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Thermally driven topology in chiral magnets
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Chiral magnets give rise to the antisymmetric Dzyaloshinskii-Moriya interaction, which induces topological
nontrivial textures such as magnetic skyrmions. The topology is characterized by integer values of the topological
charge. In this work, we performed the Monte Carlo calculation of a two-dimensional model of the chiral magnet.
A surprising upturn of the topological charge is identified at high fields and high temperatures. This upturn is
closely related to thermal fluctuations at the atomic scale, and is explained by a simple physical picture based
on triangulation of the lattice. This emergent topology is also explained by a field-theoretic analysis using CP 1

formalism.
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The marriage of topology and condensed-matter physics
has given birth to numerous excitements in the past decades.
In particular, magnetism, the zoo of topological spin textures,
such as domain walls, vortices and Bloch points, not only
gives rise to rich physics, but also leads to transformative
spintronics applications. The recently discovered magnetic
skyrmion is a member of such topological textures [1–4].
It is a two-dimensional (2D) whirlpool-like structure with
spins therein pointing to all directions. It has one-to-one
correspondence to the three-dimensional monopole defect by
stereographic mapping. The topology of the skyrmion can be
captured by the topological charge (TC) [5,6],

Q = 1

4π

∫
d2rn · (∂xn × ∂yn), (1)

where n is a unit vector describing the local spin direction.
It is valued ±1 for each skyrmion, and cannot be altered by
slight deformation of the texture configuration. As a result
of this nontrivial topology, the skyrmion acquires interesting
properties, such as the topological Hall effect and the skyrmion
Hall effect [7–11], which have potential in future topological
devices [12].

The magnetic skyrmion was originally proposed theoreti-
cally in noncentrosymmetric magnets [1,13–15] and its crystal
form was recently discovered in bulk sample of MnSi, a
typical family of noncentrosymmetric magnets, by small-angle
neutron scattering [2]. It was later confirmed in (FeCo)Si thin
film by real-space imaging with Lorentz transmission electron
microscopy [3]. The skyrmion crystal phase in the thin film is
greatly extended in the B-T diagram (where B is magnetic field
and T is temperature) compared to the bulk sample, which has
been further addressed by follow-up experiments [4]. This is
because of the suppression of the conical phase in thin films.
But nevertheless, skyrmions still exist only below the Curie
temperature.

In the skyrmion crystal phase, the TC is significant and
essentially counts the number of skyrmions therein. But TC in
Eq. (1) respects the rotational symmetry, so that it cannot serve
as an order parameter, and does not have correspondence to
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the crystal phase. It is interesting to study the distribution of
TC in the same B-T phase diagram. To this end, we used the
Monte Carlo method in this work and studied the distribution of
the TC. It is significantly extended compared to the skyrmion
crystal phase, and can be explained by CP 1 modeling [16,17].

We studied a 2D film of chiral magnet, whose Hamiltonian
is described by the following classical spin model:

H =
∑
〈i,j〉

(−JSi · Sj + Dij · Si × Sj ) − gμBH ′ ∑
i

Sz
i , (2)

where Si = Sni is the spin on site i with ni , a three-
dimensional unit vector, and 〈i,j 〉 means the nearest neighbors.
In the Monte Carlo calculation, S = 1 and a square lattice is
employed. J > 0 is the ferromagnetic Heisenberg exchange
coupling, while Dij is the vector of the DM interaction between
neighboring sites i and j . The strength of Dzyaloshinskii-
Moriya (DM) interaction is D = |Dij |. The last term describes
the Zeeman coupling, where μB is the magnetic moment and
H ′ is the applied magnetic field along the z direction. We define
B = gμBH ′ and choose the natural units (h̄ = kB = c = 1).
It has been confirmed that this simple Hamiltonian captures
most essential physics of 2D chiral magnets [3,16,18].

