Relieving the frustration through Mn³⁺ substitution in holmium gallium garnet

Paromita Mukherjee,^{1,*} Hugh F. J. Glass,¹ Emmanuelle Suard,² and Siân E. Dutton^{1,*}

¹Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom

²Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France

(Received 26 April 2017; revised manuscript received 11 September 2017; published 25 October 2017)

We present a Rapid Communication on the impact of Mn^{3+} substitution in the geometrically frustrated Ising garnet Ho₃Ga₅O₁₂ using bulk magnetic measurements and low-temperature powder neutron diffraction. We find that the transition temperature $T_N = 5.8$ K for Ho₃MnGa₄O₁₂ is raised by a factor of almost 20 when compared to Ho₃Ga₅O₁₂. Powder neutron diffraction on Ho₃Mn_xGa_{5-x}O₁₂ (x = 0.5,1) below T_N shows the formation of a long-range-ordered state with $\mathbf{k} = (0,0,0)$. Ho³⁺ spins are aligned antiferromagnetically along the six crystallographic axes with no resultant moment, whereas the Mn³⁺ spins are oriented along the body diagonals such that there is a net moment along [111]. The magnetic structure can be visualized as ten-membered rings of corner-sharing triangles of Ho³⁺ spins with the Mn³⁺ spins ferromagnetically coupled to each individual Ho³⁺ spin in the triangle. Substitution of Mn³⁺ completely relieves the magnetic frustration with $f = \theta_{CW}/T_N \sim 1.1$ for Ho₃MnGa₄O₁₂.

DOI: 10.1103/PhysRevB.96.140412

In geometrically frustrated magnets the lattice geometry prevents all the magnetic interactions from being satisfied simultaneously. Two consequences of this are a large degeneracy in the number of possible ground states and a suppression of the long-range magnetic ordering temperature. Experimentally it has been observed that factors including symmetric and antisymmetric exchanges, dipolar interactions, crystal electric-field (CEF) effects, and lattice distortions play a role in determining the magnetic properties. Depending on the relative magnitude of competing interactions, the system may be driven into a long-range-ordered state, thus relieving the frustration, or exist in a disordered but correlated state, such as a spin liquid, spin ice, or one with emergent magnetic order [1–8]. Magnetic frustration can also be relieved through site dilution or site disorder of spins [9–13].

Lanthanide garnets with the general formula $Ln_3A_2X_3O_{12}$ are a system containing a highly frustrated magnetic Ln^{3+} lattice. They crystallize in a cubic structure, Fig. 1(a), containing three crystallographic sites for the cations: dodecahedral occupied by Ln, octahedral occupied by A, and tetrahedral occupied by X. The magnetic Ln^{3+} ions lie at the vertices of corner-sharing triangles which form two interpenetrating networks of bifurcated ten-membered rings, Fig. 1(b). The magnetic properties of the lanthanide garnets are highly dependent on the single-ion anisotropy of the Ln^{3+} ion and the cations on the octahedral and tetrahedral sites [14–18]. Much of the experimental and theoretical work so far has focused on the spin liquid candidate gadolinium gallium garnet Gd₃Ga₅O₁₂ [15,19–22]. Here we focus on the isostructural holmium gallium garnet Ho₃Ga₅O₁₂ (HoGG), which exhibits substantial single-ion anisotropy [23]. Ho₃Ga₅O₁₂ was reported to undergo long-range magnetic ordering below 0.19 K in a six sublattice antiferromagnetic structure; however a later neutron-scattering study points to coexistence of longand short-range magnetic orders below 0.3 K down to 0.05 K [24-26]. We explore the impact of magnetic Mn^{3+} substitution on the magnetic properties and magnetic structure of holmium gallium garnet.

We show that the magnetic frustration of the Ising garnet Ho₃Ga₅O₁₂ is relieved almost entirely by partial substitution of nonmagnetic Ga³⁺ with magnetic Mn³⁺. In the case of Ho₃Mn_xGa_{5-x}O₁₂ (x = 0.5, 1), the Mn³⁺ spins create a local dipolar field, coupling ferromagnetically with *quasispins* from Ho₃ triangles. The Mn³⁺ spins and the Ho₃ *quasispin* sublattices in Ho₃MnGa₄O₁₂ form a long-range-ordered state at $T_N = 5.8$ K, a dramatic contrast to the reported coexistence of short- and long-range orders observed below 0.3 K for unsubstituted Ho₃Ga₅O₁₂ [26].

