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Perturbation and asymptotic solutions of energy localization of impurity modes in a
one-dimensional anharmonic chain
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A 1D anharmonic chain with a single impurity particle is used to study the vibrational energy localization.
Numerical and asymptotic solutions for the symmetric anharmonic localized mode are both presented. The
numerical results reveal that the energy localization strengthens with decreasing impurity mass or with increasing
anharmonicity. In the weak-anharmonicity limit, the energy localization is close to the harmonic results and varies
linearly with respect to the anharmonicity parameter. In the strong-anharmonicity limit, the localized structure
tends towards a constant value that is independent of anharmonicity, but as a function of impurity mass. We
finally analyze the stability of this symmetric impurity mode, and evidence a stable asymmetric mode as the
result of a bifurcation from the symmetric mode for the case of the large impurity mass.
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I. INTRODUCTION

The study of energy localization of impurity modes in
a harmonic lattice is well known [1]. Depending on the
mass of the impurity and bonding to the host neighbors, the
frequency of impurity modes always lies outside the phonon
spectrum. Spatially localized modes may also exist in perfect
anharmonic lattices. Such modes in chains were first observed
by A. M. Kosevich and A. S. Kovalev [2]. The asymptotic
solution of a solitonlike mode was obtained, restricted to the
small-amplitude vibrations and the frequency was close to the
top of the phonon spectrum [2]. By contrast, the study of the
large-amplitude vibrations by Sievers and Takeno described
a symmetric small-size localized mode (the ST mode) [3]
with an oscillation center located at a particle site, while
Page found another mode (the Page mode) with an oscillation
center located midway between two neighboring particle sites
[4]. These latter two distinct types of localized modes are
called intrinsic localized modes (ILMs) or discrete breathers
(DBs), and are considered to relate to the effective periodic
Peierls-Nabarro (PN) potential [5]. The ST mode’s center is
located at the top of the PN potential, while that of the Page
mode is at the bottom of the PN potential.

The combination of the ILM and the impurity mode is
called anharmonic impurity mode. As defects seem ubiquitous
in a real lattice system, the investigation of anharmonic
impurity modes in the nonlinear system becomes essential. The
presence of impurities can drastically change the properties
of localized modes. An ILM may be affected by impurities
because it is a characteristically “discrete” phenomenon that
is caused by the discreteness of lattices with adjacent particles
vibrating in opposite directions over time. Some applications
have even extended into biology: the anharmonic impurity
mode has been postulated to act as a precursor of a reaction,
e.g., DNA denaturation [6]. Moreover, it provides a kind of hot
spot that is similar to the nonimpurity breather hot spot [7,8].
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Kivshar et al. investigated the patterns of anharmonic
impurity modes 20 years ago and found strongly localized
impurity modes localized on three or four particles in the
large-amplitude limit [9]. Later, they found a solution for the
localized mode with a heavy impurity [5]. Sarkar examined
that a light-mass impurity mode fulfills nonresonance with the
linear (or phonon) spectrum because its frequency is located
above the phonon band whereas the frequency of a heavy-mass
impurity mode drops into the phonon band [10].

The present paper will explore in detail the quantitative
dependence of the vibrational energy localization of the
localized mode on the impurity mass and the anharmonic
vibrational parameter—a connection that has not been fully
investigated. Specifically, this paper presents numerical and
asymptotic solutions for the energy localization and the
frequency of the symmetric anharmonic impurity mode in a
1D anharmonic chain, in both the weak-anharmonicity limit
and strong-anharmonicity limit. These solutions show that the
energy localization strengthens with decreasing impurity mass
or with increasing anharmonicity. We also discuss stabilities
of both asymmetric and symmetric modes based on the results
of numerical solutions and present the relationship between
a critical value of the impurity mass and the frequency of
the impurity mode. This critical value will be described in
Sec. III C in detail.

II. THEORY MODEL

We consider a simple but rather fundamental chain, the
Fermi-Pasta-Ulam (FPU) chain [11], in which any particle
only interacts with its nearest-neighbor particles. This 1D
anharmonic chain has a harmonic component and a quartic
anharmonic component, and the equation of motion of the
chain is expressed as

mnün = −k2(2un − un+1 − un−1)

− k4[(un − un+1)3 + (un − un−1)3], (1)

where k2 and k4 are the harmonic and quartic force constants,
respectively, un is the displacement of the nth particle, and
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mn is the mass of the nth particle. The cubic anharmonic term
k3[(un − un+1)2 + (un − un−1)2], which is mainly related to
thermal expansion, plays a negligible role in the localization
process [12]. The main contribution of the cubic anharmonicity
is the compression and rarefaction of the 1D anharmonic chain.
We seek a stationary solution to Eq. (1) by setting

un = ϕncos(ωt), (2)

where ϕn is the vibrational amplitude of the nth particle. When
we substitute Eq. (2) into Eq. (1) and use the rotating wave
approximation [13], in which we have cos3(ωt) ≈ 3

