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Conical dispersion of Lamb waves in elastic plates

David M. Stobbe and Todd W. Murray*

Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA
(Received 29 June 2017; revised manuscript received 28 August 2017; published 4 October 2017)

Guided elastic waves in homogeneous isotropic plates exhibit conical dispersion at zero wave number for
discrete values of Poisson’s ratio where accidental degeneracy between longitudinal and transverse thickness
resonances occur. Waves excited at the coincidence frequency have the infinite phase velocity associated with
thickness mode resonances, but the group velocity remains finite. This leads to propagating waves that oscillate in
time but are spatially uniform over the plate surface. Here, accidental degeneracy is induced in an aluminum plate
by cooling the plate to tune the Poisson’s ratio through the degenerate point. We measure linear dispersion in the
transition from forward to backward propagating waves near zero wave number. In addition, we demonstrate that
waves generated near the coincidence frequency exhibit spatially uniform phase over the plate surface, and show
angle independent mode conversion upon encountering the free edge of the plate. We propose that elastic plates
offer a simple system to explore the physics of conical dispersion at zero wave number, and that this phenomenon
may find application in acoustic devices and nondestructive testing.
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I. INTRODUCTION

Guided elastic waves that propagate in plates, or Lamb
waves, have been studied extensively and used for a variety of
applications in materials characterization and nondestructive
testing [1,2]. Recently, there has been an interest in utilizing
some of the peculiar properties of Lamb waves for enhanced
nondestructive testing of materials and for the manipulation
of wave fields in novel ways. Lamb waves are dispersive and
the propagating modes within a given plate are dictated by
the mechanical properties of the plate and are represented by
a dispersion curve giving the frequency (ω) as a function of
wave vector (k). For some Lamb wave modes, the curvature
of the dispersion near k = 0 is negative, leading to a region
of backward wave propagation over which the phase velocity
and group velocity are antiparallel [3,4]. These modes also
exhibit a point where the group velocity goes through zero,
while the phase velocity remains finite, in the transition from
backward to forward wave propagating modes. Such zero
group velocity (ZGV) points exhibit a strong resonance that
can be efficiently generated with a laser excitation source,
and they have been used for a variety of applications in the
nondestructive evaluation of materials [5–9]. In addition, it
has been demonstrated that the mode conversion between
backward and forward propagating Lamb waves at a thickness
step in a plate or at a plate edge gives rise to nonintuitive effects
such as negative refraction and negative reflection [10–14].

The origin of backward wave propagation in both elastic
and optical waveguides lies in the repulsion of the dispersion
curves between modes of the same symmetry [8,15]. This
repulsion is the strongest when an accidental degeneracy,
dictated by the material properties rather than symmetry,
occurs between closely spaced modes. For isotropic plates,
the Poisson’s ratio (or alternatively, ratio of the bulk wave
velocities) determines the character of dispersion. The dis-
persion curves intersect the k = 0 axis at the thickness mode
resonances, where the phase velocity becomes infinite while

*todd.murray@colorado.edu

the group velocity vanishes. The dispersion curve is generally
parabolic in the long-wavelength limit as is dictated by the
requirement that ω(k) = ω(−k). If, however, the Poisson’s
ratio is selected such that an accidental degeneracy occurs
between a longitudinal thickness mode resonance and a shear
thickness mode resonance, of the same symmetry, then the
dispersion curve becomes linear in the vicinity of k = 0 and,
in a three-dimensional representation, assumes the shape of
a cone [16]. This conical dispersion of Lamb waves for
special values of Poisson’s ratio was originally described
mathematically by Mindlin more than a half of a century ago
[17].

More recently, there has been considerable interest in both
the photonics and acoustics communities in the development of
metamaterials that exhibit conical dispersion at k = 0 [18–26].
This is typically referred to as Dirac cone or Dirac-like cone
dispersion depending on the characteristics of the degeneracy
that occurs. Maznev recently highlighted the similarities (and
differences) between conical dispersion in isotropic plates and
metamaterials [27]. A salient feature of conical dispersion
at k = 0 is that the phase velocity is infinite, while the
group velocity remains finite. As the wavelength is infinite,
conical dispersion at k = 0 essentially decouples the spatial
and temporal behavior of the wave field and produces a field
that is static in space yet oscillating in time. In terms of
metamaterials, it has been shown that conical dispersion at
k = 0 can be used to manipulate wave fields in novel ways
to produce effects including tunneling, beam steering, total
reflection, cloaking, and lensing [18–26].