Polycrystalline samples of phase pure $Ho_3Mn_xGa_{5-x}O_{12}$ $(0 \le x \le 1)$ have been prepared and the structure evaluated using x-ray and neutron diffraction as described in the Supplemental Material [27]. Mn³⁺ substitution results in a small increase in the unit cell, however no significant changes in the Ho-O bond lengths are observed (see Tables S1 and S2 in the Supplemental Material [27]). Analysis of the crystal structure shows that Mn³⁺ exclusively occupies the octahedral A sites, located above and below each Ho₃ triangle [Fig. 1(c)]. The preference of d^4 Mn³⁺ to occupy only the octahedral sites is expected from consideration of the CEF for the octahedral A and tetrahedral X sites. No evidence for ordering of the Mn³⁺ ions or a Jahn-Teller distortion is observed, although local Jahn-Teller distortions cannot be discounted. At the maximum substitution, 50% of the A sites are occupied by magnetic Mn^{3+} ions. The connectivity of the A sites has been described by one-dimensional chains propagating along the body diagonal of the cubic unit cell [28], however all the sites occupied by Mn³⁺ spins, including those in neighboring chains, are equidistant from one another in the unit cell.

The zero-field-cooled (ZFC) magnetic susceptibility $\chi(T)$ of Ho₃Mn_xGa_{5-x}O₁₂ ($0 \le x \le 1$), Fig. 2(a), shows a sharp magnetic ordering transition $T_{\rm N}$ at 3.5 and 5.8 K for Ho₃Mn_{0.5}Ga_{4.5}O₁₂ and Ho₃MnGa₄O₁₂, respectively. No ordering is observed in Ho₃Ga₅O₁₂ above the limiting temperature of 1.8 K, consistent with previous literature reports [26,29]. The inverse susceptibility χ^{-1} is linear at high temperatures T > 100 K [Fig. 2(a) inset], and fits to the

^{*}Corresponding authors: pm545@cam.ac.uk; sed33@cam.ac.uk

FIG. 1. (a) General crystal structure of lanthanide garnets $Ln_3A_2X_3O_{12}$ with the three cations occupying distinct crystallographic sites—here Ln = Ho, A = Mn/Ga, and X = Ga. (b) Connectivity of magnetic Ho³⁺ ions. The Ho³⁺ ions lie at the vertices of corner-sharing equilateral triangles forming two interpenetrating ten-membered rings. This results in a highly frustrated three-dimensional network. (c) Relative position of Mn³⁺ relative to Ho³⁺—each triangle with Ho³⁺ at the vertices has a Mn³⁺ atom above and below the centroid of the triangle. Each octahedral site is occupied by Mn³⁺ 25% and 50% of the time for Ho₃Mn_{0.5}Ga_{4.5}O₁₂ and Ho₃MnGa₄O₁₂, respectively.

Curie-Weiss (CW) law were carried out in different temperature ranges from 100 to 300 K. The difficulty in determining the Weiss temperature θ_{CW} from high-temperature fits to the Curie-Weiss law is well documented for Ho³⁺ containing samples due to the presence of low-lying CEF states [23,26,30]. However, for all compositions, θ_{CW} is negative, indicating net antiferromagnetic interactions. The value of θ_{CW} decreases with an increase in x, indicating weaker antiferromagnetic correlations on Mn³⁺ substitution. The effective moment μ_{eff} , obtained from the Curie-Weiss law (see Table S3 in the Supplemental Material [27]), is underestimated compared to the theoretical moment: $\mu_{\rm th}^2 = 3\mu_{\rm Ho}^2 + x\mu_{\rm Mn}^2$ (this assumes no quenching of the orbital contribution to the effective moment but, partial quenching of the moment would be expected due to presence of low-lying CEF states). However, $\mu_{\rm eff}$ increases with x as expected for Mn³⁺ substitution.