4 cos(ωt)
and cos2(ωt) ≈ 1/2, Eq. (1) then becomes

mnω
2ϕn = k2(2ϕn − ϕn+1 − ϕn−1)

+ 3k4

4
[(ϕn − ϕn+1)3 + (ϕn − ϕn−1)3]. (3)

Because adjacent particles vibrate in opposite directions
in the impurity mode [14], we introduce the slowly varying
oscillation envelope vn as shown in Eq. (4),

ϕn = ϕ0(−1)nvn, (4)

where ϕ0 is the vibrational amplitude of the impurity. Eq. (3)
then becomes

mn

m
� 2vn = (2vn + vn+1 + vn−1)

+ f [(vn + vn+1)3 + (vn + vn−1)3], (5)

where mn = m(n �= 0) is the mass of the host particle, m0 =
M is the mass of the impurity, � =

√
m
k2

ω is an effective

frequency parameter, and f = 3k4
4k2

ϕ0
2 is the anharmonicity

parameter.

III. ANHARMONIC IMPURITY MODES

The harmonic impurity mode can be analytically deter-
mined. For a light-mass impurity, such mode has a frequency
above the upper cutoff �m = 2 of the linear spectrum, whereas
for a heavy-mass impurity, the mode has frequency lying below
the cutoff [1]. The solution of the harmonic light-mass impurity
is

vn =
(

λ

2 − λ

)|n|
, (6)

� 2 = 4

(2 − λ)λ
, (7)

where λ = M/m is the mass ratio parameter.

A. Weak-anharmonicity limit

In the limit where f → 0, the perturbation method is used.
We set the perturbation solution to be

v0 = 1, (8)

vn =
[

λ

2 − λ
+ On(f )

]
vn−1 for n > 0, (9)

� 2 = 4

(2 − λ)λ
+ �(f ), (10)

where On(f ) and �(f ) are the first-order perturbation term of
vn and � 2, respectively. Equation (5) then becomes a set of
linear equations. For n = 0,

λ

2
�(f ) − O1(f ) = f

(
1 + λ

2 − λ

)3

, (11)

for n �= 0,(
2 − λ

λ

)2

On(f ) − On+1(f ) + �(f )

= f

(
λ

2 − λ

)2n−3(
λ

2 − λ
+ 1

)3[
1 +

(
λ

2 − λ

)3]
, (12)

The fact that this set of equations is linear means that On(f )
and �(f ) are both proportional to f . As a special case, we set
( λ

2−λ
)2n−3 → 0 for n > 2 [e.g., λ < 0.4, and ( λ

2−λ
)3 < 0.016],

and we obtain

On+1(f ) =
(

2 − λ

λ

)2

On(f ) + �(f ) for n > 2, (13)

which means that On+1(f ) � On(f ). If On+1(f ) > On(f ),
then On+1(f ) will not be convergent for ( 2−λ

λ
)2n → ∞;

therefore the convergent condition is On+1(f ) = On(f ) and
we obtain

On(f ) = λ2

4(λ − 1)
�(f ). (14)

We then solve the linear equation and drop the higher-order
terms (n > 2) of the Taylor expansion to give

�(f ) ∼= f

4λ
(8 + 12λ + 10λ2 + 5λ3), (15)

O1(f ) ∼= −f λ2

4
, (16)

O2(f ) ∼= −f λ

4
(2 + 5λ), (17)

On(f ) = O3(f ) ∼= −f λ

4
(2 + 5λ) ∼= O2(f ). (18)

The perturbation solutions are as follows:

v0 = 1, (19)

vn
∼=

(
λ

2 − λ
− f λ2

4

)[
λ

2 − λ
− f λ

4
(2 + 5λ)

]|n|−1

, (20)

� 2 ∼= 4

(2 − λ)λ
+ f

4λ
(8 + 12λ + 10λ2 + 5λ3). (21)

The total energy is given by Eq. (22) [15],

Et = 1

2
ω2ϕ2

0

∑
n

v2
nmn = 2 k2

2

3 k4
� 2f

∑
n

v2
nmn. (22)

We consider the rate of energy localization as a ratio Ei/Et

which is expressed approximately as Eq. (23) according to the
perturbation solution Eq. (20):

Ei

Et

= v2
0m0∑

n v2
nmn

∼= 2(1 − λ)

2 − λ
+ (4 − 2λ + 5λ2)λ2f

4(2 − λ)
. (23)
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FIG. 1. Numerical solutions (points) and perturbation solutions (lines) for (a) � 2 and (b) Ei/Et at λ = 0.1,0.3, and 0.6.

