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Motivated by recent proposals of correlation induced insensitivity of d-wave superconductors to impurities,
we develop a simple pairing theory for these systems for up to a moderate strength of disorder. Our description
implements the key ideas of Anderson, originally proposed for disordered s-wave superconductors, but in
addition takes care of the inherent strong electronic repulsion in these compounds, as well as disorder induced
inhomogeneities. We first obtain the self-consistent one-particle states, which capture the effects of disorder
exactly, and strong correlations using Gutzwiller approximation. These “normal states,” representing the interplay
of strong correlations and disorder, when coupled through pairing attractions following the path of Bardeen-
Cooper-Schrieffer (BCS), produce results nearly identical to those from a more sophisticated inhomogeneous
Hartree-Fock-Bogoliubov analysis that takes care of strong electronic repulsions.
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I. INTRODUCTION

One of the outstanding puzzles of the disordered supercon-
ductors is the insensitivity of the high-temperature cuprate
superconductors to weak and moderate disorder [1–5]. In
contrast, the conventional wisdom developed along the lines
of Abrikosov-Gorkov (AG) theory [6] predicts an extreme
sensitivity of these materials to impurities. The original
idea, based on perturbative expansions, had been refined
subsequently, leading to self-consistent T -matrix calculations
[7–12], but the broad sensitivity [13] of these materials to
disorder survived.

The effects of dopant disorder [14], however, on cuprates
have remained rather benign. The inhomogeneities in local
doping of the charge carrier induce local variations in the gap
map seen from the scanning tunneling microscopy measure-
ments [15–17]. Surprisingly, these nanoscale inhomogeneities
do not affect the low-energy density of states—as if the d-wave
nodes are “quantum protected” [18]. The superfluid density
and Tc undergo only modest reductions [19–21] in spite of
the d-wave nature of the anisotropic order parameter [22–25].
Other unconventional superconductors, e.g., organics [26] and
pnictides [27,28], which belong to the intermediate coupling
category, also feature anomalies. On the other hand, addition
of strong substitutional impurities [4,29] in these materials
weakens superconducting correlations significantly.

A number of non-BCS features of high-Tc cuprate su-
perconductors [30–32] make them deviate from a favorable
playground of AG-type theories. These include the presence
of strong repulsive correlations between the charge carriers,
short coherence lengths, ξ , nonmonotonic dependence of Tc

on the doping level, small superfluid density, etc. In addition,
neglect of the spatial fluctuations in the pairing amplitude in
a disordered environment in AG formalism calls for a careful
microscopic re-examination of the role of impurities on these
systems.

*Corresponding author: ghosal@iiserkol.ac.in
†Present address.

Inclusion of the spatial inhomogeneities of the pairing
amplitude for short-coherence length d-wave BCS super-
conductors (dSC) within a Bogoliubov-de Gennes (BdG)
formalism indeed enhances the robustness of dSC to impurities
[33–36]. Recent advances of incorporating the effects of
strong electronic repulsions on top of the inhomogeneous
background resulted in a Gutzwiller-renormalized theory
[5,37–39] (referred to as GIMT). These analyses make these
superconductors amazingly immune to disorder, up to its
strength as large as the bandwidth [40]! Such remarkable
robustness of the superconducting correlations [5,40–42]
naturally implies a similar robustness of Tc, at least within
the mean-field description of the renormalized theory. This
raises an intrinsic question: does Anderson’s theorem [43],
or an equivalent one, apply even for these strongly correlated
d-wave superconductors?

We address this question by exploring the fate of a simple-
minded pairing theory following Anderson’s original idea
of “pairing of exact eigenstates” [43,44]. But we upgrade
it now to include the inherent strong correlations in these
systems, as well as the exact treatment of disorder-induced
inhomogeneities in our numerical calculations. It is well
established that the “pairing of exact eigenstates” leads to
Anderson’s theorem for s-wave superconductors (sSC) for
weak disorder. However, the same ideas had been successfully
extended for sSC to incorporate details of inhomogeneities and
localization effects in its numerical implementation [44] (see
also Ref. [45]). Here, we expand it further by implementing
similar concepts for strongly correlated superconductors with
an anisotropic order parameter.