To calculate the thermal average of the TC, we triangulated
the square lattice. Summation over all the solid angles � of
three spins on each triangle divided by 4π gives the total TC for
each spin configuration (see Fig. 1). � is computed by the Berg
formula [19]:

exp

(
i�

2

)
= ρ−1[1 + n1 · n2 + n2 · n3 + n3 · n1

+ in1 · (n2 × n3)], (3)

where n1, n2, and n3 are three spins on the triangle and
ρ = [2(1 + n1 · n2)(1 + n2 · n3)(1 + n3 · n1)]1/2 is the nor-
malization factor. The Metropolis [20] and over-relaxation
algorithm are employed iteratively to generate a Markov chain
of spin configurations [20,21], averaging over which thermal
average of the TC was derived. We imposed periodic boundary
conditions and performed averages over 2.4 × 106 ensembles
at each temperature. The main results of the TCs are shown
in Fig. 2(a). It shows the color plot of the average TC in the
B-T diagram with the fixed DM interaction as D = 0.3J . A
dramatic upturn of the TC is addressed along a ridge in the
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FIG. 1. Schematic diagram of the TC obtained by the solid angle
� for each of three nearby spins S1, S2, and S3. This solid angle flips
sign when the three spins are reversed to S′

1, S′
2, and S′

3.

phase diagram. The value of the TC is significant in areas
greatly extended to the skyrmion phase, which is located at
small B and low T in the bottom region of the ridge.

Special attentions are paid to the high-field region, where
no skyrmions are expected. As a typical example, we fix the
field at B = 0.2J , and the relation between average TC and

FIG. 2. Field-, temperature-, and DM-dependent TC. (a) The
phase diagram of TCs with the magnetic field and temperature
dependence with D = 0.30J . The peak value is connected as a
symbolled line. The horizon and vertical dashed lines correspond to
the finite size test in (b) and field-dependent TC in the inset panel of
(b). Star symbols labeled A to F correspond the snapshot in Fig. 3. (c)
The TC as a function of DM interaction with the fixed magnetic field
B = 0.12J . The inset panel shows the square relationship between
the peak value of TC and DM interaction.

FIG. 3. Snapshots and corresponding reciprocal-space plots by
fast Fourier transform (FFT) at points on the phase diagram shown
in Fig. 2(a). (a) B = 0.2J and T = 1.02J , (b) B = 0.2J and
T = 0.80J , (c) B = 0.06J and T = 0.02J , (d) B = 0.06J and
T = 0.66J , (e) B = 0.08J and T = 0.02J , and (f) B = 0.02J and
T = 0.02J . In real-space snapshots, red (blue) contour represent the
positive (negative) value of Siz and the arrows represent the directions
of in-plane component. For (c) and (d), the density of TC is also shown
at right panel respectively.

temperature is shown in Fig. 2(b). At very low temperature, TC
is equal to zero, as all spins are nearly polarized. At very high
temperature, TC again converges to zero due to the topological
triviality of a completely random phase. However, in between,
TC becomes significantly elevated at finite temperatures. A
deep dip of the TC is witnessed around T = 1.0J , the Curie
temperature of the corresponding Heisenberg model. Here,
the negative TC is consistent with the fact that the spin at
the skyrmion core is opposite to the external magnetic field.
The same calculations were performed for lattices with sizes
varying from 20 × 20 to 100 × 100. No difference could be
found between different lattice sizes. This immunity to the
finite-size effect suggests robustness of the TC upturn, which
might be related to the scaling-free atomic scale physics.

This emergent topology at finite temperatures does not
correspond to any ordered phase such as the skyrmion crystal
phase (SkX) or meron-helix composite. Two snapshots of spin
states around the ridge were taken, as shown in Figs. 3(a)
and 3(b). The location of their corresponding parameters
are labeled by the same letter in the B-T phase diagram
in Fig. 2. At point A to the right of the ridge, B = 0.2J ,
T = 1.02J , and the total TC is about −12 in a 100 × 100
lattice. However, the real-space image shown in Fig. 3(a) is
completely random. Fast Fourier transformation of the image
provides only one peak at � point in the reciprocal space.
This indicates the uniform randomness and absence of any
spin ordering at this point. For point B to the left, where the
temperature T = 0.8J is relatively lower, the corresponding
real-space snapshot in Fig. 3(b) shows similar randomness
with a single peak at the � point of the reciprocal space.
Compared to point A, a higher spin polarization parallel
with the field is achieved here. From zero temperature to
points A or B of interest, no phase transition occurs. The
emergence of TC is thus purely a consequence of the thermal
fluctuation.
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In contrast, TCs at low field, especially at low temperatures,
have distinct origin. Our Monte Carlo simulation shows that
the TC grows significantly around T = 0.25J during the
annealing procedure and remains stable to zero temperature. It
is attributed to the formation of the skyrmion crystal phase.
A typical snapshot was taken at point C with B = 0.06J