These perturbation solutions show that both � 2 and Ei/Et

are linearly dependent on f . The harmonic results are obtained
when f = 0. These perturbation solutions are then compared
with the numerical results, as shown in Figs. 1 and 2. Figure 2
shows that the requirements on λ for the perturbation solution
are stricter for Ei/Et than for � 2.

B. Strong-anharmonicity limit: strongly localized modes

In contrast to the weak-anharmonicity limit, impurity
modes are localized to only a few particles when f is very
large. Kivshar et al. reduced Eq. (5) to a few coupled equations
to look for the solutions [5,9]. The authors found the stable
asymmetric and symmetric patterns with only three or four
particles for varying λ [5,9]. We will now use the asymptotic
approach to extend the pattern to the whole chain.

Only the symmetric-type mode is considered here, and its
equations are expressed as follows. For n = 0,

λ/2 � 2 = (1 + v1) + f [(1 + v1)3], (24)

and n �= 0,

� 2vn = (2vn + vn+1 + vn−1)

+ f [(vn + vn+1)3 + (vn + vn−1)3], (25)

where v0 = 1 because of its definition in Eq. (4).

When f → ∞, the equations of motion given in Eqs. (24)
and (25) take on the following simpler forms:

n = 0,

� 2

f
= (1 + v1)3

λ/2
, (26)

and n �= 0,

� 2vn

f
= (1 + v1)3

λ/2
vn = (vn + vn+1)3 + (vn + vn−1)3. (27)

Equation (26) gives the proportional relation between � 2

and f .
The localization demands that vn < 1 and vn > vn+1, and

Eq. (27) must therefore satisfy its convergence conditions of
vn � vn+1 for n > 0, and then takes the approximate form

(1 + v1)3

λ/2
v1

∼= v1
3 + (v1 + 1)3,

(1 + v1)3

λ/2
v2

∼= v1
3,

. . . . . . . . . . . . . . . . . . . . . ..

(1 + v1)3

λ/2
vn

∼= vn−1
3.

. . . . . . . . . . . . . . . . . . . . . . . . (28)

FIG. 2. Numerical solutions (points) and perturbation solutions (lines) for (a) � 2 and (b) Ei/Et at f = 0.1.
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FIG. 3. Numerical solutions (points) and asymptotic solutions (lines) for (a) � 2, and (b) Ei/Et at λ = 0.1,0.5, and 0.9.

We then have for n = 1,

v1 = v1(λ), (29)

and n > 1,

vn
∼= λ

2

(
λ/2

v1

) 3n−1−3
2

(
v1

1 + v1

) 3n−3
2

. (30)

Therefore v1 � vn, and Ei/Et is then approximately
expressed as

Ei

Et

= v2
0m0∑

n v2
nmn

∼= λ

2v1(λ)2 + λ
. (31)

In the light-mass impurity approach, where λ � 1, we have

v1(λ) ∼= λ

2
, (32)

� 2

f
∼= (1 + λ/2)3

λ/2
, (33)

vn
∼= λ

2

(
λ

2 + λ

) 3n−3
2

, (34)

Ei

Et

∼= 1

1 + λ/2
. (35)

Equation (35) gives the energy localization limit for the
anharmonic impurity modes. The pattern and the energy
localization are both independent of f . Because vn is much
smaller than v1, we hence get the approximate displacement
pattern ( . . . 0,-λ/2,1,-λ/2,0, . . . ), which was exactly the result
observed by Kivshar [14].

These asymptotic solutions are then compared with the
numerical results as well, as depicted in Figs. 3 and 4. The
proportional relation agrees well with the asymptotic solution,
as shown in Fig. 3. Figure 4 shows that the asymptotic
solutions are consistent with the numerical results for all
allowed impurity masses, while the light-mass limit solution
of Ei/Et is also fitted well in the region where λ < 0.4.

Substituting Eqs. (33) and (34) into Eq. (22), the total energy
takes on the following form:

Et
∼=

(
1 + λ

2

)3 ∑
n

mn

(
λ

2 + λ

) 3n−3
2

× 2k2

3k4
× f 2

=
(

1 + λ

2

)3 ∑
n

mn

(
λ

2 + λ

) 3n−3
2

× 3k4

8k2
× ϕ0

4, (36)

which shows that Et is proportional to k4 and ϕ0
4. Therefore

we conclude that the energy will increase dramatically with
increasing vibrational amplitude.

FIG. 4. Numerical solutions (points) and asymptotic solutions (lines) for (a) � 2, and (b) Ei/Et at f = 100. The red curves are the
asymptotic solutions, and the blue curves are the light-mass limit solutions.
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FIG. 5. (a) Logarithm of the square of the frequency, lg(� 2), and (b) Ei/Et vs λ and lg(f ).

