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We report a nontrivial transition in the core structure of vortices in two-band superconductors as a function
of interband impurity scattering. We demonstrate that, in addition to singular zeros of the order parameter, the
vortices there can acquire a circular nodal line around the singular point in one of the superconducting components.
It results in the formation of the peculiar “moat”-like profile in one of the superconducting gaps. The moat-core
vortices occur generically in the vicinity of the impurity-induced crossover between s± and s++ states.
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Singularities that typically occur in quantum vortices are
pointlike: i.e., in two dimensions, the modulus of the complex
order parameter (the density of superconducting electrons)
vanishes at some point in the vortex core [1–3]. We consider
qualitatively different vortex structures in a rather generic, and
microscopically simple model of a two-band superconductor
with impurities. In such a system, vortices can have a circular
nodal line where the superconducting gap function in one
of the bands vanishes. In three dimensions it extends to a
cylindrical nodal surface surrounding the vortex line. We
introduce the name “moat-core”-vortex to distinguish such an
exotic structure, shown schematically in Figs. 1(b) and 1(c),
from the usual two-component vortices with monotonic gap
profiles [Figs. 1(a) and 1(d)].

Two-band superconductors where the pairing is generated
by interband electron-electron repulsion [4], tend to form the
so-called s± superconducting state with a sign change between
the gap functions in different bands [5,6] �1 and �2. Namely,
there is a π relative phase between the components |�j |eiθj of
order parameter for the band index j = 1,2. Thus, in contrast
to the s++ state where the ground-state phase difference θ12 ≡
θ2 − θ1 is zero, the s± state has θ12 = π . Increasing disorder
in dirty two-band superconductors rather generically leads to
a crossover from the s± to the s++ state.

For the simplest two-band weak-coupling theory, the
crossover can be of two types. The first is a direct one
[7] involving a continuous sign change in one of the gap
functions, e.g., �1. Hereafter we call �1 the subdominant
component, since near the critical temperature Tc, it can
be considered as induced by the stronger gap �2 due to
the Cooper pair interband tunneling. The subdominant gap
function amplitude vanishes at the crossover line, while the
leading component �2 remains nonzero. The second scenario
involves the intermediate time-reversal symmetry breaking
s + is state [8], when both gap functions �1,2 are finite but
acquire a nontrivial phase difference θ12 �= πn. Quantitative
study has shown that in the second scenario, the intermediate
s + is state occupies a vanishingly small region of the
phase diagram [9] (see also note [10]). At the same time,
the signature of the s±/s++ crossover has recently been
experimentally observed in the superconducting compound
from the iron-pnictide family with controlled disorder [15].

Here we consider vortex solutions near the s±/s++
crossover line, and demonstrate the formation of moat-core

vortices featuring a nonmonotonic order parameter distri-
bution, and a circular (or cylindrical) nodal line where
�1(r0) = 0. We calculate superconducting ground states and
vortex structures within the weak-coupling model of two-band
superconductors with a high concentration of impurities. Such
system can be described by two coupled Usadel equations with
interband impurity scattering terms [16]:

ωnfi = Di

2
(gi�

2fi − fi∇2gi) + �igi

+
∑
j �=i

γij (gifj − gjfi). (1)

Here ωn = (2n + 1)πT , n ∈ Z are the fermionic Matsubara
frequencies, and T the temperature. Di are the electron
diffusivities, and γij the interband scattering rates. Propagators
in each band obey the normalization condition |fi |2 + g2

i = 1,
where the quasiclassical propagators fi and gi are, respec-
tively, the anomalous and normal Green’s functions. The gap

FIG. 1. Schematic picture illustrating the evolution of gap func-
tion profiles �1,2(r) near the vortex cores, in two-band superconduc-
tors when the bulk state undergoes the s±/s++ crossover. Panels
(a) and (d) display the usual vortex profiles in the s± and s++
phases, respectively. Panel (b) shows a vortex with overshooting
nonmonotonic behavior of the subdominant component �1(r), while
panel (c) displays the moat-core vortex in the s++ phase with the node
�1(r0) = 0.
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functions are determined by the self-consistency equations

�i = 2πT

Nd∑
n=0

∑
j

λijfj (ωn), (2)

for the Green’s functions that satisfy Eq. (1). Here Nd =
�d/(2πT ) is the summation cutoff at Debye frequency �d .
The diagonal elements λii of the coupling matrix λ̂ in the
self-consistency equation (2), describe the intraband pairing.
The interband interaction is determined by the off-diagonal
terms λij (j �= i) which can be either positive or negative.

