei(λn+φn). (43)

This dynamic equation is reduced to an integral equation for
the distribution p(φ),

p(φ′) =
∫ <ζ>+W

<ζ>−W

dζ

2W

∫ π

−π

dφp(φ)δ[φ′ − m(φ)]. (44)
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FIG. 13. Localization length under maximal disorder in φ. Red
solid lines are the analytical result (48); blue dots are the numerical
result.

1. Disorder in ϕ and ϕ2

We first consider disorder in ϕ. We present results for
the case of strongest disorder W = π . As ω only appears in
combination ω + ϕ, and integration in (44) is over the whole
period in this case, one may disregard ω by shifting variables.
φ2 is a fixed constant, which allows one to eliminate it in a
similar way. This yields

p(φ′) = 1

2π

∫ π

−π

dλ p{2 arg[κ(λ,0)] − φ′}. (45)

This equation is satisfied by the uniform solution

p(φ) = 1

2π
. (46)

Substituting (42) and (46) with the transfer matrix (14)
simplifies (41),

1

Lloc
=

∫∫ π

−π

dϕdφ

8π2
ln

[
1 + sin2 θ + 2 sin θ cos(ϕ + φ)

cos2 θ

]
.

(47)

Integrating separately over the logarithm of the enumerator
(which strictly vanishes) and the denominator, we finally arrive
at

Lloc = − 1

ln(| cos(θ )|) . (48)

Thus, the localization length is independent of ω and is
determined only by the value of θ0. Exactly the same results
will hold for strongest disorder in ϕ2 as well, and Eq. (48)
again applies. In Fig. 13, we plot the analytical result (48) and
compare to numerical computations using the transfer matrix
approach, with excellent agreement.

2. Disorder in θ

In this section, we analyze the singular behavior of Lloc(ω =
0) and Lloc(ω = ±π/2) for disorder in θ . We start with ω = 0
(without loss of generality, we choose ϕ = ϕ2 = 0). Then, (43)
reduces to

κ = sin(θn) + eiφ. (49)

FIG. 14. The inverse localization length 1/Lloc(ω = 0) as a
function of θ0 and W according to Eq. (50). The inverse localization
length strictly vanishes on the lines θ = 0,π and W = π .

It follows that φ = 0 is a fixed point of Eq. (43) and, therefore,
p(φ) = δ(φ) solves Eq. (44). Substituting into (41), we obtain

1/Lloc = 1

2W

∫ θ0+W

θ0−W

dθ ln | cot(π/4 − θ/2)|

to arrive at

1/Lloc = 1

2W
|Cl2(π/2+θ0 − W )+Cl2(π/2 − θ0+W )

−Cl2(π/2 + θ0 + W )−Cl2(π/2−θ0 − W )|, (50)

where Cl2(x) is the Clausen function of the second order (see
Ref. [29]). Thus, we obtain delocalized states in two particular
cases: either for θ0 = 0 with arbitrary disorder strength or for
the case of strongest disorder W = π and any value of θ0, as
shown in Fig. 14.

Next we consider the case ω = π/2. Equation (43) is
reduced to

κ = sin(θn) + ei(π/2+φ). (51)

We find m(π/2) = 3π/2, m(3π/2) = π/2 as a period-two
limit cycle solution of the map (43). Thus,

p(φ) = 1
2δ(φ − π/2) + 1

2δ(φ − 3π/2). (52)

Substitution into (41) yields 1/Lloc = 0 for any set of parame-
ters. We arrive at the result that the localization length strictly
diverges at ω = ±π/2, in agreement with our results for weak
disorder given by Eq. (36).

V. CONCLUSION

In conclusion, we have theoretically (numerically and
analytically) analyzed the discrete-time quantum walk in
the presence of spatial disorder. The dynamics of such a
quantum walk is determined by four angles of a quantum
coin operator, i.e., ϕ,ϕ1,ϕ2,θ (1). In the absence of spatial
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disorder, the dynamics of the discrete-time quantum walk is
characterized by the dispersion relation, i.e., the dependence
of the characteristic frequency ω on the wave vector k (6).
The spectrum ω(k) contains two bands and is tuned by varying
the angle θ . For θ = 0, a gapless spectrum occurs, while for
θ = ±π/2, the spectrum consists of two gapped flat bands.
The equations, the spectrum, and the eigenvectors are invariant
under two symmetry operations: bipartite and particle-hole
symmetries.

Disorder in the external synthetic gauge field ϕ1 does
not impact the extended nature of the eigenstates and does
not destroy the above two symmetries. However, disorder in
any of the remaining three angles θ,ϕ,ϕ2 enforces Anderson
localization of the eigenstates. In particular, disorder in the
kinetic-energy angle θ leads to a logarithmic divergence of the
localization length for particular values of the eigenfrequency
ω, while again keeping the bipartite and particle-hole symme-
tries untouched. Disorder in the on-site energy angle ϕ and
the internal synthetic flux angle ϕ2 destroys the particle-hole
symmetry and yields finite localization length for all allowed
eigenfrequencies ω. Remarkably, we obtain that strongest
disorder W = π in ϕ and ϕ2 yields Anderson localized random
eigenstates with a unique localization length, which depends

only on θ , but does not change for different eigenfrequencies
ω. This is possible because the space of eigenfrequencies is
compact and confined to the spectrum of a phase of a complex
number residing on the unit circle.

We derive various scaling laws in the limit of weak
and strong disorder, and obtain excellent agreement with
numerical results using a transfer matrix approach. These
results underline the richness of the considered system, which
makes it not only attractive for application reasons, but also an
ideal playground for various extensions including the impact
of many-body interactions, mean-field nonlinearities, and flat
band physics, to name a few.
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