Isothermal magnetization curves [Fig. 2(b)] show that the magnetization at 2 K and 9 T, $M_{2 \text{ K},9 \text{ T}}$, is significantly increased on Mn³⁺ substitution. The size of the increase cannot solely be attributed to the Mn³⁺ ions as it exceeds the maximum contribution from Mn^{3+} [$M_{Mnmax} = g_S S = 4 \mu_B$ per formula unit (f.u.)]. The additional increase in magnetization could be due to changes in the underlying magnetism or in the CEF states of Ho³⁺ on substitution. For all samples the observed magnetization at 9 T, $M_{2K,9T}$, is much lower than the saturation magnetization of a Heisenberg system, $M_{\rm sat} = 3 \times$ $10 + x \times 4 \mu_B/f.u. (3g_J J + xg_S S$ where $g_J = 5/4, J = 8$ for Ho³⁺ and $g_S = 2, S = 2$ for Mn³⁺). However, it is consistent with the value expected for powder-averaged Ising Ho³⁺ spins; $M_{\text{sat,Ising}} = 3 \times 10/2 + x \times 4 \mu_B/\text{f.u.}$ The isothermal magnetization in Ho₃Ga₅O₁₂ has previously been shown to be typical of Ising spins [23], and our data are consistent with the Ho^{3+} spins remaining Ising-like on Mn^{3+} substitution. Given their small contribution to the total magnetization, no conclusions can be drawn regarding the isotropy of the Mn³⁺

spins. At 2 K, a field-induced transition is observed at 0.27(1) and 0.46(1) T for Ho₃Mn_{0.5}Ga_{4.5}O₁₂ and Ho₃MnGa₄O₁₂, respectively (see Fig. S3 in the Supplemental Material [27]). Similar transitions in Ising garnets containing magnetic ions exclusively on the *A* site have recently been reported [28]. The plot of *dM/dH* for Ho₃Ga₅O₁₂ also shows a feature at low fields of < 0.2 T (see Fig. S3 in the Supplemental Material [27]), however further measurements are required to understand the nature of these field-induced transitions.

To explore the nature of the magnetic ordering, we carried out low-temperature powder neutron-diffraction experiments on Ho₃Mn_{0.5}Ga_{4.5}O₁₂ and Ho₃MnGa₄O₁₂. Both samples show strong magnetic Bragg peaks below $T_{\rm N}$. No magnetic diffuse scattering is observed for either sample at $T \ge 1.5$ K, suggesting that unlike in HoGG [26], long- and short-range magnetic orders do not coexist. For both samples, the magnetic Bragg reflections are indexed with the propagation vector $\mathbf{k} = (0,0,0)$. All combinations of irreducible representations for Ho^{3+} and Mn^{3+} ions were tested, however only a model with both ions having the Γ_3^1 irreducible representation (see Table S4 in the Supplemental Material [27]) allowed for a good fit to the data [Fig. 3(a)]. For both samples, the magnitude of the Ho³⁺ and Mn³⁺ moments increases on cooling, although the moments are smaller than the theoretical moment $[g_J\sqrt{J(J+1)}] =$ 10.61 μ_B for Ho³⁺ and $g_S\sqrt{S(S+1)} = 4.89\mu_B$ for Mn³⁺ respectively] (see Fig. S4 in the Supplemental Material [27]). This may be due to low-lying CEF effects or screening of the moment. Previous studies of Ho₃Ga₅O₁₂ and Ho₃Al₅O₁₂ also have reported reduced moments, in close agreement with our results [29,31]. Reduced magnetic moments for Mn^{3+} determined from neutron diffraction also have previously been observed [32].

The magnetic structure, Fig. 3(b), has the same long-rangeordered arrangement of the Ho^{3+} spins as that reported for $Ho_3Ga_5O_{12}$ and $Ho_3Al_5O_{12}$ [25,31]. The 24 Ho³⁺ spins in each unit cell are arranged into six sublattices with the Ho^{3+} spins

FIG. 2. (a) ZFC magnetic susceptibility $\chi(T)$ measured in 100 Oe for Ho₃Mn_xGa_{5-x}O₁₂ ($0 \le x \le 1$): Magnetic ordering transitions are seen clearly at 3.5 and 5.8 K for x = 0.5 and x = 1, respectively. The inverse magnetic susceptibility χ^{-1} can be seen in the inset. (b) Isothermal magnetization curves at 2 K for Ho₃Mn_xGa_{5-x}O₁₂ ($0 \le x \le 1$). (c) ZFC and field-cooled (FC) magnetic susceptibility $\chi(T)$ measured in 100 Oe for Y₃MnGa₄O₁₂: A broad spin-glasslike transition is observed at $T_0 = 18$ K. The inverse magnetic susceptibility $\chi^{-1}(T)$ can be seen in the inset.