An expansion in small |�j | � Tc and their gradients gives
the Ginzburg-Landau (GL) model:

F
F0

=
2∑

j=1

{
kjj

2
|��j |2 + ajj |�j |2 + bjj

2
|�j |4

}

+ k12

2
[(��1)∗��2 + (��2)∗��1]

+ 2(a12 + c11|�1|2 + c22|�2|2)Re
(
�∗

1�2
)

+ (b12 + c12 cos 2θ12)|�1|2|�2|2 + B2

2
. (3)

The two gaps in the different bands are electromagnetically
coupled by the vector potential A of the magnetic field
B = ∇ × A, through the covariant derivative � ≡ ∇ + iq A
where q is the electromagnetic coupling constant that
parametrizes the magnetic field penetration depth. The two
components are also directly coupled via potential terms in the
third and fourth lines of Eq. (3), and via the mixed-gradient
term, line 2. The coefficients of the Ginzburg-Landau func-
tional aij , bij , cij , and kij can be calculated microscopically.
We list here only the expressions for the gradient terms, which
are crucial for the correct determination of the transition in
vortex structure:

kii = 2πT Ni

Nd∑
n=0

Di(ωn + γji)2 + γij γjiDj

ω2
n(ωn + γij + γji)2

, (4a)

kij = 2πT Niγij

Nd∑
n=0

Di(ωn + γji) + Dj (ωn + γij )

ω2
n(ωn + γij + γji)2

, (4b)

with j �= i, and Ni = λji/(λ12 + λ21) are the partial den-
sities of states. Note that the regimes considered below
are with symmetric interband coupling, thus implying that
N2/N1 = 1. The coefficients given by Eq. (4) satisfy the
condition k11k22 − k2

12 > 0 yielding the positively defined
gradient energy in Eq. (3) for the entire range of diffusivities
D1,2 and effective interband scattering rate 	 = γ12/N2 =
γ21/N1. The previously reported expressions [16] for kij

violate this condition and therefore in general they can be
used only for the infinitesimally small values of 	. For
the calculations we use dimensionless variables, normalizing
the gaps by Tc, the lengths by ξ0 = √

D1/Tc, the magnetic
field by B0 = Tc

√
4πν1, and the free energy F0 = B2

0/4π ,
where ν1 is the density of states in the first band. The
electromagnetic coupling constant is q = 2πB0ξ

2
0 /�0. In

these units, the London penetration length λL is given by
λ−2

L = q2(kii�
2
i0 + 2k12�10�20), where �i0 is the bulk value

of the dimensionless gap.

The bulk phase diagram given by this model was calculated
both at the GL level and verified against the numerical solution
of the full Usadel theory in [9]. For temperatures rather close
to Tc it typically displays a direct s±/s++ crossover line
which is rather featureless with respect to thermodynamic
signatures [9]. Below, we demonstrate that there is nevertheless
a transition in vortex core structure across that line. This could
have a number of consequences for behavior of the system in
external magnetic fields.

