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Many-body localization caused by temporal disorder
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The many-body localization (MBL) is commonly related to a strong spatial disorder. We show that MBL may
alternatively be generated by adding a temporal disorder to periodically driven many-body systems. We reach
this conclusion by mapping the evolution of such systems on the dynamics of the time-independent, disordered,
Hubbard-like models. Our result opens the way to experimental studies of MBL in systems that reveal crystalline
structures in the time domain. In particular, we discuss two relevant setups which can be implemented in
experiments on ultracold atomic gases.

DOI: 10.1103/PhysRevB.96.140201

Many-body localization (MBL) [1–3] appears as one of
the most challenging phenomena in many-body physics, as
manifested by hundreds of papers currently appearing each
year in this field (for recent reviews, see, e.g., [4,5]). Due to
numerous theoretical studies which have been carried out in the
last decade, it is now possible to identify the main hallmarks
of MBL: vanishing of dc transport [6–12], absence of thermal-
ization [5,13–31] accompanied by extremely slow dynamics
of various correlation functions [13,19,32–35], and the loga-
rithmic growth of the entanglement entropy [3,17,19,36,37].

In contrast to a vast amount of theoretical results, there
are only a few experimental studies on MBL, focused on
the suppression of particle transport in cold atoms [16,38–40]
or trapped ions [41]. It is unexplored whether MBL may be
implemented in solid-state devices where coupling to other
degrees of freedom (e.g., phonons or magnons) may disrupt the
localization [1,35,42–45]. Consequently, it seems important to
find other experimental setups which host MBL.

The main properties of MBL can be explained via the
presence of quasilocal integrals of motion [4,5,46,47] which
prevent thermalization (in the sense of the eigenvector thermal-
ization hypothesis [48]) in a large isolated system. Thus, MBL
stabilizes the dynamics and it is claimed to prevent a driven
system from heating [12,49–55]. This idea was used in recent
experiments to stabilize the so-called discrete (or Floquet)
time crystals [56,57] resulting from spontaneous breaking
of discrete time translation symmetry in periodically driven
systems [58–62]. However, MBL is not a necessary condition
to observe Floquet time crystals [58,63–65].

In the existing experimental studies, MBL is caused
by strong spatial disorder [16,38–41,56,57]. In this Rapid
Communication, we provide another perspective and show that
in systems that reveal crystalline structures in time, MBL can
be caused by temporal disorder. This is important not only as a
matter of principle but also as a guideline to build a new class of
systems which may host the MBL. The crystalline structure in
time means that when we fix a position in configuration space,
then the probability for detection of a particle at this position
reveals periodic crystalline behavior versus time. It was
already suggested that (single-particle) Anderson localization

and many-body superfluid-Mott insulator transition can be
studied in the time domain [66]. The aim of this work is
to demonstrate that MBL itself can be investigated in time.
We show that periodically driven many-body systems in the
presence of a temporal disorder exhibit in the time domain
the same localization properties as disordered systems in
configuration space, and may thus be many-body localized.
This is obtained by mapping the relevant Floquet eigenstates
onto the eigenstates of a tight-binding model [66,67]. We
consider two possible experimental realizations: cold atoms
bouncing on an oscillating mirror [68,69] and cold atoms
distributed along a ring-shaped optical trap [70–72].

We start with a one-dimensional (1D) system containing
a single particle of unit mass described by an integrable
Hamiltonian H0(x,p), driven by a periodically changing
perturbation H1(t) = λg(x) cos ωt where λ and ω are, respec-
tively, the driving amplitude and frequency. We will derive
an effective Hamiltonian of the system within the classical
secular approximation [73] and then quantize it because it
is easier to explain the emergence of a crystalline structure
in time. However, the same results can be obtained within
a fully quantum approach [74]. In the classical description,
it is convenient to perform a canonical transformation from
Cartesian coordinates (x,p) to the action-angle variables I

and θ of the unperturbed system [73]. Then, H0 = H0(I ) and
the unperturbed motion is described by I = constant and θ =
ω0t + θ0, where the motion frequency is given by ω0 = dH0(I )

dI
.