At the outset, we emphasize that our developments pertain
to dSC with impurities up to a moderate strength and exclude
strong substitutional scatterers. Studies of dSC with strong
substitutional impurities, in the limit of unitary scatterers are
also available [4,20,29,46,47]. There are subtleties in handling
strong correlations and also strong impurities in a mean-field
formalism [48], and the results depend crucially on their
relative strengths.

In this article, we demonstrate that the complexity of
strongly correlated disordered superconductors, such as
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cuprates, can be understood in terms of a simple pairing
theory. However, the true potential of our developments lies in
identifying the underlying exact quasiparticle states in these
strongly correlated and disordered systems, which we termed
as the “normal states” (NS). It is these states that participate
in Cooper pairing in these materials following the standard
BCS path [49]. We posit that the properties of the true normal
state dictate the response of anisotropic superconductors to
impurities, providing a deeper insight to the physics of strongly
correlated unconventional superconductors.

II. MODEL AND METHODS

A. Anderson’s prescription

The original proposition of the pairing of exact eigenstates,
which leads to Anderson’s theorem, relies on two important
conceptual ideas: (a) the problem of noninteracting electrons
in disorder potential is solved at the first stage to generate its
“exact eigenstates.” BCS-type attractive pairing interactions
then couple specific pairs of these states producing Cooper
pairs at the second stage and the phase coherence of these pairs
produces superconductivity in the disordered background.
We emphasize that such decoupling of these two stages in
the above mechanism necessarily demands that the pairing
interactions have no role in determining the exact eigenstates.
(b) The specific states participating in Cooper pairing (at the
second stage) are the time reversed exact eigenstates derived
in the first stage. This is simply motivated by the BCS theory,
which Anderson’s pairing method must reduce to, in the
clean limit.

Each of these two points are important for establishing
Anderson’s theorem for disordered sSC. Can they work for the
strongly correlated d-wave superconductors as well? In order
to explore this question, we first set up the formalism below.

B. Normal states: “exact quasiparticle states” of a strongly
correlated disordered system

In the limit when the electron-electron repulsion is strong, it
is believed that the phases of the strongly correlated cuprates
are driven by effective exchange interactions [50], and are
formally described by the “t-J ′′ model [51]:

Ht−J =
∑
ijσ

tij
(
c̃
†
iσ c̃jσ + H.c.

) +
∑
ij

Jij

(
S̃i .S̃j − ñi ñj

4

)
.

(1)

The first term indicates hopping of electrons on a 2D square
lattice of N sites. Here, J is the exchange interaction, assumed
to arise from a Hubbard-type [52] on-site repulsion U via
modified Schrieffer-Wolff transformation as implemented in
Refs. [53,54], yielding Jij = 4t2

ij /U . We take tij = −t , when
i and j are nearest neighbors, denoted as 〈ij 〉, and tij = t ′,
when i and j are next-nearest neighbors, with the notation
of 〈〈ij 〉〉. We choose tij = 0 for all other pairs of i and
j . Correspondingly, we have Jij = J for 〈ij 〉, Jij = J ′ for
〈〈ij 〉〉. Here, c̃iσ = ciσ (1 − niσ̄ ) is the electron annihilation
operator in the “projected Hilbert space” that prohibits
double-occupancy at any site i, and similarly for the electron
creation operator. We introduce disorder by redefining Ht−J

to Ht−J + ∑
iσ (Vi − μ)niσ , where μ is the chemical potential

that fixes the average density of electrons, ρ = N−1 ∑
iσ 〈niσ 〉,

in the system to a desired value. Such a simple re-definition of
the Hamiltonian upon inclusion of disorder, however, would
not work for strong disorder (V � 3t) and a revised treatment
of Schrieffer-Wolff transformation [48,55,56] is necessary.
Here, we use the model of Box-disorder, where Vi’s on all sites
i of the lattice are drawn from a uniform “box” distribution,
such that, Vi ∈ [−V/2,V/2] uniformly, thus defining V as the
strength of disorder.

We studied the Hamiltonian Ht−J at zero temperature (T =
0), upon including disorder, over a wide range of parameters.
Here we present results for U = 12t and t ′ = t/4 [57], and
we express all energies in the units of t . We choose the
average density of electrons, ρ = 0.8, which coincides with
the optimal doping. It is the optimal doping where dSC is the
strongest in a typical phase diagram of cuprates, in addition
to being reasonably free from the complex effects of other
competing orders [38,58–63]. While the phenomenology of
competing orders attract interesting and active research in the
underdoped regime [64–68], our goal here is to focus only on
the interplay of impurities and strongly correlated dSC, and
hence we choose the optimal doping for our study. We carry out
our numerical simulations typically on a 30 × 30 lattice, and
we collect statistics on our results for each disorder strength
V from 10–15 independent realizations of disorder.