To investigate the properties of single vortex solutions, the
physical degrees of freedom �1,2 and A are discretized within a
finite-element formulation [17], and the Ginzburg-Landau free
energy (3) is minimized using a nonlinear conjugate gradient
algorithm. Given an initial guess where both components have
the same phase winding (at large distances �i ∝ eiθ and θ is
the polar angle relative to the vortex center), the minimization
procedure leads, after convergence of the algorithm, to a vortex
configuration [18]. Figure 2 shows the numerically calculated
single vortex solutions in the vicinity of the impurity-induced
crossover, in the case of a two-band superconductor with
nearly degenerate bands and weak repulsive interband pairing
interaction. There is a transition in the vortex profiles of the
subdominant component �1 when approaching the s±/s++
crossover line. First, we observe that on the s± side of the
crossover, �1(r) distribution exhibits a strong increase near the
core, strongly overshooting its ground-state value �10 which
is retained asymptotically at r → ∞. We note that a small
density overshoot effect was also obtained in the two-band
model with ballistic and diffusive bands [19]. Here we point
out that in the vicinity of s++/s± crossover, the near-core
overshoot can be very large, reaching about 100% of the
subdominant ground-state amplitude �10 (see the examples
in Fig. 2). The effect should be present rather generically
in the presence of the interband impurity scattering since it
originates from the mixed-gradient term in Eq. (5) that tends
to become negative. Correspondingly, in the presence of strong
superconducting currents it becomes under certain conditions
energetically beneficial to increase density.

We find that near the s±/s++ crossover there is a rather
generic effect of formation of the circular nodal lines of
the subdominant component �1 = 0. The nodal lines exist
in addition to the usual point singularities at the vortex
center. In that regime, the ground state is s++ so that the
interband phase difference disappears far from the vortex
center θ12 → 0. However, due to the competition between
gradient and Josephson terms, it is more favorable to achieve
a θ12 = π (s± state), in the vicinity of the core singularity. The
transition between the localized “core” states with θ12 = π

and the asymptotic states θ12 = 0 is realized by nullifying the
subdominant gap �1(r0) = 0 at a given distance r0 from the
center, when the Josephson energy term wins over the gradient
one. The effect should also be generic for a wide range of
models with this structure of the gradient terms competing
with the intercomponent Josephson coupling [20]. We discuss
below that the effect should be stronger at lower temperatures
and is underestimated by the GL model.

The tendency for the formation of a localized s± state inside
the vortex core can be qualitatively understood by analyzing
the functional (3). The structure of axially symmetric vortices
is given by the ansatz for the order parameter components
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FIG. 2. Transition in vortex solutions in the vicinity of the impurity-induced crossover line of a two-band superconductor with nearly
degenerate bands and weak repulsive interband pairing interaction (λ11 = 0.29, λ22 = 0.3, and λ12 = λ21 = −0.01), and with equal electron
diffusivities (D2/D1 = 1). The temperature is T/Tc = 0.95, q = 0.25, and tuning the strength of the effective interband impurity scattering
drives the system from bulk s± to bulk s± s++. The table indicates the calculated values of the London penetration depth L and of the
coefficients of the Ginzburg-Landau free energy. The different lines respectively display the magnetic field B, the larger gap (�2), and the
smaller gap (�1). The last line shows the relative phase θ12 that specifies whether the superconducting ground state is s++ or s±. The third
column shows a vortex solution that has a pointlike and a “moat”-like zero in �1. Note this is a close-up view of the vortex core which is
actually calculated in larger grids.

�j (r) = �̃j (r)eiθ , where �̃j (r) are the real-valued profiles of
the order parameter components and the polar coordinates r,θ

are determined relative to the vortex center. In this case the
GL energy contribution from the mixed-gradient term can be
written as follows:

FG ≡ k12

2
[(��1)∗��2 + c.c.]

= k12(∇r �̃1∇r �̃2 + r−2�̃1�̃2), (5)

where the vector potential contribution is neglected since
it is small inside the vortex core. This term describes the
interaction between the order parameter components which
is qualitatively similar to the interband Josephson energy
contribution in Eq. (3):

FJ ≡ 2(a12 + c11|�̃1|2 + c22|�̃2|2)�̃1�̃2 . (6)

In the bulk phase, where the gradient energy is zero,
FG = 0, the phase locking corresponds to the s++/s± state
depending on the sign of the effective Josephson coupling

J = a12 + c11|�̃1|2 + c22|�̃2|2. The crossover line can be
defined parametrically in the 	,T plane as J (	,T ) = 0. In
spatially nonhomogeneous states, e.g., in the presence of vor-
tices, the relative sign of the gap functions �̃1,2 is determined
by the local interplay of two phase-locking energies FG and FJ .