aligned along the crystallographic axes [100], [$\overline{1}$ 00], [010], [0 $\overline{1}$ 0], [0 $\overline{1}$ 0], [001], and [00 $\overline{1}$] such that the net moment is zero. The Mn³⁺ spins in each unit cell are aligned along the body diagonals as reported for the Ising garnet CaY₂Co₂Ge₃O₁₂ [28],

PHYSICAL REVIEW B 96, 140412(R) (2017)

however, their relative orientations are completely different. The Mn³⁺ moments are oriented along [111], $[\bar{1}\bar{1}1]$, $[\bar{1}1\bar{1}]$, and $[1\overline{1}\overline{1}]$ such that there is a resultant moment from the Mn³⁺ spins along [111]. The relative orientations of the Ho^{3+} and Mn^{3+} spins assume greater significance when we consider the two interpenetrating networks of the ten-membered triangles of the Ho^{3+} spins, Fig. 3(c). For each ten-membered ring, the net magnetic moment of the Ho^{3+} spins is zero, however, there is a net ferromagnetic interaction between the Ho^{3+} and the Mn³⁺ moments. When these interactions are summed over a Ho₃ triangle, then the resultant Ho³⁺ quasispin is orientated in or out of the centroid of the triangle, i.e., along [111] [Fig. 3(d)] and are located directly above or below the site partially occupied by Mn³⁺. The Mn³⁺ spin aligns co-parallel with the Ho₃ quasispin [Fig. 3(e)]. Although the construct of the Ho₃ quasispins allows for the magnetic structure to be rationalized, it should be noted that, in the parent material $Ho_3Ga_5O_{12}$, coupling between any two of the Ho^{3+} spins on an individual triangle $\propto S_1 \cdot S_2$ results in no net interaction as they are orthogonal, however, in the case of $Ho_3Mn_xGa_{5-x}O_{12}$ each individual Ho³⁺-Mn³⁺ interaction is nonzero.

To our knowledge the concurrent magnetic ordering observed for both Ho3+ and Mn3+ in Ho3MnGa4O12 is unique when compared to other rare-earth-transition-metal oxides with complex magnetic structures. Studies on magnetic dopants in lanthanide garnets have been restricted to $Ln_3Fe_5O_{12}$ where Fe^{3+} occupies both octahedral and tetrahedral sites. The two Fe^{3+} sublattices order in a ferrimagnetic structure at $\sim 130-140$ K whereas the Ln^{3+} ions order in an umbellate structure around $\sim 10 \text{ K}$ [33–35]. In HoMnO₃, the Mn^{3+} spins order at \sim 72 K, whereas the onset of ordering in the Ho^{3+} spins is seen at the spin-rotation transition for the Mn^{3+} spins ~ 33 K followed by an increase in the ordered Ho³⁺ moments below 5 K [36-38]. However, in Ho₃MnGa₄O₁₂, no features are observed in the magnetic susceptibility or neutrondiffraction data corresponding to the individual ordering of the Mn^{3+} spins at $T > T_N$. The ordering mechanism is also distinct from the "ordered spin-ice" structure reported for Ho₂CrSbO₇ where the frustration is proposed to be relieved through local ferromagnetic correlations between the Cr³⁺ spins as is evidenced by a positive Curie-Weiss constant for isostructural Y₂CrSbO₇ [13,39]. However, in Ho₃MnGa₄O₁₂, the Mn-Mn and Ho-Ho exchange interactions are antiferromagnetic, suggesting that the ordering is driven by a different mechanism, the origin of which is discussed below.