The Hilbert space restriction, that prohibits any double
occupancy in the limit of strong correlations, are reflected in
the transformation: ciσ → c̃iσ , and makes it difficult to handle
these creation and annihilation operators in the projected
space. To make progress, we use Gutzwiller approximation
(GA) [37,69,70] to implement the phase space restrictions.
GA amounts to renormalizing the parameters t and J of
Ht−J locally by density-dependent factors, such that, they
mimic the projection due to strong repulsions. For example,
the restricted hopping reduces tij due to double-occupancy
prohibition, whereas, the effective Jij increases because of
enhanced overall single occupancy. The real advantage of
GA lies in the fact that it turns the problem into an effective
weak coupling one redefined in the unprojected Hilbert space,
which is now amenable to simple mean field treatments. It has
been shown that GA is capable of describing non-BCS and
nontrivial features of cuprate superconductors [71,72] in the
clean limit (see however, Ref. [73]).

Upon carrying out the inhomogeneous Hartree-Fock mean
field decoupling of the Gutzwiller renormalized Ht−J such
that no symmetry of Ht−J is broken, we arrive at the following
normal-state Hamiltonian:

HNS =
∑
i,δ,σ

(
tiδg

t
i,i+δ − W FS

iδ

)
c
†
iσ ci+δσ

+
∑
i,δ̃,σ

(
tiδ̃g

t

i,i+δ̃

)
c
†
iσ ci+δ̃σ +

∑
i,σ

(
Vi − μ + μHS

i

)
niσ .

(2)

Here, we have written the Hamiltonian on bonds connecting
sites i and j , where j = i + δ, with δ = ±x or ± y, δ̃ =
±(x ± y). As the name suggests, we refer to the eigenstates
of HNS in Eq. (2) as the normal states, NSGIMT (here, GIMT
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in the subscript of normal states, NS, stands for Gutzwiller-
augmented inhomogeneous Hartree-Fock mean-field theory).
It is crucial to include the effect of strong correlations in
HNS following the above construction, even though the final
one-particle Hamiltonian without broken symmetries is similar
in structure to the disordered tight binding model (or Anderson
model of disorder). Yet, these normal states distinguish
themselves from the “exact eigenstates” (eigenstates of the
Anderson model of disorder) in accounting for the strong
correlation effects through Gutzwiller factors, as well as the
Hartree and Fock shifts. These considerations naturally make
the solution of HNS already a self-consistent problem. We
also emphasize that these normal states are defined at T = 0,
and are not to be confused with the common notion of the
high-temperature normal state of the material in which thermal
fluctuations destroy superconductivity. The Fock-shift (W FS

iδ )
and the Hartree-shift (μHS

i ) terms in Eq. (2) are given by

W FS
iδ = J

2

[(
3g

xy

i,i+δ

2
− 1

2

)
τ δ
i

]
, (3)

μHS
i = −4t

∑
δ,σ

(
∂gt

i,i+δ

∂ρi

τ δ
i

)
+ 4t ′

∑
δ̃,σ

(
∂gt

i,i+δ̃

∂ρi

τ δ̃
i

)

−3J

2

∑
δ,σ

∂g
xy

i,i+δ

∂ρi

(
τ δ
i

2)
, (4)

where ρi = ∑
σ 〈niσ 〉0 and τij ≡ 〈c†i↓cj↓〉0 ≡ 〈c†i↑cj↑〉0. Here,

〈〉0 denotes the expectation value in the unprojected space. The
Gutzwiller factors in Eqs. (3) and (4) are given in terms of the
local density:

gt
ij =

√
4(1 − ρi)(1 − ρj )

(2 − ρi)(2 − ρj )
, g

xy

ij = 4

(2 − ρi)(2 − ρj )
. (5)

As mentioned, the above construction of the NSGIMT excludes
any broken symmetry order parameters, e.g. magnetism,
charge density wave, etc. However, unbroken symmetry is
not a fundamental requirement of NSGIMT. In fact, we need to
include them in HNS (except, of course, any superconducting
order through Bogoliubov channels), when we study the effects
of such additional orders competing with superconductivity.

