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Ground states of a system of classical spins on an anisotropic triangular lattice and the spin-liquid
problem in NiGa2S4 and FeGa2S4 compounds
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It is shown that the ground states of a system of classical spins on an anisotropic triangular lattice with
interactions within an elementary triangular plaquette can be constructed by minimizing the energy of a single
plaquette. Even in the case when all three angles between plaquette spins are different, there exist five global
ground-state configurations with equal energies. The most complex of these is an incommensurate four-sublattice
conical spiral structure. Our results may shed some light on the experimentally observed spin-liquid-like disorder
in NiGa2S4 and FeGa2S4 where a four-sublattice spin structure was observed.
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When, in 1936, Néel announced a discovery of a new
magnetic state of matter, antiferromagnetism, many physicists
were skeptical about this. They based their arguments on
quantum properties of spin. So Landau argued that quantum
fluctuations lead to mutual spin flips (|↑↓〉 ↔ |↓↑〉) and a
disordered Néel’s state. However, some time later, many
antiferromagnets had been discovered experimentally, and a
Néel’s period in the physics of magnetism had began and lasted
until 1972, when Anderson returned to the above-mentioned
arguments and suggested the existence of a so-called spin
liquid in a strongly frustrated system, a Heisenberg model
on a triangular lattice [1]. Although it was soon shown that
neighboring spins in a triangular lattice order at 120◦, an
intensive search for this new magnetic state of matter that
can exist even at the T = 0 limit began both theoretically
and experimentally (see recent reviews [2,3] and Ref. [4]).
And, at last, a spin-liquid state was discovered on a frustrated
triangular lattice [5] and, 12 years later, on a more frustrated
kagome lattice [6].

At the present, many materials are known where a spin-
liquid phase is believed to exist. Almost all these materials
are spin- 1

2 compounds [2,3]. However, it is assumed that a
quantum spin liquid can also exist in systems of spins greater
than 1

2 . In 2005, Nakatsuji et al. announced the existence of
a spin-liquid phase in a spin-1 compound, NiGa2S4, where
magnetic atoms of nickel are arranged in layers representing a
rare example of an ideal triangular lattice [7–9]. Moreover, the
coupling between magnetic atoms of different layers is much
less than the coupling within a layer.

Nakatsuji et al. identified an interesting four-sublattice spin
structure in NiGa2S4. A similar spin structure and magnetic
properties were found in FeGa2S4 where iron atoms carry
spin-2 [7]. In our opinion, this fact suggests that the spin-liquid
properties of these compounds can be explained on the basis of
a classical spin model. It should be noted here that, in addition
to a quantum spin liquid, there is also a classical spin liquid
that was found in the so-called spin-ice compounds [10] and in
some theoretical models (see Ref. [11] and references therein).

Ground states of a system of classical spins on an isotropic
triangular lattice were analyzed in detail in Refs. [12,13]
(see also references therein). However, the isotropic triangular
lattice, due to the existence of mechanical stress and various
defects, can lose its symmetry. Therefore, it is of interest
to analyze the ground states of a system of classical spins

on an anisotropic triangular lattice. Performing this analysis,
we have found some interesting spin arrangements, including
a complex four-sublattice order, similar to that given in
Refs. [7–9].

Let us first consider an anisotropic triangular plaquette with
classical spins (unit 3-vectors) at its vertices and with linear (K ,
L, and M) and biquadratic (A, B, and C) pairwise interactions
between spins (per one plaquette) [Fig. 1(a)]. The Hamiltonian
of such a spin system can be written as a sum over all the
triangular plaquettes,

H =
∑

�i

[K �Si1 · �Si2 + L�Si2 · �Si3 + M �Si1 · �Si3

−A(�Si1 · �Si2)2 − B(�Si2 · �Si3)2 − C(�Si1 · �Si3)2], (1)

where �Si1, �Si2, and �Si3 are spins at three vertices of the ith
triangular plaquette.