The partial substitution of Ga³⁺ for Mn³⁺ in $Ho_3Mn_xGa_{5-x}O_{12}$ significantly changes the magnetic interactions which need to be considered. In addition to Ho-Ho interactions present in Ho₃Ga₅O₁₂, Mn-Mn and Ho-Mn interactions also need to be considered. First we consider the dipolar and exchange interactions between the magnetic Ho³⁺ spins. As the Ho-Ho bond lengths are not changed significantly on Mn³⁺ substitution (see Table S2 in the Supplemental Material [27]), it can be assumed that there is no significant change in the Ho-Ho dipolar interaction energy, $D \sim \frac{\mu_0 \mu_{eff}^2}{4\pi R_{nn}^3} \sim 0.9$ K. A priori calculation of the Ho-Ho exchange interactions is complex as the Curie-Weiss constants for the Mn³⁺ substituted garnets contain contributions from multiple interactions. An order of magnitude approximation for the nearest-neighbor exchange energy J_1 in unsubstituted

FIG. 3. (a) Rietveld refinement of the neutron-diffraction pattern at 1.5 K for Ho₃MnGa₄O₁₂: Blue ticks: nuclear Bragg reflections; red ticks: magnetic Bragg reflections; the inset shows the ordering temperature T_N as a function of the percentage of Ho₃ triangles experiencing the local internal field from the Mn³⁺ spins. (b) Magnetic structure for Ho₃MnGa₄O₁₂ ($T_N = 5.8$ K). (c) Arrangement of Ho³⁺ and Mn³⁺ spins for Ho₃MnGa₄O₁₂ in the two interpenetrating ten-membered rings in the garnet lattice. (d) Each Ho₃ triangle has three orthogonal spins orientated along the three crystallographic axes, and the Ho³⁺ quasispin directed along [111] is shown. (e) The Ho³⁺ quasispin couples ferromagnetically with the Mn³⁺ spins located above and below the triangle.

Ho₃Ga₅O₁₂ can be obtained as $J_1 \sim \frac{3k_B\theta_{CW}}{2n}$ where n = the number of nearest-neighbor Ho³⁺ = 4. This gives $J_1 =$ -4.5 K and an order of magnitude estimation of J_1 for $Ho_3Mn_xGa_{5-x}O_{12}$. The Mn-Mn exchange interactions can be approximated by considering isostructural Y₃MnGa₄O₁₂ (with an analogous lattice parameter and bond lengths as Ho₃MnGa₄O₁₂, see Tables S1 and S2 in the Supplemental Material [27]). Here the only magnetic contribution is from the Mn^{3+} spins. The magnetic susceptibility of Y₃MnGa₄O₁₂ is shown in Fig. 2(c). The divergence in the zero-field-cooled and field-cooled data at $T_f = 18$ K is characteristic of spin-glasslike behavior. Given the site disorder, formation of a spin-glass state is not unexpected and has been observed in other systems with dilute spins along [111] [40]. Fits to the Curie-Weiss law between 100 and 300 K give $\mu_{eff} = 4.83 \,\mu_B$, consistent with ${\rm Mn^{3+}}$ spins and $\theta_{\rm CW} = -9(4)$ K, indicating antiferromagnetic interactions between ${\rm Mn^{3+}}$ spins. This corresponds to $J_1 \sim$ -6.8 K if each Mn³⁺ spin is assumed to have two nearest neighbors. Determination of the Ho-Mn exchange interactions is nontrivial, and further inelastic neutron-scattering experiments are required for quantitative analysis. However, the resultant spin structure, although constrained by CEF effects, has a ferromagnetic component between adjacent Ho^{3+} and

 Mn^{3+} spins, suggesting the resulting moment is not minimized. Finally we consider the Ho-Mn dipolar interactions. The local internal dipolar fields due to the Mn³⁺ spins above and below the Ho₃ triangles can be approximated as $\mu_0 H \sim \frac{\mu_0 \mu_{\text{eff}}}{2\pi r^3} =$ $\frac{\mu_0 g_S \sqrt{S(S+1)} \mu_B}{2\pi r^3}$ where $g_S = 2, S = 2$ for Mn³⁺ and r is the distance between the centroid of the Ho₃ triangle and the Mn^{3+} spin = 2.65 Å ~ 0.5 T and this corresponds to an energy of ~ 3.2 K. We find a direct relationship between $T_{\rm N}$ and the number of quasispins experiencing a local magnetic field [Fig. 3(a) inset] when a random distribution of Mn^{3+} is assumed. This indicates that the local internal dipolar field may play a role in the magnetic ordering. In Ho₃Ga₅O₁₂, the formation of a long-range-ordered state is observed on application of a 2-T field along [111] [26], and this can be interpreted as equivalent to 25% of the Ho₃ triangles experiencing a local field. Although the nature of field-induced long-range ordering in Ho₃Ga₅O₁₂ is unknown, this highlights the role of an applied field in the magnetic ordering in Ising garnets.