Considering the unitary transformation to diagonalize HNS

in the {α} basis:

ciσ =
N∑

α=1

ψα
i cασ , (6)

we obtain HNS = ∑
α,σ ξαc†ασ cασ . Here, the self-consistent

{ψα
i } are the eigenvectors of HNS, and they constitute our

“normal states”, i.e., the NSGIMT.

C. Pairing of normal states (PNS)

To study the superconducting properties of Ht−J in Eq. (1),
we now introduce the pairing term in real-space representation,

HP = 1

2

∑
〈ij〉


ij (c†i↑c
†
j↓ − c

†
i↓c

†
j↑) + H.c. (7)

in addition to HNS, where


ij = −J

2

(
3g

xy

ij + 1

4

)
(〈ci↑cj↓〉0 − 〈ci↓cj↑〉0). (8)

The pairing part of the Hamiltonian in Eq. (7) can be thought to
arise from a mean-field decoupling of the original Ht−J in the
Bogoliubov channel. Note that the form of HP ensures that we
have chosen the singlet pairing channel on the links. Writing
HP in the {α} basis, we have,

HP = 1

2

∑
αβ


αβ(c†α↑c
†
β↓ − c

†
α↓c

†
β↑) + H.c., (9)

where


αβ =
∑
〈ij〉


ij

(
ψα

i

)∗(
ψ

β

j

)∗
, (10)

leaving the total Hamiltonian as

Htotal =
∑
α,σ

(ξα − μp)c†ασ cασ

+1

2

∑
αβ

[
αβ(c†α↑c
†
β↓ − c

†
α↓c

†
β↑) + H.c.]. (11)

Here, we introduced μp to fix the final average density (after
pairing) to the desired value ρ = 0.8. Note that the μ in HNS

fixes the density to the same desired value, but only in the
normal state. Pairing at the second stage (after inclusion of
HP) can deviate ρ from this value. We use μp to tune it back
to the chosen value. We also note that there is no restriction,
in principle, on α, β in the definition of 
αβ appearing in
Eq. (10), though we will see in Sec. III E that the dominant
contribution comes from those α, β for which ξα ≈ ξβ .

D. Self-consistent pairing amplitude

Evidently, Htotal in Eq. (11) carries the BCS structure,
however, our HP in the real space ensures that the disorder
induced spatial information is included in 
αβ through the
normal-state wave functions in Eq. (10). Next, we diagonalize
it using a modified Bogoliubov transformation:

cpσ =
N∑

n=1

(up,nγnσ − σv∗
p,nγ

†
nσ̄ ), (12)

where γ
†
nσ (γnσ ) are fermionic quasiparticle creation (annihi-

lation) operators.
Starting with guess values of 
ij on all the 2N bonds,

we first obtain the N2 numbers of 
αβ using the normal
state eigenfunctions ψα

i ’s in Eq. (10). The eigenvalues and
eigenvectors of Htotal allow us to recalculate 
ij and ρi using
Eq. (8) and the self-consistency conditions (see Ref. [74] for
details):

〈ci↑cj↓〉0 =
N∑

p1,p2=1

ψ
p1
i ψ

p2
j 〈cp1↑cp2↓〉, (13)

ρi = 2
N∑

p1,p2=1

(
ψ

p1
i

)∗
ψ

p2
i 〈c†p1↓cp2↓〉. (14)
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We then iteratively update the guess values of 
ij and ρi for the
inputs in Eq. (11) in order to achieve the final self-consistency
until the inputs and corresponding outputs in Eq. (13) and (14)
match within tolerance. For accelerating the convergence, we
used combinations of linear, Broyden and modified Broyden
[75] schemes of mixing of the input and output at every
iteration.

III. RESULTS

We will discuss in this section our findings from the pairing
of normal states (PNS) and compare them with GIMT findings.
Here, GIMT refers to the full BdG calculation augmented
with Gutzwiller renormalization. However, it is truly illu-
minating to focus our attention first on the distinguishing
features of NSGIMT that separate them from their uncorrelated
counterparts—the “exact eigenstates” of the Anderson’s model
of disorder.