In the vortex cores, the order parameter profiles can
be approximated by linear dependencies �̃j (r) ≈ rd�̃j /dr ,
thus yielding FG ≈ k12(d�̃1/dr)(d�̃2/dr). There, since the
mixed-gradient coefficient is always positive k12 > 0, the
energy FG favors the opposite signs of the order parameter
slopes, e.g., d�̃2/dr > 0 and d�̃1/dr < 0. That leads to the
opposite signs of gap functions near the vortex center �̃2 > 0
and �̃1 < 0. This tendency competes with that favored by
the Josephson energy if J < 0, corresponding to the bulk
s++ phase when the gaps have the same signs far from the
core. Therefore, provided that the gradient energy dominates
close to the vortex center (|FG| > |FJ |), one can expect
the nonmonotonic distribution for the component �1(r),
crossing zero at some finite distance r = r0 determined by
the competition of FG and FJ . In the two-dimensional plane
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perpendicular to the vortex line, such zero points of �1(r0) = 0
form the circular nodal line around the singular point at the
vortex center r = 0.

The scenario discussed above is actually generic for any
two-band s++ superconductor with interband impurity scatter-
ing. It can be shown that the effect should be stronger away
from the superconducting phase transition. For a system that
breaks only a single symmetry, at the mean-field level only one
(critical) mode survives in the limit τ ≡ (1 − T/Tc) → +0.
In general, the critical mode corresponds to a certain linear
combination of the gap function fields �1,2. Even if there are
other well-defined subdominant modes that are characterized
by other coherence lengths, they have vanishing amplitude
when τ is much smaller than other parameters in the problem
[21]. In the limit τ → 0, the energy contributions can be
estimated by retaining only the contribution from the dominant
mode, that is, |d�̃i/dr| ∝ |�i0|/ξc(T ), where ξc(T ) ∝ 1/

√
τ

is the critical coherence length. Hence the mixed-gradient
energy |FG| ∝ k12|�10�20|/ξ 2

c (T ) should be compared to
the Josephson energy FJ ∝ J�10�20. One can see that the
condition of the vortex transition |FG| > FJ is satisfied only
provided that the coupling is small enough, |J | � k12/ξ

2
c (T ),

which certainly does not hold near the critical temperature in
the limit τ → 0 when ξc(T ) → ∞. However, one can expect
that inside the vortex core the gradient energy always domi-
nates in the vicinity of the impurity-driven s±/s++ crossover
where the effective Josephson coupling disappears, J (	,T ) =
0. This argument heuristically explains the numerically found
moat-core vortex structures shown in Fig. 2.

The existence of exotic moat-core vortices does not depend
on specific values of the pairing coefficients. Indeed, we found
such solutions for all the different ̂ we investigated. Based
on the above qualitative argument, one can conclude that these
vortex structures inevitably appear sufficiently close to the

crossover line. Moreover, we find that typically, the region
of moat-core vortices in the 	,T phase diagram tends to
become larger with the increased ratio of diffusion coefficients
D2/D1. This effect can be explained by the softening of the
order parameter in the subdominant band which facilitates the
formation of additional zeros in the �1(r) gap distribution.

In conclusion, we have shown that there is a vortex structure
transition across the s±/s++ crossover line driven by the
impurity scattering, in two-band superconductors. On the s±
side of this crossover, vortices have a strong overshooting in
the distribution of the subdominant component of the order
parameter. On the other side, there are moat-core vortices
with an s± phase inclusion in the cores, separated from the
bulk s++ phase by circular nodal lines. This raises a number
of interesting questions. First, it should be interesting to
investigate the electronic structure of the moat-core vortices.
Second, this system for the parameters close to the s±/s++
crossover should have a nontrivial behavior in the external
magnetic field. Indeed, in contrast to the zero-field picture of
a sharp crossover, the lattice and liquids of moat-core vortices
represent a macroscopic phase separation or mircoemulsion-
like s± inclusions inside the s++ state. As the vortex density
rises in increasing field, there should also be a field-induced
crossover from s++ to the s±. This can be resolved in local
phase-sensitive probes [22].
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