When the system is resonantly driven, i.e., the frequency ω

of the external driving fulfills the s : 1 resonance condition
ω = sω0(Is) with integer s, then, in the rotating frame,
� = θ − ωt/s, the position and the conjugate momentum
P = I − Is are slowly varying variables in the vicinity of the
resonant orbit P ≈ 0. Averaging the Hamiltonian over the fast
time oscillations yields

H ≈ Hsec = P 2

2m
+ λgs(Is) cos(s�), (1)

where m = ( d2H0(Is )
dI 2

s
)−1 is the effective mass and gs(I ) is the

Fourier component of g(x) = g(θ,I ) = ∑
n gn(I )einθ [73].
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The classical secular Hamiltonian (1) is spatially periodic
and for s � 1 it resembles a Hamiltonian of an electron in
a crystal with periodic boundary conditions [66,67]. We turn
to its quantum version and consider only the lowest energy
band (that forms when s is big), i.e., we study the Hilbert
subspace spanned by the Wannier states wj (�) of the periodic
potential in (1). Then, the wave function can be expanded as
ψ = ∑s

j=1 ajwj (with aj arbitrary complex numbers) and the
energy of the system is given:

E =
∫ 2π

0
d�ψ∗Hsecψ ≈ −J

2

s∑
j=1

(a∗
j+1aj + c.c.), (2)

where J = −2
∫

d�w∗
j+1Hsecwj is the tunneling amplitude

of the particle between neighboring potential wells.
We have thus reduced the description of a resonantly driven

single-particle system to a tight-binding model (2) in the
rotating frame [66,67]. When we return to the laboratory
frame, a single Wannier state wj (θ − ωt/s) is a localized wave
packet moving along the s :1 resonant orbit with a period s

times longer than the driving period 2π/ω. It is, however, not
stable in the long-time limit as it will tunnel (over a time scale
h̄/J ) to other Wannier states and thus lose its localization
properties. An eigenstate of the system in the rotating frame
corresponds to a Floquet eigenstate of the original periodically
driven system. Because the tight-binding Hamiltonian (2) is
invariant under translation, its eigenstates are Bloch waves
of the type ψk = ∑s

j=1 e2iπjk/swj with k an integer in the
range [0,s−1]; the associated energy is −2J cos(2πk/s). In
the laboratory frame, this is a train of localized wave packets∑s

j=1 e2iπjk/swj (θ − ωt/s). Thus, if we locate a detector in
the laboratory frame close to the resonant trajectory, we will
observe that the clicking probability changes periodically
in time, i.e., the probability becomes significant when each
localized wave packet wj (θ − ωt/s) arrives close to the
detector. It shows that our system reveals a periodic crystalline
structure in the time domain [66] similarly to a particle in
the presence of a time-independent space periodic potential.
Note that in general, such a periodic behavior is not observed
in space, i.e., versus x for a fixed time t . Indeed, while the
relation between � and t is linear and periodic behavior in
� implies periodic behavior in time, the same is not true for
x because the canonical transformation between (x,p) and
(�,P ) is in general nonlinear [75].

The existence of localized Wannier states evolving with
a period exactly equal to s times the driving period—before
quantum tunneling sets in—is robust versus any microscopic
imperfection. Indeed, it is based on the classical s :1 resonance
between the internal frequency and the external driving
frequency. The existence of a resonance island with a finite
area in the phase space ensures a robust locking of the
dynamics to the external frequency [69]. The single-particle
crystalline structure (energy bands and Bloch eigenstates)
opens a possibility for realization of many-body crystalline
behavior in time where the quantum object is not destroyed
by a measurement and the crystal character is preserved for
arbitrarily long times, in the thermodynamic limit.