A. Structure of the normal states

For the convenience of our discussions below, it is useful to
cast the normal-state Hamiltonian HNS in the following form:

HNS = −
∑
i,δ,σ

teff(i,δ)c†i,σ ci+δ,σ +
∑
i,σ

Veff(i)ni,σ , (15)

to emphasize HNS as a tight-binding model, but with effective
disorder both on the links (teff) and on the sites (Veff).
However, these disorder terms now contain order parameters,
as seen from Eqs. (2)–(4), and hence, must be evaluated
self-consistently, as mentioned already. We find them to
develop spatially correlated structures [74], and are illustrated
in Figs. 1(a)–1(d). For a justified comparison between the
spatial structures of Veff and teff , we transformed the bond
variable teff(i,δ) to a site variable using the relation teff(i) =
1
4

∑
δ teff(i,δ). Spatial associations are found, firstly, in the

profile of Veff(i) itself, showing conglomeration of regions
with large and small Veff , but more importantly, through the
explicit anticorrelation of regions of Veff and teff in space.
We also compare the distributions P (Veff) and P (teff) for
V = 1.75 from the NSGIMT and GIMT results in Figs. 1(e)
and 1(f), using statistics over ten realizations of disorder.
Such a favorable comparison of NSGIMT outputs of teff and
Veff with those from GIMT validates the conceptual basis of
the PNS formalism. The role of strong electronic repulsions
on the disordered normal states has a simple and intuitive
rationale, as we describe below. A random impurity potential
tends to generate charge inhomogeneities in space, whereas,
repulsive interactions smear out such heterogeneities, trying
to restore its homogeneous distribution. The key ingredient
of NSGIMT that distinguishes it from the exact eigenstates
lies in its impurity renormalization—a footprint of electronic
repulsion in NSGIMT. This is ascribed to the modification
the hopping amplitudes based on local density, which smear
out charge accumulation near deep potential wells, and also
partly populating potential hills, as explained in Fig. 2. As a
schematic description, we consider in Fig. 2 a site i having a
high hill of local potential, and hence it ordinarily supports
little density of electrons there, compared to the average
density on its neighbors, assumed to have no disorder. This

−0.3 −0.1 0 0.1 0.3
0

1

2

3

V
eff

P
(V

ef
f)

GIMT
NS

V=1.75
(e)

−0.1 −0.05 0 0.05 0.1
0

1

3

4

5

t
eff

P
(t

ef
f)

GIMT
NS

(f)
V=1.75

(c) (d)

(a) (b)

FIG. 1. (a)–(d) Spatial density map of Veff and teff from NS and
GIMT shows similar spatial anticorrelation between Veff and teff .
They also highlight the spatial correlation in Veff . Comparison of
distributions P (Veff ) in (e) and P (teff ) in (f) for NS and for the full
GIMT outputs at V = 1.75. The distributions match rather well in
the two calculations validating the basis of PNS calculations. We
subtracted the homogeneous components of teff (teff (V = 0) = 0.459)
and Veff (Veff (V = 0) = 1.6), arising from the Fock and Hartree shifts,
respectively. The resulting distributions in (e) and (f) feature zero
mean—this is broadly true for all V .

local charge imbalance leads to an interesting feedback loop
through gt

ij , absent in the uncorrelated systems. The low
electronic density at i enhances gt

ij according to Eq. (5),
which in turn enhances the charge fluctuations across site i,
leading to a larger effective ρi than what would be its value in
the absence of the Gutzwiller factors. This leads to a much
weaker effective disorder [39,40,76,77] to account for the
enhanced ρi . In addition to impurity renormalization, the above
argument sheds light on the spatial anticorrelations of Veff and
teff . Both these features make NSGIMT distinct from the plain
exact eigenstates. However, in the limit U → 0, the NSGIMT

and exact eigenstates would be identical. How strong is such
renormalization of disorder? In order to get a quantitative
estimate of the impurity renormalization, we present the scatter
plot of Veff against bare V in Fig. 3 from our self-consistent
NS-calculations (statistics collected over 10 realizations of
disorder). Our results show a simple linear trend: Veff ≈ δV for
low V , with weak corrections for stronger V . Here, δ = (1 −
ρ) is the average doping. This low-V linearity is consistent with
earlier findings from a single-impurity calculation [39]. This
is easily comprehended: since t → gt t ∼ δt , we must rescale
V by the same factor for a justified comparison, yielding
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FIG. 2. A schematic evolution of the inhomogeneity in space
that leads to the renormalization of Veff (i) and spatial anticorrelation
between Veff (i) and teff (i), upon including electronic repulsions
through the Gutzwiller approximation (GA). Consider in (a) the site i