As for the more general case of f , the relationships of Ei/Et

and � 2 with these parameters (i.e., λ and f ) for all range of an-
harmonicity are shown as contour plots in Fig. 5. It reveals that
both Ei/Et and � 2 increase monotonically with decreasing λ

or increasing f . The contour lines show that Ei/Et and � 2 are
almost independent of f in the weak-anharmonicity limit, but
that they both decrease monotonically with increasing λ. By
contrast, for strong anharmonicity, Ei/Et behaves in the same
manner as in the weak-anharmonicity limit case, while � 2

becomes monotonically related to f . The asymptotic approach
mentioned above was used to explain these phenomena.

C. Stability of the anharmonic impurity modes

In order to demonstrate the stability of the anharmonic
impurity mode in the simplest way, we follow Ref. [9] to use
a bifurcation diagram to draw conclusions about the mode
stability by comparing the mode energies. The authors [9]
used the strong-anharmonicity limit to assume that the mode
is localized to only three particles. We will now improve on
this result to discuss the case of 101 particles. All possible
symmetric and asymmetric impurity modes [5,9] are searched
by scanning f , for a fixed frequency. A bifurcation diagram
of λ is obtained by scanning f in Fig. 6(a), rather than
that of displacements [9]. Figure 6(a) shows that there is a
critical value λcr. When λ < λcr (green curve), there is only the
symmetric mode, in which v−1 and v1 are equal to each other.
When λ > λcr, the symmetric mode (magenta curve) and the
asymmetric mode (black curve) both exist. The asymmetric
mode bifurcates at λ = λcr. The set of displacements of the
chain is also obtained by scanning f . The total energy given

by Eq. (22) is simplified by setting the unit to 2 k2
2

3 k4
� 4 and then

becomes

Et = f

� 2

∑
n

v2
nmn. (37)

The bifurcation curves in Fig. 6(a) are then projected to
Fig. 6(b), where the black branch represents the asymmetric
mode, while the blue and red branches represent the symmetric
modes. It is clear that the asymmetric mode is more stable than
the symmetric mode when λ > λcr, because the total energy
of the asymmetric mode is lower for the same value of λ. At
λ = 1, it reveals that the Page mode is more stable than the

ST mode, which agrees well with the previous works [9,16].
It is found that λcr is a function of ϖ. We therefore plot the

FIG. 6. (a) Bifurcation diagram for � = 100. The green and
magenta branches show the λ characteristics of the symmetric modes
(denoted by Sym. 1 and 2), and the black branch shows λ for
the asymmetric mode (denoted by Asym.). (b) Total energies of
both the symmetric and asymmetric modes for � = 100. The black
branch is the asymmetric mode, and the red and blue branches are
symmetric modes.
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FIG. 7. Critical value λcr vs frequency variable ε.

relationship between them as shown in Fig. 7 by introducing
another variable ε for describing the relationship between ϖ
and �m [5],

ε =
√

� 2

� 2
m

− 1. (38)

Figure 7 shows that λcr decreases with increasing ε and
eventually reaches 0.87 at the high-frequency limit. Kovalev
reported that λcr = 0.91 at the high-frequency limit, which
shows good agreement with our results [5,9]. The relationship
between λcr and ε has not been reported in these previous
works because only three or four neighboring particles were
taken into account [5,9].

The stability of the anharmonic impurity modes must
be also affected by the environmental fluctuations, e.g.,
decay processes or energy exchanges with the substrate [17].

However, in our model, the rotating-wave approximation is
used, in which only one frequency is taken into account, so
there are no decay processes. Meanwhile, the isolated chain is
used in our model, so these energy exchanges are all beyond
its scope.

IV. CONCLUSIONS

In summary, we have presented numerical and asymptotic
solutions for the symmetric anharmonic impurity mode of
a 1D chain. In the weak-anharmonicity limit, the energy
localization varies linearly with respect to f . In the strong-
anharmonicity limit, the asymptotic solutions show that the
energy localization reduces to a function only related to
λ. The total energy of the localized mode is proportional
to k4 and ϕ0

4. The numerical results for the whole range
of anharmonicity reveal that the rate of energy localization
increases monotonically with decreasing λ or increasing f .

The stability of both symmetric and asymmetric modes was
studied using a bifurcation diagram. It is found that only the
symmetric mode is allowed when λ < λcr. When λ > λcr, both
modes exist, but the asymmetric mode is the more stable one.
It shows that λcr is then found to be a function of frequency,
with a value of 1 at low frequency, and a limit value of 0.87 at
high frequency.
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