Both these requirements are met if one considers a many-
body system with identical spinless bosons or spin- 1

2 fermions
described by the same Hamiltonian. One then has to replace

the wave function ψ in Eq. (2), respectively, by a bosonic or
fermionic field operator. For simplicity we discuss only the
case of spinless bosons, leaving aside an obvious extension to
the case of spinful fermions. If we are restricted to the Hilbert
subspace spanned by Fock states |n1, . . . ,ns〉 where nj is
occupation of a Wannier state wj , the many-body system in the
rotating frame is described by the Bose-Hubbard Hamiltonian,

Ĥ0 = −J

2

s∑
j=1

(â†
j+1âj + H.c.) + 1

2

s∑
i,j=1

Uij â
†
i âi â

†
j âj , (3)

where Uij = g0
ω

2sπ

∫ 2sπ/ω

0 dt
∫ ∞
−∞ dx|wi(x,t)|2|wj (x,t)|2 is

an effective coupling resulting from contact interactions
between ultracold atoms with strength g0 that depends on
s-wave scattering length and on a transverse confinement
of a three-dimensional system [66,76]. The first part of the
Hamiltonian (3) is a many-body counterpart of (2) where
amplitudes aj and a∗

j are replaced by annihilation and creation

operators âj and â
†
j , respectively. In the case of ultracold

atoms that are the mixture of different kinds of fermions,
the many-body Hubbard Hamiltonian looks similar to (3) but
interactions occur between different species only.

Further on, we focus on the driven many-body system in the
presence of disorder. The simplest method of introducing the
disorder is to work in the “time” space and to add a weak
perturbation H ′(t) = g(x)f (t) where f (t) is time periodic
with the long period s times 2π/ω but having random fluctu-
ations during each period, between t = 0 and 2sπ/ω. We can
expand H ′(t) in a Fourier series: H ′(t) = g(x)

∑
q �=0 fqe

iqωt/s

where fq = −f ∗
−q are independent random variables. The

many-body Hamiltonian in the rotating frame acquires an
additional term

Ĥ = Ĥ0 +
s∑

j=1

εj â
†
j âj , (4)

where Ĥ0 is given by (3). Here, εj = ∫
d�w∗

j Vdis(�)wj

and Vdis(�) = ∑
q �=0 gq(Is)f−qe

iq� is an effective disordered
potential whose statistical properties can be engineered by a
choice of a distribution for random variables fq . In the presence
of the perturbation, the translational invariance (equivalence of
the various j sites) is broken. While the system still possesses
Floquet eigenstates, they have s times longer period, 2sπ/ω.
The Hamiltonian (4) is valid provided the interaction energy
NUij (N is a total number of bosons) and the disorder εj

are much smaller than the energy gap between the first and
second energy bands of (1). This condition can be easily
fulfilled because we consider perturbations of the order of
a few tunneling amplitudes J which is a tiny energy scale.

The disordered Hubbard model (4) has been the starting
point for majority of experimental studies on MBL. In partic-
ular, such system has been studied in [16,38–40] and [38] for
spinful fermions and bosons, respectively. Theoretical studies
of the disordered fermionic Hubbard model can be found,
e.g., in Refs. [35,43]. The strongest experimental support for
MBL in this model comes from the direct observation of
the density of particles in the real space (e.g., see results
for imbalance in [16]). The general idea is that the local
operator Î = ∑

j αj â
†
j âj avoids thermalization in that its
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FIG. 1. (a) Wannier states wj (x,t) that form the basis modes for
the tight-binding Hamiltonian (4) in the case of the 20:1 resonance
for λ = 0.0122 and ω = 2.1 and for t = π/2ω. The gravitational
units are used, i.e., l0 = (h̄2/m2g̃)1/3, t0 = (h̄/mg̃2)1/3, and E0 =
mg̃l0 for length, time, and energy, respectively. Each Wannier state
evolves with the period 40π/ω. Superpositions of the Wannier states
form 20 Floquet eigenstates of a single particle bouncing on the
oscillating mirror that evolve with the period 2π/ω. (b) Wannier
states as a function of time for a fixed position in the configuration
space (x = 448). This panel illustrates crystalline structure in the time
domain. The results have been obtained within the quantum secular
approximation [74].

expectation value depends on the initial state within the
entire experimentally accessible time scale. The choice of
coefficients αj (uncorrelated with εj ) reflects the details of
experimental setup and, e.g., the preparation of the initial state.
However, the same quantity can be measured also in systems
that reveal crystalline structure in time (4) by a detector
located close to the resonant trajectory. Below we discuss in
more detail two possible experimental implementations of this
general idea. We would like to stress that MBL in driven
systems considered here can be observed only in a Hilbert
subspace spanned by Wannier modes wj , i.e., in the subspace
where systems are described by the Hamiltonian (4).