having a high hill of disorder potential (also assumed that Vi±δ = 0),
that would normally yield a low ρi compared to ρi±δ ≈ ρ0, as shown
in (b), rarely populating the site i. However, GA insures that teff on
bonds connecting i to its neighbors is enhanced, according to Eq. (5),
increasing charge flow to this site. This in turn reduces the dip in
ρi as seen in (c), so that the corresponding Veff (i), which would
have normally produced the ρi in (c), is far weaker than its bare
value, shown in (a). Exactly similar arguments would yield a similar
weakening of deep potential well by strong correlations.

Veff ∼ δV . For the cuprate superconductors, we typically
have δ � 0.2. The above considerations then imply that the
Fermi’s golden rule estimate of the inverse scattering time
of the electrons in the underlying NSGIMT is an order of
magnitude smaller compared to the “usual” exact eigenstates:
τ−1

NS ∼ g̃(0)V 2
eff ∼ δτ−1

0 , where g̃(0) is the density of states
at Fermi energy of NSGIMT. A similar dependence of τ−1 has
also been been predicted recently from the T -matrix estimation
[42]. We focus next on Cooper pairing between these strongly
correlated NSGIMT states.

B. Self-consistent order parameters

Inducing pairing through BCS-type attraction as described
in Sec. II C, we find that the self-consistent PNS outputs of
the spatial profiles of the pairing amplitude 
ij , local density
ρi , or τij are nearly indistinguishable from the results of
GIMT calculations. In order to quantify the strength of PNS
formalism, we find it easier to define the relative difference in
the PNS order parameters with respect to those from GIMT,
in the following manner:

ROP(i) = OP GIMT(i) − OP PNS(i)

〈OP 〉GIMT
, (16)

−0.2

0

0.2

0.4

0.6

 

 

−1.5 −1 0 1 1.5

−0.2

0

0.2

V(i)
V

ef
f(i) (b)

(a)

Fit Equation:

Fit Equation:

y=0.195x+0.04

y=0.189x+0.1

V=1.0

V=2.5

FIG. 3. Scatter plots of Veff (i) against the bare potential V (i) for
(a) V = 1.0 and (b) 2.5. The red lines are the best fit to the data. The
slope of the solid line in both panels is close to the average doping
(δ = 0.2). For V = 2.5, the data tend to deviate from the fit for larger
|V (i)|, signaling higher order effects.

where OP represents either ρi , 
d (i), or τij . Here, 〈〉 denotes
average over all sites and over configurations. We define
the d-wave superconducting order parameter on a site as

d (i) = 1

4 (
+x
i − 


+y

i + 
−x
i − 


−y

i ). We emphasize here
that the PNS self-consistency produces for us the solution
of link variable 
ij among other things. This by itself is no
confirmation of a d-wave anisotropy of the pairing amplitude.
However, our choice of parameters in the Hamiltonian Ht−J

ensures that we have exclusively the d-wave (dx2−y2 ) pairing
amplitude in the clean limit. Introduction of disorder does
generate other possibilities of bond pairing amplitude, e.g.,

xs , 
sxy

, and 
dxy
[78]. But their strengths remain negligibly

small compared to the 
d component. GIMT calculations also
confirm the same qualitative picture in this regard.

We plot the normalized distribution of R
d
and Rρ for

different V in Fig. 4. These distributions, always peaked at
zero, show only a weak broadening with V . Further, such
smearing is essentially independent of V in the range 1.5 �
V � 2.5. The width of the distribution of R remains only at
about 3% for all order parameters up to V = 2.5, emphasizing
the accuracy of the proposed PNS method to describe the
strongly correlated dSC. Not only the spatial profile of any
order parameter, from PNS and GIMT calculations, appears
nearly indistinguishable [74], more importantly, R remains
strongly correlated in space with the corresponding order
parameter profile itself. To illustrate this, we show in the insets
of Fig. 4(a) 
d (left) and R
d

(right) in space for V = 2.5 (for
one realization of disorder), and similarly for local densities in
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FIG. 4. Main panels: The distribution P (R
d
) in (a) and of

P (Rρ) in (b) are shown for various disorder strengths. Sharply peaked
nature of these distributions (with small variance) validates the PNS
formalism. The left inset of panel (a) shows the PNS results for the
spatial profile of 
d at V = 2.5, where as the right inset presents that
of R
d

. The strong resemblance of the two ascertains that the small
differences between GIMT and PNS outputs are not just random in
space, but are highly correlated with the order parameter profile. The
insets of panel (b) draw similar inferences as those in (a), but for local
densities.