and T = 0.02J [Fig. 3(c)]. The real-space image shows a
well aligned skyrmion lattice, and the reciprocal space shows
the hexagonal pattern as expected. At the same field, if the
temperature is elevated to point D, the snapshot in Fig. 3(d)
does not present any ordering, although the TC remains
significant. Densities of the TC for C and D points are plotted
in Figs. 3(c) and 3(d) for comparison. Nonzero TC emerges
only near the skyrmion in the ordered skyrmion phase, while
it is evenly distributed in the high-temperature state. At a
relatively higher field at point E [Fig. 3(e)], the skyrmion
crystal is melted and sparse skyrmions are observed. While at
a lower field at point F, the transition from skyrmion crystal
phase to the helical phase takes place, and a meron-helix
composite appears at this first-order phase transition. In all
these regions at low temperatures, the TC is consistent with
the number of skyrmions in the lattice. Thermal fluctuation
induced TC is suppressed. These low-field low-temperature
results are consistent with previous studies [8,22].

As indicated by its scaling-free property, the origin of
the thermal driven topology can be understood by a simple
physical picture on the atomic scale. As defined earlier, TC
is the summation of solid angles of all triangles in the lattice.
Due to the presence of the DM interaction, these three spins
in each triangle are canted, as shown in Fig. 1, and contribute
a solid angle of �. If we reverse all three spins, the new
configuration cants an opposite solid angle �. In the absence
of the field, these two configurations share the same energy,
as both the Heisenberg and DM interactions are quadratic
spin interactions. These two configurations thus have the same
probability of appearance at any temperature, and the average
TC is zero. However, these two configurations, being time
reversed to each other, share opposite magnetizations. An
external magnetic field can thus lift the degeneracy and induce
a net TC after thermal averaging. One needs to be aware that
under a large enough field, canting of spin takes place only
when the temperature approaches the Curie temperature, far
below which the polarized state is robust and the average TC is
zero. On the other hand, at very high field, the energy difference
induced by the field is no longer relevant, and average TC
decays to zero as well. This well explains the behavior of TC
in Fig. 2(b).

We can even convey this physical picture in a relatively
quantitative way. Again, focus on a triangle in the lattice with
three spins S1, S2, and S3 on the vertices. Notice that S2 and
S3 are not a pair of nearest neighbors, so no direct exchange
exists between them in our model. The energy of this triangle
is thus given by

E = −J (n1 · n2 + n1 · n3) − D(n1yn2z − n1zn2y

+ n1zn3x − n1xn3z) − B(n1z + n2z + n3z). (4)

In the small canting approximation, TC defined in
Eq. (3) is simplified as Q = n1 · (n2 × n3). Thermal average
of TC is 〈Q〉 = 1

Z
∫ ∏

i dniQ exp(−E
T

), where Z =

∫ ∏
i dni exp(−E

T
) is the partition function. At the high-

temperature limit, E/T � 1, we can expand the Boltz-
mann distribution in terms of polynomials of E/T . As
a result, 〈Q〉 = 1

Z
∫ ∏

i dnin1·(n2 × n3)(1 − E
T

+ 1
2! (

E
T

)2 −
1
3! (

E
T

)3 + O[(E
T

)4]). The leading two orders of E/T vanish
because one cannot pair up all ni and their components into
even powers. The leading nonzero term is the third-order term
of E/T , where nonzero terms are listed in the Supplemental
Material [23]. As a result, the average TC is proportional
to D2B

T 3 . That is reasonable because the TC respects spatial
inversion symmetry but breaks the time-reversal symmetry;
the former requires TC to be proportional to D squared,
which is spatial inversion odd, while the latter enforces linear
proportionality between TC and B, which is time reversal odd.
No lower-order term could meet this symmetry requirement.
This scaling is consistent with the numerical simulation. As
shown in the inset of Fig. 2(b), the TC is truly proportional to
the field at high temperatures. The relation between TC and
temperature T is examined at various D values [Fig. 2(c)]. A
scaling between peak value of TC and D is shown in the inset,
and a perfect quadratic relation between them is identified. This
quadratic relation is persistent all the way to high temperatures.