Let us first consider ultra-cold atoms bouncing on an oscil-
lating mirror in the presence of a gravitational field [77]. We
assume strong transverse confinement so that the description
of the system can be reduced to a 1D model. At the beginning,
let us describe the single-particle problem. In the noninertial
frame where the mirror is fixed at x = 0, an atom moves in
the half-space x � 0 in a time-dependent gravitational field.
The static part of the single-particle Hamiltonian is simply
H0 = p2/2m + mg̃x, with g̃ the constant gravitational field. A
mirror oscillating at frequency ω adds a term H1 = λx cos ωt

to the Hamiltonian. The resonance condition ω = sω0 selects
motion of an atom with an unperturbed period 2sπ/ω and
an atom is bouncing on the mirror with a vertical amplitude
h = g̃s2π2/2ω2. For sufficiently large λ, there are s possible
bouncing quantum wave packets [69] that constitute the
Wannier states discussed previously (see Fig. 1). One can
easily introduce a temporal disorder in the oscillations of the
moving mirror, creating an additional disordered Hamiltonian
H ′(t) = xf (t) = x

∑
q �=0 fqe

iqωt/s . In the many-body system,
i.e., for the ultracold atomic cloud bouncing on the mirror,
the atom-atom interaction is responsible for the Uij terms,

as in (3), that allow us to study many-body transport and
localization in this system. While the diagonal terms Uii are the
strongest interactions, there are also off-diagonal contributions
arising from the crossing in configuration space of the ith
wave packet moving upward with the j th wave packet moving
downward. These off-diagonal terms are typically an order of
magnitude smaller than diagonal ones. For example, for the
parameters chosen in Fig. 1, we get Uii/g0 = 5.92 × 10−3,
Uii+1/g0 = 6.9 × 10−4, and Uii+10/g0 = 1.2 × 10−4, while
J = 1.9 × 10−4. Slight changes of the amplitude λ leave
Uij practically intact but significantly change the value of
the tunneling amplitude J . Alternatively one can change g0

by modification of a transverse confinement of atoms or by
changing the s-wave scattering length with the help of a
Feshbach resonance. Thus, there is an easy way to control
the ratios Uij/J in a laboratory.

It is believed that MBL is constrained to systems with
short-range interactions [78]. However, recent nonperturbative
studies in [79] indicate that the long-range interaction alone
does not exclude the MBL. Generally, the existence of MBL
in systems with nonlocal interactions is an important but
unexplored problem. The Hamiltonian (4) is different from
that in [79], however, it contains at least a weak nonlocal
component of the many-body interaction. These long-range
terms are weak, Ui �=j 	 Uii , hence they should not destroy
MBL, at least not within a reasonable time scale.

The experiment could be done as follows: firstly, launch
a many-body wave packet from a certain altitude above a
mirror and adjust the vibration frequency of the mirror to match
the 1:1 resonance with the natural bouncing frequency. This
creates an atomic wave packet locked on the external vibration
frequency. Secondly, multiply abruptly the vibration frequency
by a factor s and add a “disordered” temporal modulation of the
mirror position. It results in an initial many-body state where
all atoms occupy one Wannier state. Then, one can monitor the
atomic density at a given position vs time and observe whether
the moving wave packet remains localized or it is transferred to
other Wannier wave packets oscillating at the same frequency
but shifted in time, i.e., one can monitor the average value of
the local operator Î.