Let α, β, and γ be angles between the spins (0 ≤ α,β,

γ ≤ π ). These angles should satisfy the following inequalities,

α + β + γ ≤ 2π,

−α + β + γ ≥ 0,

α − β + γ ≥ 0,

α + β − γ ≥ 0. (2)

The solution of this set of inequalities is the tetrahedron,
shown in Fig. 1(b). If at least one of the inequalities becomes
an equality, then the vectors are coplanar. This corresponds to
a point on the surface of the tetrahedron. The coupling energy
between the spins of the plaquette shown in Fig. 1(a) reads

E = K cos α + L cos β + M cos γ

−A cos2 α − B cos2 β − C cos2 γ. (3)

If the energy attains its minimum in an intrinsic point of
the tetrahedron [Fig. 1(b)], then this minimum is determined
from the following conditions (partial derivatives are equal to
zero),

∂E

∂α
= (−K + 2A cos α) sin α = 0,

∂E

∂β
= (−L + 2B cos β) sin β = 0,

∂E

∂γ
= (−M + 2C cos γ ) sin γ = 0. (4)
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FIG. 1. (a) An elementary triangular plaquette of an anisotropic
triangular lattice with three spins at its vertices and pairwise
interactions between neighboring spins (linear and biquadratic per
one plaquette). (b) Tetrahedron of values for angles α, β, and γ

between spins of the plaquette.

We have from this set of equations

cos α = K

2A
, cos β = L

2B
, cos γ = M

2C
. (5)

Let us consider the case where all the three angles α, β,
and γ are different. How, when having a local ground state,
that is, a ground state of a plaquette, can one construct the
global ground state of an infinite lattice? For all the triangular
plaquettes on the lattice, the angles between corresponding
pairs of spins should be α, β, and γ .

The solutions of the equations

�a · �b = �c · �d = cos β, �a · �c = �b · �d = cos α (6)

(where all the vectors are unit 3-vectors) are the following
vectors �d1 and �d2 (Fig. 2),

�d1 = 2
�a · (�c − �b)

(�b − �c)2
(�b − �c) + �a = cos α − cos β

1 − cos γ
(�b − �c) + �a,

(7)

�d2 = 2
�a · (�b + �c)

(�b + �c)2
(�b + �c) − �a = cos α + cos β

1 + cos γ
(�b + �c) − �a.

(8)

Transformation (7) (vectors �b and �c being fixed) changes
the chirality: If the triplet of vectors �a, �b, and �c is right (left)
handed, that is, �a · [�b × �c] > 0 (<0), then the triplet of vectors
�d1, �c, and �b is left (right) handed, that is, �d1 · [�c × �b] < 0 (>0).
The cone with elements �a, �b, and �c is invariant under

FIG. 2. Two ways of constructing the third spin of the triangular
plaquette (vectors �d1 and �d2), if two other spins (�b and �c) are given,
as well as the angles (α, β, and γ ) between the spin pairs of the
plaquette.

FIG. 3. Three types of structures which are possible for a system
of classical Heisenberg spins on an anisotropic triangular lattice with
interactions within an elementary triangular plaquette: (a) simple
conical spiral structure; (b) four-sublattice conical spiral structure;
(c)–(e) two-sublattice conical spiral structures (see Figs. 4–6). Black
(white) color of a triangular plaquette means that the triplet of vectors
at its vertices is right (left) handed (or vice versa).

transformation (6), that is, the vector �d1 is also an element
of this cone.

Transformation (8) does not change the chirality: If the
triplet of vectors �a, �b, and �c is right (left) handed, then the
triplet �d2, �c, and �b is also right (left) handed.

So, the global spin configuration of the triangular lattice is
fully determined by an arbitrary pair of neighboring spins and
by the chirality for each plaquette. Only one condition should
be satisfied: Two plaquettes which are mutually symmetric
with respect to their common lattice site should have different
chirality (see the Appendix for a proof). It follows immediately
from this that only three types of global chirality configurations
for the lattice are possible (see Fig. 3).

Examples of spin configurations for possible chirality
configurations of plaquettes are shown in Figs. 4–6. The
simplest among them is that which corresponds to Fig. 3(a).
This configuration is shown in Fig. 4. It is a simple conical
spiral structure where, passing from one site to the neighboring
one along the same direction on the lattice, spin rotates to the
same angle on the surface of a cone.