While there has been intensive development in designer
materials that have conical dispersion at k = 0, the study of
this phenomena in isotropic plates has been limited. In fact,
there have been no experimental investigations of conical or
near-conical dispersion of Lamb waves in isotropic plates
near k = 0, or the unusual physical phenomena associated
with such waves, reported in the literature. In part, this may
be due to the fact that accidental degeneracy only occurs at
distinct values of Poisson’s ratio. In this paper, we report
the experimental measurement of linear dispersion through
k = 0 in a homogeneous isotropic plate. Starting with an
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aluminum alloy plate with a near degeneracy, we slightly
modify the elastic properties through temperature change to
achieve degeneracy at k = 0. Furthermore, we demonstrate
the spatial and temporal decoupling of Lamb waves with
near-conical dispersion through experiments showing angle
invariant mode conversion from the free edge of a plate.

II. CONICAL DISPERSION OF LAMB WAVES

For freestanding plates, longitudinal and transverse thick-
ness mode resonances occur at k = 0. These result in symmet-
ric or antisymmetric wave fields with respect to the midplane
of the plate. The resonance frequencies and symmetries of the
oscillations are [17]

ω0
m,L = πmc1

h

(
m = 1, 3, 5... symmetric

m = 2, 4, 6... antisymmetric

)
,

ω0
n,T = πnc2

h

(
n = 1, 3, 5... antisymmetric

n = 2, 4, 6... symmetric

)
. (1)

Here c1 and c2 are the longitudinal (L) and transverse (T)
wave velocities, respectively, and h is the plate thickness.
The cutoff frequencies for longitudinal resonances give rise
to symmetric modes if m is odd and antisymmetric modes if m

is even, while the opposite is true for the transverse resonances.
In the vicinity of k = 0, the dispersion branches can generally
be found by expanding ω(k) in even powers of k giving [28]

ωm,α(k) = ω0
m,α + 1

2

(
∂2ωm,α

∂k2

)
k=0

k2 + O(k4), (2)

where α corresponds to either a longitudinal or transverse
resonance and the curvatures in the long-wavelength limit are
given by(

∂2ωm,L

∂k2

)
= c1h

πm
+ 16hc3

2

π2m2c2
1

tan

[
πm

2

(
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c2

)]
,

(
∂2ωn,T

∂k2

)
= c2h

πn
+ 16hc2

2

π2n2c1
tan

[
πn

2

(
1 − c2

c1

)]
. (3)

The first term in the curvature equations is always positive,
while the second term can take on positive or negative
values for a given mode depending on the Poisson’s ratio.
This term is associated with the interaction between mode
curves in the plate. The tangent term becomes infinite, and
the interaction strongest, only in cases where the ratio of
the wave velocities is equal to the irreducible ratio of two
positive integers of different parity (one odd and one even)
[28]. This is precisely the condition for the occurrence of
degeneracy between longitudinal and transverse thickness
resonances of the same symmetry. For example, if the ratio
between longitudinal and shear wave velocities is equal to
two, the first longitudinal resonance (m = 1) and the second
transverse resonance (n = 2) occur at the same frequency.
In fact, this case results in degeneracies between odd m-order
longitudinal resonances and 2m-order transverse resonances of
the same symmetry. We note that degeneracy between modes
of opposite symmetry does not lead to a divergence in the
interaction term or conical dispersion.