The phase diagram with MBL boundaries has been obtained
only for the disordered Heisenberg model (see, e.g., [80]) and
equivalent models of spinless fermions. In the case of the
Hubbard model such information is still missing. Moreover,
it is by far not obvious whether/when the strict MBL may be
observed in the latter system [35,43,45]. Therefore, in order
to locate the relevant model parameters one may follow the
experimental results for the disorder fermionic Hubbard model
(e.g., see Fig. 4 in [16]). Typically, the many-body interaction
U is comparable with J , while the disorder strength should be
the largest energy scale in the system. As mentioned before,
the ratios Uij/J can be easily controlled in a laboratory. A
suitable choice of random components fq in H ′(t) allows
one to engineer statistical properties of on-site energies εj

in (4). For example, if fq = V0ω
2q2s−2eiϕq for |q| � s and

zero otherwise, where ϕq = −ϕ−q are random numbers chosen
uniformly in [0,2π ), we obtain Vdis(�) = V0

∑s
q=−s ei(q�+ϕq ).

Then, employing the central limit theorem, one can show
that εj are random numbers corresponding to the nor-
mal distribution with zero mean and standard deviation
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FIG. 2. Left panel shows an initial stage of an experiment:
ultracold atoms are prepared in a local minimum of the potential
V (θ ) = λ cos(sθ ) in a toroidal trap. Then, the temporal modulation
of the potential, V (θ,t) = λ cos(sθ ) cos(ωt), and a temporal disorder
H ′(t) are turned on and atoms are kicked, p ≈ mω/s, so that the
s :1 resonance condition is fulfilled—see right panel. Monitoring
atomic density at a fixed position versus time allows one to investigate
localization properties of the system.

σ = √
2sV0. With the help of the parameter V0 one can

control the strength of the disorder in a wide range including
σ � J and investigate the entire phase diagram of the
system.

Another interesting possibility is to use a toroidal trap
where atoms are forced to move on a ring, while the transverse
degrees of freedom are frozen by a tight confinement. Using
suitable phase masks, it is possible to shape the transverse
profile of a coherent laser beam and to produce a flexible
angular dependence of the laser intensity [71,72]. When those
beams are sent on atoms on a ring, they create a tunable optical
potential whose temporal dependence can also be controlled by
the experimentalist. A simple V (θ ) = λ cos(sθ ) dependence
is obtained using order s Gauss-Laguerre modes [70]. The
ultracold atomic gas can be initially loaded in a single
potential minimum (see Fig. 2 for a schematic plot of an
experiment). The standard toolbox of ultracold atomic physics
(kicks by laser fields, magnetic fields, microwave fields, etc.)

can then be used to create an atomic cloud rotating in
the toroidal trap and to modulate the optical potential at
a convenient frequency, V (θ,t) = λ cos(sθ ) cos(ωt), in or-
der to match the s :1 resonance. Then, the single-particle
Hamiltonian, H = p2

2m
+ V (θ,t), in the rotating frame � =

θ − ωt/s, can be approximated by the secular Hamiltonian
H ≈ P 2

2m
+ λ

2 cos(s�). The advantage of this setup is that
the interaction Uii is purely diagonal, so that the effective
Hamiltonian (3) is given by the standard Bose-Hubbard model.
Adding, by means of conveniently driven intensity of the laser
beam, a perturbation H ′(t) = g(θ )f (t), where g(θ ) is any
regular function which consists of at least s harmonics and f (t)
is a temporally disordered function, leads to the final system
described by the Hamiltonian (4). Transport and localization
properties are again easily probed by measuring the atomic
density at a fixed position vs time.

To summarize, we have considered periodically driven
many-body systems. Time-independent systems with spatially
periodic potentials are standard models of space crystals. It
turns out that systems described by time periodic Hamiltonians
can reveal crystalline properties in time if they are resonantly
driven and if the s :1 resonance corresponds to s � 1. These
systems constitute models of time crystals in the same sense
as their spatially periodic counterparts are common models
of space crystals [81]. In the present work we have focused
on resonantly driven many-body systems in the presence of a
temporal disorder and provided a possible scenario to observe
the many-body localization in the time domain.
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