Fig. 4(b). The strong resemblance of the two spatial structures
in each panel is evident. Thus, any marginal differences of
the order parameters from the two methods at any location is
sufficient to reconstruct such differences everywhere in space.

C. Off-diagonal long-range order

In order to illustrate the accuracy of the PNS results
for physical observables, we study the V dependence of
the superconducting off-diagonal long-range order (ODLRO),
defined as


2
OP = lim

|i−j |→∞
Fδ,δ′(i − j ), (17)

where the pair-pair correlation function, Fδ,δ′ (i − j ) =
〈B†

iδBjδ′ 〉, and, B
†
iδ = (c†i↑c

†
i+δ↓ + c

†
i+δ↑c

†
i↓) is the singlet

Cooper-pair creation operator on the links connecting the
neighboring sites at i and i + δ. Since Fδ,δ′(i − j ) can be
interpreted as simultaneous hopping of a singlet cooper pair
on a link, the Gutzwiller factor corresponding to this process
becomes gt

i,j g
t
i+δ,j+δ′ . We calculate Fδ,δ′(i − j ) using the

transformations Eqs. (6) and (12). The value of 
OP, from
the above prescription matches well with

∑
〈ij〉 g

t
ij
ij for

all V studied, as expected from the BCS-type treatment in
the presence of Hilbert-space projection. The evolution of
ODLRO (normalized by its value 


(0)
OP at V = 0) with V , as
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IMT
PNS (from NS

IMT
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FIG. 5. Evolution of 
OP is presented against V . The V depen-
dencies of both the PNS and GIMT results show nearly identical
behavior. The inset shows an expanded region of the main panel
establishing that the PNS findings match excellently with those
from GIMT within the error bars. The results for 
OP from IMT
calculations, shown by the magenta curve (forcing all Gutzwiller
factors to unity, and thereby neglecting strong electronic repulsions),
deviate significantly from the PNS or GIMT results. However, it still
complements the plain BdG results (red dashed line) exceedingly
well.

evaluated from the PNS and GIMT calculations, was discussed
briefly in Ref. [74], and we include it here in Fig. 5 for
completeness. The main panel shows that the PNS results are
nearly identical with the GIMT findings (see the inset for an
expanded view), ascertaining that PNS formalism serves as
good a purpose as the GIMT method for handling the physics
of strong correlations.

An independent test for the effectiveness of the PNS
formalism comes from its comparison with a full BdG
calculation, when both neglect strong correlations (and will
be referred to as IMT, henceforth). Suppression of strong
correlations, though unphysical for cuprates, can easily be
implemented by setting all Gutzwiller factors to unity. In
Fig. 5, we also compared 
OP(V ) as obtained from pairing
between NSIMT with those from corresponding plain BdG
outcomes. The excellent match of the two formalisms even
in the uncorrelated domain strengthens the PNS method as a
natural description of disordered superconductors. Note that
the results differ significantly by including and excluding
Gutzwiller factors—irrespective of PNS or BdG methods (see
also Sec. III F).

D. Density of states

The other hallmark of superconductors is their density
of states (DOS), N (ω), featuring a characteristic gap to
single-particle excitations. This gap signifies the gain in the
condensation energy as superconductivity sets in, pushing the
low-lying normal states (with respect to the chemical potential)
to the gap edge and thereby forming coherence peaks. It is well
known that the d-wave anisotropy of the pairing amplitude of
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FIG. 6. DOS of dSC state calculated within PNS from (a) NSGIMT

and (b) NSIMT. The features in (a) and (b) match very well with the
findings of GIMT and IMT, respectively. DOS for the normal states
(c) NSGIMT and (d) NSIMT. Insets of (c) and (d) show an expanded view
of the DOS at low energies. For V ≥ 0.5, NSIMT becomes flat near
the chemical potential analogous to an Anderson insulator. Strongly
correlated NSGIMT preserves the Van Hove singularity owing to the
complex interplay of Veff and teff . A soft gap develops at the chemical
potential for V ≥ 2.0 in both NSGIMT and NSIMT.