In the case in which the interaction term in Eq. (3) goes
to infinity, the quadratic dispersion indicated by Eq. (2) is no

longer valid. As shown by Mindlin, the slope is nonzero at
k = 0 and the local dispersion assumes the linear of the form
[17]

ωm,α(k) = ω0
m,α ±

(
∂ωm,α

∂k

)
k=0

k, (4)

where the group velocity is given by

vg =
(

∂ωm,α

∂k

)
k=0

= 4c2

πn
, n = 2,3,4 . . . . (5)

In such case, the dispersion curves consist of two lines
intersecting at the coincidence frequency at k = 0, with the
line segments above ω0

m,α exhibiting forward wave propaga-
tion, and the line segments below showing backward wave
propagation. An example of conical dispersion of Lamb
waves with c1 = 2c2(h = 1.532 mm,c2 = 3.138 mm/μs) is
given in Fig. 1(a). Here, the S2/S2B modes and S5/S5B modes
are degenerate at k = 0, leading to linear dispersion in the
long-wavelength limit. A zoomed-in view of the S2/S2B modes
for the degenerate case, along with a near-degenerate case, is
shown in Fig. 1(b). Generally, the forward propagating branch
is referred to as the S2 mode, while the backward propagating
branch is referred to as the S2B mode. Note that the forward
and backward propagating branches are actually both part
of the same continuous S2 mode and are connected to each
other (in the absence of degeneracy) through a loop in the
imaginary (ω,k) plane. In Fig. 1(b), the solid line indicates
the dispersion curve associated with waves propagating in the
(arbitrarily defined) positive direction, while the dotted lines
indicate the curve associated with waves propagating in the
opposite direction. In the case of degeneracy, the imaginary
loop between the S2 and S2B branches is closed, resulting in
a smooth transition of the S2 mode through k = 0. Equation
(4) indicates two lines in the degenerate case, ensuring that
ω(k) = ω(−k) is satisfied. In general, conical dispersion of
Lamb waves is associated with closing the imaginary loop
of individual modes that exhibit both longitudinal and shear
thickness resonances.

In order to demonstrate the excitation of Lamb waves
near the conical point, the integral transform technique [29]
was used to calculate the response of a 1.0-mm-thick plate
to a normal force with a Gaussian spatial distribution with
a full width at half maximum (FWHM) of 12.5 mm. The
temporal profile of the source was also Gaussian with a FWHM
of 10 ns, and the wave speeds were selected as c1 = 6.0
and c2 = 3.0 mm/μs (ν = 1/3). The calculated time domain
displacement fields were bandpass filtered between 2.0 and
4.0 MHz to isolate the S2/S2B mode near the degeneracy
at 3.0 MHz. The resulting waveforms, giving the normal
displacement as a function of time at several source-to-receiver
distances, are shown in Fig. 2(a). The time domain responses
show the arrival of an initial wave packet that propagates with
little distortion, followed by a sustained surface oscillation.
The magnitude of the Fourier transform of the waveform
calculated for a source-to-receiver distance of 30 mm is
shown in Fig. 2(b). This spectrum has strong peaks both
above (forward propagating waves) and below (backward
propagating waves) the conical point with a dip occurring at
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FIG. 1. (a) Dispersion curve for a plate with ν = 1/3,h = 1.532 mm, c2 = 3.138 mm/μs. The S2/S2B and S5/S5B modes are each degenerate
at k = 0 and show linear dispersion in the long-wavelength limit. (b) Zoomed-in portion of the dispersion curve shown in (a) near the lowest
frequency degenerate point where longitudinal and transverse resonance frequencies associated with the S2/S2B modes are coincident (blue).
Also shown is a near-degenerate case (corresponding to aluminum alloy 6061-0 at room temperature) with ν = 0.3349, h = 1.533 mm, and
c2 = 3.125 mm/μs (red). Here cg is the group velocity.

the coincidence frequency. The initial wave packets in the time
domain are composed of forward and backward propagating
waves in the nearly linear dispersion region close to k = 0.