In conclusion we find that, in $Ho_3Mn_{0.5}Ga_{4.5}O_{12}$ and $Ho_3MnGa_4O_{12}$, the Mn^{3+} moments, disordered on the octahedral site, couple ferromagnetically with the Ho_3 *quasispins* and lift the degeneracy associated with magnetic ordering in Ising garnets. The elevation of the ordering

temperature almost completely relieves the magnetic frustration $f = |\theta_{CW}/T_N|^1$ such that $f \sim 1.1$ for Ho₃MnGa₄O₁₂ compared to $f \sim 40$ for Ho₃Ga₅O₁₂ (see the Supplemental Material [27]). Susceptibility measurements show similar increases in T_N for $Ln_3Mn_xGa_{5-x}O_{12}$ (Ln = Tb,Dy). The Cr³⁺ substituted lanthanide gallium garnets $Ln_3\text{CrGa_4}O_{12}$ (Ln = Tb,Dy,Ho) also show an increase in T_N by a smaller factor than on Mn³⁺ substitution [41]. Neutron diffraction is required to elucidate the magnetic structure in these cases, but this hints at a universal mechanism for relieving the magnetic frustration in Ising lanthanide garnets, which is

- [1] A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
- [2] J. E. Greedan, J. Mater. Chem. 11, 37 (2001).
- [3] L. Balents, Nature (London) 464, 199 (2010).
- [4] J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, P. Waldron, S. R. Dunsiger, N. P. Raju, and J. E. Greedan, Phys. Rev. B 64, 224416 (2001).
- [5] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev. X 1, 021002 (2011).
- [6] P. P. Deen, O. A. Petrenko, G. Balakrishnan, B. D. Rainford, C. Ritter, L. Capogna, H. Mutka, and T. Fennell, Phys. Rev. B 82, 174408 (2010).
- [7] S. T. Bramwell, Science 294, 1495 (2001).
- [8] J. A. M. Paddison, H. S. Ong, J. O. Hamp, P. Mukherjee, X. Bai, M. G. Tucker, N. P. Butch, C. Castelnovo, M. Mourigal, and S. E. Dutton, Nat. Commun. 7, 13842 (2016).
- [9] L. Yan, F. Maciá, Z. Jiang, J. Shen, L. He, and F. Wang, J. Phys.: Condens. Matter 20, 255203 (2008).
- [10] B. C. Melot, J. E. Drewes, R. Seshadri, E. M. Stoudenmire, and A. P. Ramirez, J. Phys.: Condens. Matter 21, 216007 (2009).
- [11] H. D. Zhou, J. Lu, R. Vasic, B. W. Vogt, J. A. Janik, J. S. Brooks, and C. R. Wiebe, Phys. Rev. B 75, 132406 (2007).
- [12] M. Morin, E. Canévet, A. Raynaud, M. Bartkowiak, D. Sheptyakov, V. Ban, M. Kenzelmann, E. Pomjakushina, K. Conder, and M. Medarde, Nat. Commun. 7, 13758 (2016).
- [13] M. J. Whitaker and C. Greaves, J. Solid State Chem. 215, 171 (2014).
- [14] C. P. Reshmi, S. Savitha Pillai, K. G. Suresh, and M. R. Varma, J. Magn. Magn. Mater. **324**, 1962 (2012).
- [15] J. A. M. Paddison, H. Jacobsen, O. A. Petrenko, M. T. Fernandez-Diaz, P. P. Deen, and A. L. Goodwin, Science 350, 179 (2015).
- [16] F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. Bettinelli, J. Phys. Chem. B 110, 6561 (2006).
- [17] J. A. Quilliam, S. Meng, H. A. Craig, L. R. Corruccini, G. Balakrishnan, O. A. Petrenko, A. Gomez, S. W. Kycia, M. J. P. Gingras, and J. B. Kycia, Phys. Rev. B 87, 174421 (2013).
- [18] P. Mukherjee, A. C. Sackville Hamilton, H. F. J. Glass, and S. E. Dutton, J. Phys.: Condens. Matter 29, 405808 (2017).
- [19] P. Schiffer, A. P. Ramirez, D. A. Huse, P. L. Gammel, U. Yaron, D. J. Bishop, and A. J. Valentino, Phys. Rev. Lett. 74, 2379 (1995).
- [20] A. C. Sackville Hamilton, G. I. Lampronti, S. E. Rowley, and S. E. Dutton, J. Phys.: Condens. Matter 26, 116001 (2014).
- [21] N. d'Ambrumenil, O. A. Petrenko, H. Mutka, and P. P. Deen, Phys. Rev. Lett. 114, 227203 (2015).