The spin structure that corresponds to Fig. 3(b) is the most
complex one. It is shown in Fig. 5. This is a four-sublattice
conical spiral configuration. The structure on each sublattice
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FIG. 4. Conical spiral structure that corresponds to Fig. 3(a). Side
and top views are shown. In the lower panel, all the spins are depicted
on the same cone (top view).

FIG. 5. Four-sublattice spin configuration that corresponds to
Fig. 3(b). The cones for different sublattices are depicted in different
colors. Within each sublattice, the spin structure is a simple spiral
conical structure (see Fig. 4) but on a triangular lattice with doubled
lattice periods. The axes of all the cones are parallel.

FIG. 6. Two-sublattice spin configuration that corresponds to
Figs. 3(c)–3(e). The axis vectors of the cones for different sublattices
are antiparallel.

is a simple conical spiral structure (see Fig. 4) on a triangular
lattice with doubled lattice periods. The cones for each
sublattice are different in the general case, but, as one can
easily prove using Eqs. (7) and (8), their axes are parallel.

Figures 3(c)–3(e) correspond to two-sublattice structures.
The structure on each sublattice is a simple conical spiral
structure as on a square lattice (Fig. 6). The axis vectors of the
cones for different sublattices are antiparallel.

To conclude, the ground states of the system of classical
spins on an anisotropic triangular lattice with interactions
within an elementary triangular plaquette can be constructed
by minimizing the energy for a single plaquette. If all the
three angles between spins of the plaquette are different,
then there are three types of global ground-state structures.
The most complex among these is an incommensurate four-
sublattice structure. A similar spin arrangement was observed
experimentally in NiGa2S4 and FeGa2S4 magnetic materials
[7–9]. The liquidlike spin disorder in these compounds may be
a result of a complex domain structure where there are domains
of different types, since all of them have an equal energy.

APPENDIX

To prove that two plaquettes which are mutually symmetric
with respect to their common lattice site have different
chirality, let us find all the possible chirality configurations
of the hexagon shown in the Fig. 7. Let vectors �a1, �a2, and �b2

be specified and

�a1 · �a2 = cos α = x,

�a1 · �b2 = cos β = y,

�a2 · �b2 = cos γ = z. (A1)

FIG. 7. A hexagon on an anisotropic triangular lattice with unit
3-vectors �a1, �a2, �b1, �b2, �c1, and �c2 at its vertices. Angles between
neighboring vectors are indicated.
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Then [see Eqs. (7) and (8)],

�b1 = z + (−1)β1x

1 + (−1)β1y
[�a1 + (−1)β1 �b2] − (−1)β1 �a2,

�b3 = x + (−1)β3y

1 + (−1)β3z
[�b2 + (−1)β3 �a2] − (−1)β3 �a1,

�c1 = y + (−1)γ1z

1 + (−1)γ1x
[�b1 + (−1)γ1 �b2] − (−1)γ1 �a1,

�c2 = y + (−1)γ2z

1 + (−1)γ2x
[�b2 + (−1)γ2 �b3] − (−1)γ2 �a2, (A2)

where β1,β3,γ1,γ2 = 0,1.
Taking into account these equations and the condition

�c1 · �c2 = cos α = x, we obtain (using, for instance, MAPLE

software, since the expression for the scalar product is rather
cumbersome) only four (from 16) possible sets of values for
β1, β3, γ1, and γ2:

β1 = 0, β3 = 0, γ1 = 1, γ2 = 1,

β1 = 0, β3 = 1, γ1 = 0, γ2 = 0,

FIG. 8. Eight chirality configurations for a hexagon which are
possible for a system of classical Heisenberg spins on a anisotropic
triangular lattice with interactions within an elementary triangular
plaquette. Black (white) color of a triangular plaquette means that the
triplet of vectors at its vertices is right (left) handed (or vice versa).

β1 = 1, β3 = 0, γ1 = 0, γ2 = 0,

β1 = 1, β3 = 1, γ1 = 1, γ2 = 1. (A3)

Zero means that the chirality does not change and 1 means
a change in chirality. It follows from this that two plaquettes
which are mutually symmetric with respect to their common
lattice site should have different chirality and, therefore, only
eight chirality configurations of the hexagon are possible (see
Fig. 8).
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