After these wave packets pass the observation point, the surface
continues to oscillate. Figure 2(c) shows a zoomed-in view of
the surface displacements at all source-to-receiver distances
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FIG. 2. (a) Calculated surface normal displacement of a plate in response to a surface normal force. The plate has a thickness of 1 mm
and the wave velocities are taken as c1 = 6.0 mm/μs and c2 = 3.0 mm/μs. Wave forms are shown for several source-to-receiver distances.
(b) Magnitude of the Fourier transform of the wave form calculated at a source-to-receiver distance of 30 mm. (c) Zoomed-in portion of the
wave forms shown in (a) showing the uniform phase of the surface oscillations. (d) Magnitude of the Fourier transform of the wave form
calculated at a source-to-receiver distance of 30 mm and time windowed between 55 and 60 μs.
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FIG. 3. Schematic of experimental setup for generating and
detecting Lamb waves with conical and near-conical dispersion at
k = 0 (units in millimeters).

time windowed between 55 and 60 μs. Here, we find that
the phase of the surface oscillation is nearly identical for all
source-to-receiver distances. The magnitude of the Fourier
transform of the 30-mm source-to-receiver distance wave
form in Fig. 2(c) is shown in Fig. 2(d) and confirms that
this oscillation occurs at the coincidence frequency. Unlike
conventional resonances, which have zero group velocity at
k = 0 and slowly decay (depending on the local curvature)
as energy in the vicinity of k = 0 propagates to the far field,
waves excited at the conical point at k = 0 propagate from
the source with a finite group velocity producing a uniform
oscillation over the sample surface. Analogous behavior has
been observed in zero index metamaterials [30].

III. EXPERIMENT SETUP

The experimental approach includes (a) measurements of
the Poisson’s ratio of plates as a function of temperature to
determine the temperature at which the degeneracy (ν = 1/3)
occurs and (b) measurements of the dispersion curves and wave
fields associated with conical point dispersion. Poisson’s ratio
was measured using the approach developed by Clorennec
et al. [6]. This technique allows for very accurate determination
of Poisson’s ratio independent of the plate thickness. In brief,
the sample was excited with a pulsed Nd:YAG laser operating
at 532 nm. The resulting transient displacement field was
measured on epicenter on the opposite side of the plate
using a Michelson interferometer. The displacement field was
processed using a fast Fourier transform (FFT) and frequencies
corresponding to the S1/S2B and S4/S5B zero group velocity
resonances were identified. The ratio of these two frequencies
is uniquely determined by the Poisson’s ratio of the plate, and
we used a numerical solution of the dispersion equation to
determine ν based on the measured ZGV frequencies. Note
that for the aluminum alloy tested in this work (ν∼1/3)
we found that the S1/S2B and S4/S5B frequency ratio yielded
more consistent results for ν than the S1/S2B and A2 resonance
frequency ratio used in previous reports. The temperature
dependence of Poisson’s ratio was found by cooling the sample

to approximately −15°C and taking continuous measurements
as the sample warmed to room temperature. The temperature
near the excitation and detection laser positions on the
sample surface was monitored using a thermocouple. Several
aluminum alloys of different compositions and heat treatments
were tested at room temperature to determine the material with
ν closest to 1/3.