Up to now, our handwaving argument is based on only
one triangle. A complete analysis is developed in terms of the
CP 1 formalism of the spin model. In the continuum limit,
the Hamiltonian is given by H = ∫

d2r[ J̄
2 (∂in)(∂in) − D̄n ·

(∇ × n) − B̄nz], where i = x, y and J̄ = JS2, D̄ = DS2

a
, and

B̄ = BS
a2 with finite value of S = |S| recovered. a is the lattice

constant. A normalized two-component complex field z is
introduced and let nμ = z†σμz(μ = x,y,z), where σ are Pauli
matrices. In this representation, the Hamiltonian can be written
in terms of a CP 1 doublet field given by

H =
∫

d2r2J̄ [|(∂i − iαi + iκσi)z|2 − hz†σzz], (5)

where κ = D̄

2J̄
and h = B̄

2J̄
[16]. αi = − i

2 [z†∂iz − (∂iz†)z] is
the emergent U(1) gauge field, whose total flux is nothing but
the topological charge defined in Eq. (1):

Q = 1

4π

∫
d2r(∇ × α)z. (6)

Due to the z dependence of α, the Hamiltonian has
quartic terms of z, so the integration over z cannot be
performed straightforwardly in the partition function Z =∫
Dz†Dz exp(−H/T ). Therefore, we rescale the field z →√
2J
T

z, λ → 1
2

T

J̄
λ, define f = T

J̄
, and perform the Hubbard-

Stratonovich transformation [17,23], ending up with the
partition function:

Z =
∫

Dz†DzDαiDλ exp

{
−

[
|(∂i − iαi + iκσi)z|2

−hz†σzz + iλ

(
z†z − 2

f

)]}
(7)

in which z and α are now two independent dynamical variables.
A Lagrange multiplier field λ is introduced to enforce the
normalization of z.

140403-3



RAPID COMMUNICATIONS

HOU, YU, DALY, AND ZANG PHYSICAL REVIEW B 96, 140403(R) (2017)

FIG. 4. Feynman rules and diagrams with various integral paths.
See details in the text.

The basic idea in what follows is to integrate out the z
field, and get an effective theory in terms of the gauge field
α. The gauge invariance requirement gives rise to only two
possible terms up to the second order of α in the effective
action. One is b2 with b = (∇ × α)z the topological charge
density, and the other is hb. A saddle-point solution of b

thus gives the average value of the TC density proportional
to the field h, consistent with the discussions above. To
work it out, a perturbation approach is employed [24,25].
In momentum space, the unperturbed part of the action in
Eq. (7) is

S0 = L2
∫

d2k

(2π )2
z†k

(
k2 + m2

0 − 2κkiσi

)
zk, (8)

where L2 is the area of the 2D film we considered. The
corresponding Feynman diagram is shown in Fig. 4(a).
The mass m2

0 = iλ + 2κ2 is determined by the saddle-point
approximation. Denote the partition function in Eq. (7) byZ =∫
DαiDλ exp(−Seff[αi,λ]). A uniform saddle-point solution

i〈λ〉 = λ̄ and 〈αi〉 = 0 solves δSeff/δλ̄ = 0, and we finally
get ln�2

m2
0

≈ 4π
f

, where � ∼ 1
a

is the ultraviolet cutoff in the

Pauli-Villars regulation scheme [23].
The perturbative part of the action in Eq. (7) is divided into

two terms,

Si1 = L4
∫

d2kd2q

(2π )4
z†k+q/2(−2kiαi, q − 2καi, qσi

−hqσ3)zk−q/2, (9)

Si2 = L6
∫

d2kd2qd2q

(2π )4
z†kzqαi,pαi,k−q−p. (10)