tunable through control of the extent and type of magnetic ion substitution.

We thank J. Hodkinson for his support during the experiments on D1B, ILL. We acknowledge funding support from the Winton Programme for the Physics of Sustainability. Magnetic measurements were carried out using the Advanced Materials Characterisation Suite, funded by EPSRC Strategic Equipment Grant No. EP/M000524/1.

Supporting data can be found in Ref. [42], neutron diffraction data can also be found in Ref. [43].

- [22] N. Woo, D. M. Silevitch, C. Ferri, S. Ghosh, and T. F. Rosenbaum, J. Phys.: Condens. Matter 27, 296001 (2015).
- [23] B. L. Reid, D. F. McMorrow, P. W. Mitchell, O. Prakash, and A. P. Murani, Phys. B: Condens. Matter 174, 51 (1991).
- [24] J. Hamman and P. Manneville, J. Phys. (France) 34, 615 (1973).
- [25] J. Hammann and M. Ocio, J. Phys. (France) 38, 463 (1977).
- [26] H. D. Zhou, C. R. Wiebe, L. Balicas, Y. J. Yo, Y. Qiu, J. R. D. Copley, and J. S. Gardner, Phys. Rev. B 78, 140406 (2008).
- [27] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.96.140412 for the details of sample preparation, experimental methods, structural Rietveld refinement of xray and neutron diffraction patterns, crystallographic parameters including bond lengths, parameters from bulk magnetic measurements, irreducible representation for the magnetic structure and ordered magnetic moment as a function of temperature.
- [28] A. J. Neer, J. A. Milam-Guerrero, J. E. So, B. C. Melot, K. A. Ross, Z. Hulvey, C. M. Brown, A. A. Sokol, and D. O. Scanlon, Phys. Rev. B 95, 144419 (2017).
- [29] J. Hammann and M. Ocio, Physica B+C 86-88, 1153 (1977).
- [30] A. L. Cornelius and J. S. Gardner, Phys. Rev. B 64, 060406(R) (2001).
- [31] J. Hammann, Acta Crystallogr. Sect. B 25, 1853 (1969).
- [32] A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, Phys. Rev. B 62, 9498 (2000).
- [33] D. Rodic, M. Mitric, R. Tellgren, H. Rundlof, and A. Kremenovic, J. Magn. Magn. Mater. 191, 137 (1999).
- [34] M. Guillot, A. Marchand, F. Tchéou, and P. Feldmann, J. Appl. Phys. 53, 2719 (1982).
- [35] M. Lahoubi, W. Younsi, M.-L. Soltani, and B. Ouladdiaf, J. Phys.: Conf. Ser. 200, 82018 (2010).
- [36] A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, Chem. Mater. 13, 1497 (2001).
- [37] F. Yen, C. R. Dela Cruz, B. Lorenz, Y. Y. Sun, Y. Q. Wang, M. M. Gospodinov, and C. W. Chu, Phys. Rev. B 71, 180407 (2005).
- [38] O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S. W. Cheong, J. Appl. Phys. 99, 08E301 (2006).
- [39] L. Shen, C. Greaves, R. Riyat, T. C. Hansen, and E. Blackburn, Phys. Rev. B 96, 094438 (2017).
- [40] S. E. Dutton, P. D. Battle, F. Grandjean, G. J. Long, and K. Oh-Ishi, Inorg. Chem. 47, 11212 (2008).
- [41] P. Mukherjee and S. E. Dutton, Adv. Funct. Mater. 27, 1701950 (2017).
- [42] https://doi.org/10.17863/CAM.13758.
- [43] https://doi.org/10.5291/ILL-DATA.5-31-2457.