Conical dispersion was evaluated using the experimental
setup outlined in Fig. 3. Lamb waves were generated by a
contact longitudinal wave transducer (Olympus v109) with
an aperture of 12.7 mm coupled to the sample with a thin
oil layer. The transducer was driven by a function generator
coupled to a power amplifier. The displacement normal to
the surface was detected using an adaptive, photorefractive
crystal based interferometer based on a bismuth silicon oxide
crystal. A 3.0 kHz, 3.0 kV field was applied to the crystal
to enhance two-wave mixing gain, and the laser source for
the interferometer was a single longitudinal mode frequency
doubled Nd:YAG laser with an output of 150 mW. Further
details of the interferometer configuration are available in the
literature [31]. The turning mirrors on the signal leg of the
interferometer were mounted on a two-axis translation stage in
order to measure the displacement field over the plate surface.
The output of the interferometer was sent through a 1.9 MHz
analog high pass filter and recorded on an oscilloscope. For
measurements taken below room temperature, the plate was
placed in a cooling chamber with transparent walls allowing
for detection laser access to the surface. The chamber was
cooled using dry ice and the measurements were taken when
a thermocouple attached to the sample surface near the
measurement point indicated the desired temperature. All of
the conical point measurements were performed on a large
610×305 mm 6061-O aluminum plate with a thickness of
1.533 ± 0.003 mm. At one end of the plate, a semicircular
extrusion was machined into the plate edge for experiments
demonstrating the spatial invariance of conical point Lamb
waves.
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FIG. 4. Measurements of Poisson’s ratio as a function of temper-
ature for a 6061-O aluminum plate. The solid line shows a linear fit
of the data.
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FIG. 5. (a) Measured and calculated dispersion curves for a 6061-O aluminum plate cooled to achieve accidental degeneracy. (b) Magnitude
plot of the 2D Fourier transform of the experimentally measured wave forms showing the temporal frequency as a function of spatial frequency
in the vicinity of k = 0. (c) Comparison of dispersion curve found using the experimental data on the cooled plate with that found using a
finite difference time domain simulation of the experiment for the degenerate case (ν = 1/3). (d) The same as (c) but using room-temperature
measurements and plate properties (ν = 0.3349).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Conical dispersion exists in isotropic plates for discrete
values of the material parameters. In this paper, we focus
on the lowest order degeneracy that occurs if c1 = 2c2 or,
equivalently, ν = 1/3. This precise condition is not easy
to achieve with naturally occurring materials, but many
aluminum alloys do, in fact, have a Poisson’s ratio very
close to 1/3. We performed systematic measurements on
commercially available aluminum alloys and found that the
alloy 6061-O had a room-temperature Poisson’s ratio of
ν = 0.3349 ± 0.0006, where standard deviation was found
through multiple measurements at different locations on the
plate. In order to tune the Poisson’s ratio, we take advantage
of the temperature-dependent elastic properties and cool the
plate. Figure 4 shows the Poisson’s ratio measured as a
function of temperature at a single location on the plate.
A linear fit of this data indicates Poisson’s ratio changes
by �ν = 5.6 × 10−5/◦C (close to the reported value for
pure aluminum of �ν = 5.4 × 10−5/◦C [32]). Given that the
room-temperature values of Poisson’s ratio were taken at a
temperature of 23 °C, and the average Poisson’s ratio measured
across the sample is v = 0.3349, we expect a Poisson’s ratio

of close to 1/3 at a measurement temperature of −5 °C. We
can thus tune the plate properties over a reasonable range to
achieve the desired degeneracy. Note that there is some spatial
variation in Poisson’s ratio and we have used the average value
measured at room temperature to determine the temperature
at which degeneracy occurs. Figure 4, for example, indicates
that at this particular point on the plate a Poisson’s ratio of 1/3
occurs at a temperature closer to 0°C.

In order to deduce the behavior of conical dispersion, the
plate was cooled to −5°C, and time domain signals were
collected as the source-to-receiver distance was increased
in 250 μm steps for a total distance of 150 mm, starting
30 mm away from the center of the transducer excitation
source. The transducer was driven by a five-cycle sine wave
at 2.04 MHz, near the expected coincidence frequency. The
measured wave forms, providing the temporal response as a
function of distance, were processed with a two-dimensional
FFT giving the temporal frequency as a function of spatial
frequency. The dispersion curve shown in Fig. 5(a) was found
by extracting the peak values from the magnitude of the
two-dimensional (2D) FFT. A smooth transition between the
S2 and S2B modes is observed at k = 0. While the large aperture
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FIG. 6. (a) Out-of-plane displacement at a frequency of f = 2.051 MHz found from the experimental measurements. (b) The displacement
field in (a) after a bandpass filter (k = 3.0 to 5.0 mm−1) in order to isolate the S0 mode arising from mode conversion at the plate edge.
(c) Fourier domain representation of the measured wave field. The dominant modes are the incident S2 mode near k = 0 and mode converted
S0 mode. (d) Magnitude of the out-of-plane displacement field at 2.051 MHz showing focusing of the S0 wave field at the center of the lens.
(e)–(h) show finite difference simulations of the experiments (with ν = 1/3) and correspond to (a)–(d) above.