The Feynman diagram Fig. 4(b) corresponds to Si1, where the
spring line represents the part −2(kiαi, q + καi, qσi + h

2 σ3) in
the three-point vertex. Figure 4(c) is the four-point interaction
in Si2. The tilde line represents the pure emergent gauge field
αi of the four-point vertex. The first-order perturbation from
Si2, shown by the diagram Fig. 4(d), contributes to a term
Sd = L4

2π
ln�2

m2
0

∫
d2q

(2π)2 α
2
i . We do not consider the quadratic term

of αi at κ2 and higher order because κ2

�2 � 1. In contrast, the
first-order perturbation of Si1 is a vanishing tadpole diagram.
The lowest contribution is the second-order perturbation Se

depicted in Fig. 4(e). Se can be split into two parts: Se1

correspond to the b2 term and Se2 which includes the hb term.

Combining Sd with Se1, we get the gauge invariant term b2 as
expected:

Sb2 = Sd + Se1 = L
4

π

∫
d2q

(2π )2
b−q

[
exp

(
4π
f

)
12�2

+ O(q2)

]
bq.

(11)

The expected hb term also arises from the second-order
perturbation. The leading term of hb in Se2 is

Shb = L4
∫

d2kd2q

(2π )4

8κ2
(

q2

4 + m2
0

)
h−qbq[(

k + q

2

)2 + m2
0

]2[(
k − q

2

)2 + m2
0

]2

(12)

and the effective action is therefore Seff = Sb2 + Shb. Solving
the saddle point of the field b, we obtain

b̄ = −12κ2h

�2
sinh2

(
2π

f

)[
1 − exp

(
−12π

f

)]
. (13)

The thermal average of the TC at the high-temperature limit is

〈Q〉 ≈ −18π2L2BS5

T 3

(
D

a

)2[
1 − 6πJS2

T
+ O

(
1

T 2

)]
,

(14)

where D
a

is the DM interaction in the continuum limit. This
result matches well with the simple argument based on one
triangle. Actually, if we further proceed to the fourth order of
E/T in the single triangle argument, a term proportional to
JD2B/T 4 is present, but its sign is opposite to the 1/T 3 term.
The emergent topology at finite temperature can be thus well
explained by this effective theory of the emergent gauge field.

In conclusion, we have discovered thermal driven topology
in 2D chiral magnets. A significant upturn of TC was observed
outside the skyrmion crystal phase. This phenomenon is
well understood by both analyzing thermal fluctuations in
the atomic scales and a field-theoretical approach based on
CP 1 formalism. As has been extensively studied in skyrmion
physics, nonzero TC would lead to the topological Hall
effect, which was observed in the skyrmion crystal phase only
[7,26,27]. The discrepancy between the topological Hall signal
and distribution of the TC observed in this work is due to the
itinerant nature of the magnetism in most chiral magnets under
investigation. Close to or above the Curie temperature, the local
magnetic moment in these magnets is significantly reduced
so that our simulation based on constant local magnetic
moment does not apply. Only in insulating magnets such
as Cu2OSeO3 [28], local magnetic moments are persistent
at elevated temperatures, and our discovery would apply. On
the other hand, the thermal Hall effect related to the magnon
deflection by TC has been addressed in frustrated magnets
[29–31] and chiral magnets [32,33]. We therefore predict the
thermal Hall effect of insulating chiral magnets, in which local
magnetic moments are persistent at high fields and tempera-
tures. Actually the phenomenon of thermal driven topology
can be even generalized to ferroelectrics [34], and we would
expect rich experimental observations to come out in the future.

Upon finishing this work, we noticed that similar behavior
of the topological charge was recently studied by L. Rózsa
et al. [35] and M. Randeria. Both of them studied the
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skyrmion crystal phase rather than the high-field case we are
emphasizing in this work. We also noticed a recent work
[36] which addressed a similar phenomenon in terms of
skyrmion-antiskyrmion formations.

We acknowledge initial discussions with J. H. Han, O.
Tchernyshyov, and D. Xiao. This work was supported by the
U.S. Department of Energy (DOE), Office of Science, Basic
Energy Sciences (BES) under Award No. DE-SC0016424.
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