transducer does not excite high spatial frequency modes very
efficiently, we are still able to detect the A1 and S0 modes
in the plate while the S1 and A0 modes are below the noise
level. The solid lines show the dispersion curves calculated
from the Rayleigh-Lamb dispersion relation, where Poisson’s
ratio is taken as 1/3, the cooled plate thickness is 1.532 mm,
and the shear wave velocity was found to be 3.138 mm/μs
through a best fit with the experimental results. The agreement
between the experimental and calculated dispersion curves for
all of the measured modes is excellent. Figure 5(b) shows
the magnitude of the 2D FFT in the vicinity of k = 0. The
magnitude of the response decreases sharply through k = 0 in
general agreement with the results of Fig. 2(b). Nevertheless,
near-linear dispersion is confirmed for this case of accidental
degeneracy and exceptionally long-wavelength propagating
waves are detected.

The dispersion curves near k = 0 measured on the cooled
sample and the same sample at room temperature are given
in Figs. 5(c) and 5(d), respectively. The room-temperature
sample is very close to degeneracy, but the response falls
below the noise level at very small k values. This gap in
k is due to the fact that parabolic dispersion in this case
leads to very small group velocity for small k and thus
these waves are not detected over the measurement time. In
addition, the lower branch is associated with a shear thickness
mode resonance that has little out-of-plane displacement in the
vicinity of k = 0. The curve measured on the cooled sample
shows a continuous transition from forward to backward wave

propagation. However, there is a small distortion, or break
from linear behavior, observed for very small k values. In order
to better understand this, we also simulated the experiments
using the finite difference time domain software PZFLEX. In the
simulation, we used a circular normal forcing function with
a diameter matching the transducer diameter, and all other
parameters matching those used in the experiment. In addition,
the data was processed using the same approach used for the
experimental measurements. The dispersion curves from the
simulations are also shown in Figs. 5(c) and 5(d) and agree
well with the experimental measurements. Both simulation
and experiment show similar behavior for small k values.
Additional simulations in PZFLEX show this distortion is
reduced as the distance from the source to the detection points
is increased, indicating that it is associated with operation in
the near field of the source.

One of the peculiar features of conical point Lamb waves
is that they propagate with an infinite wavelength. This
essentially decouples the spatial and temporal behavior and
leads to a surface displacement that oscillates in time but
is fixed in space. A direct consequence of this is that the
concept of propagation direction loses significance. In order
to demonstrate this behavior experimentally, we machined a
30-mm-diameter semicircle on the edge of the aluminum plate.
The transducer is positioned at a randomly selected position
far from the semicircle, at the location indicated in Fig. 3.
The experiments were performed at room temperature where
near degeneracy occurs. The transducer was driven with a
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domain responses in (b) showing the uniform phase of the oscillations at the different spatial positions. (d) Phase of the oscillation of the S2

mode over the surface of the lens at 2.051 MHz. A low-pass spatial filter (k = 1.0 mm−1) was used to isolate the S2 mode.

50-cycle tone burst at a frequency of 2.051 MHz, where
the spatial frequency is quite close to zero. This gives a
wavelength of 220 mm and an associated phase velocity of
4.5 × 105 m/s [see Fig. 1(b)]. The detection laser was scanned
over a 35 × 35 mm2 region of the plate, encompassing the
semicircular feature, with a step size of 0.2 mm along each
axis, and the out-of-plane surface displacement was measured
at each spatial position.

The time domain wave forms were windowed between 60
and 100 μs and processed using a Fourier transform. The
magnitude and phase angle of the surface displacement at
a frequency of 2.051 MHz was determined at each spatial
position, and the displacement amplitude is plotted in Fig. 6(a).
Note that the near-degenerate S2 mode has a wavelength
much larger than the image size, resulting in a dc offset to
the image but contributing little spatial structure. The main
feature in Fig. 6(a) is the S0 mode, with a wavelength of
1.57 mm, which is produced by mode conversion of the S2

mode at the plate edge. Figure 6(b) shows the same data as in
Fig. 6(a), but spatially filtered between k = 3.0 and 5.0 mm−1

to better observe the S0 wave field. The mode converted wave
has an angle of reflection of (very close to) zero degrees
irrespective of the angle of incidence, leading to focusing of
the mode converted wave field by the semicircular extrusion.
Furthermore, this type of lens will focus the mode converted
field regardless of the position of the S2 mode excitation
source on the plate surface. Figure 6(c) shows the 2D FFT

of the complex data at 2.051 MHz. The bright spot near
k = 0 corresponds to the S2 mode, while the semicircular
ring corresponds to the S0 mode produced at the plate edge
through the mode conversion. The magnitude of the S0 field
is quite uniform over the full 180° defined by the semicircular
edge. The magnitude of the displacement field at 2.051 MHz
is shown in Fig. 6(d), where clear focusing at the center of
curvature of the lens is observed.

The experimental measurement was taken at room tem-
perature where a near degeneracy occurs. In order to inves-
tigate potential differences in the wave field behavior that
could occur at a true accidental degeneracy, we simulated
the experimental measurement using PZFLEX and taking a
Poisson’s ratio of 1/3. The source was again taken as a
circular normal force with a diameter matching that of the
transducer, and the mechanical properties were selected to
match the cooled specimen discussed earlier in the paper.
The temporal excitation profile and data processing approach
match those in the experiment. In this case, the degeneracy
occurs at a frequency of 2.048 MHz. Figures 6(e) and 6(f)
give the calculated displacement field and bandpass filtered
displacement field, respectively. Figures 6(g) and 6(h) show
the calculated spatial FFT and displacement magnitude plot,
respectively. A qualitative comparison between all experimen-
tal and simulated plots shows reasonable agreement between
the two. In particular, both show angle independent mode
conversion and normal reflection for the S0 mode at the
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free edge over the full 180° surface of the semicircular
extrusion.

We further investigate the wave field for near-conical
dispersion by examining the time domain responses at the
positions in the lens indicated in Fig. 7(a). The data was
low-pass filtered at a spatial frequency of 1.0 mm−1 in order
to isolate the S2 mode and the resulting wave forms are shown
in Fig. 7(b). The traces show an initial transient tone burst,
similar to that seen in Fig. 2(a), followed by a prolonged
ringing. Figure 7(c) shows zoomed-in wave forms between
90 and 95 μs. The surface displacement at all four of these
points oscillates with a nearly identical phase, as expected
due to the unusually large wavelength of the S2 mode. The
wavelength of the S2 mode at 2.051 MHz was estimated by
inspecting the phase delay of the displacement response and
was found to be 190 mm, with an associated phase velocity
of 3.9 × 105 m/s. Figure 7(d) shows the phase angle of the
displacement response at 2.051 MHz. The data was spatially
low-pass filtered (k = 1.0 mm−1) and the phase angle found by
using a temporal FFT of the wave forms in the 60–100 μs time
window. Waves excited in this near-degenerate case produce
a field that is remarkably uniform in phase over the surface of
the lens.

V. CONCLUSIONS

Conical dispersion at finite frequencies and zero wave
number produces propagating waves that have an infinite

wavelength. In practice, this leads to elastic waves that travel
away from a particular source with a finite group velocity
while maintaining a uniform phase at each point in space,
producing a field that can be considered in some sense static
in space, yet still oscillating in time. While there has been a
substantial amount of interest in the development of optical
and acoustic media that support conical dispersion at k = 0,
generally referred to as zero index media [23,30], conical
dispersion in homogeneous isotropic waveguides has received
limited attention. Here we demonstrate that conical dispersion
can be achieved by tuning the Poisson’s ratio of an elastic plate
such that accidental degeneracy between a longitudinal and
transverse thickness mode resonance of the same symmetry
occurs. We confirm through both computation and experiment
that Lamb waves generated at the conical point frequency show
a uniform phase over the plate surface. Furthermore, we show
that these waves exhibit angle independent mode conversion
upon encountering the free edge of the plate. Future studies
will explore the scattering of conical point Lamb waves at
plate defects and look toward applications for these waves in
the nondestructive evaluation of materials and the development
of acoustic devices.
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