cuprates produces linear ω dependence of DOS, i.e., N (ω) ∼
|ω|, for small |ω|. Within PNS formalism, DOS is expressed as

N (ω) = 1

N

∑
i,n

gt
ii[|ui,n|2δ(ω − En) + |vi,n|2δ(ω + En)],

(18)
where ui,n = ∑N

p=1(ψp

i )up,n and vi,n = ∑N
p=1(ψp

i )vp,n, and
ψ

p

i is given by Eq. (6). Our numerical evaluation of DOS im-
plements repeated zone scheme on a supercell of 12 × 12 unit
cells for a better resolved DOS. Figures 6(a) and 6(b) show the
DOS for the dSC state obtained from NSGIMT and NSIMT, re-
spectively. All the features of DOS of the full BdG calculations
(using both GIMT and IMT schemes) are captured excellently
in the PNS results, as seen by comparing our current PNS re-
sults with those in Figs. 3(a) and 3(b) of Ref. [40]. In particular,
the presence of strong correlations in NSGIMT make the low-
energy N (ω) robust to disorder up to V = 2.5 [see Fig. 6(a)].
On the other hand, PNS results for NSIMT experience gap-
filling as V increases, though it remains identical to the
corresponding full BdG results. These findings, together with
the success of describing the V dependence of 
OP in Fig. 5
builds confidence in our simple yet robust pairing description.

However, the PNS method derives deeper insights into the
evolution of superconductivity by illustrating the key physics
in terms of the underlying DOS of the normal states, N (0)(ω) =∑

n δ(ω − E(0)
n ), calculated within the realm of GIMT and IMT

respectively, as shown in Figs. 6(c) and 6(d). The IMT results
of N

(0)
IMT(ω) in Fig. 6(d) are expectedly similar to that of a

standard Anderson insulator. The asymmetry in N
(0)
GIMT(ω) and

N
(0)
IMT(ω) about ω = 0 is largely due to the inclusion of the

next-nearest neighbor hopping in our HNS, and partly due to
our choice of ρ = 0.8 (away from half-filling). Both of these

profiles of NS-DOS feature a Van Hove singularity at ω = 0
in the clean case. However, the restrictions of phase space for
allowed hopping in NSGIMT, owing to the strong electronic
repulsions, reduces the bandwidth significantly and therefore
increases the magnitude of N

(0)
GIMT(ω), as the total number of

states in the band must be conserved.
The nature of the suppression of the Van Hove singularity

in DOS with disorder, on the other hand, shows sharp
contrast in the IMT and GIMT calculations. We find that
with increasing V the N

(0)
IMT(ω) (which is much smaller in

magnitude near ω ∼ 0, compared to the GIMT counterpart)
becomes increasingly flat over a wide range of ω around
the chemical potential, resembling an Anderson insulator.
The corresponding N

(0)
GIMT(ω), on the other hand, shows a

rather weak evolution with V , preserving a large weight
close to ω ∼ 0. We next integrate these findings with our
earlier conclusions that the low-lying NSGIMT remains largely
delocalized for up to V ≈ 2, whereas NSIMT becomes strongly
localized well within the system [79]. As a result, it becomes
harder for pairing attraction to form Cooper pairs and establish
superconductivity from these localized Anderson-insulating
IMT normal states near ω ∼ 0. This naturally fills up the
superconducting gap. On the other hand, the delocalized nature
of low-lying NSGIMT and their large weight in DOS near ω = 0,
even for V = 2.5, remain conducive to establishing a healthy
dSC, with a nearly V -independent N (ω) for low ω.

Finally, we draw attention to the intriguing emergence
of a tiny gaplike feature at ω = 0 in both N

(0)
GIMT(ω) and

N
(0)
IMT(ω) for V ≈ 2.5 [see the insets of Figs. 6(c) and 6(d)].

Hubbard repulsions are found to open up a narrow gap in
disordered systems [80–83], whose energy scale relates to
hopping strength. The incipient thin gap in our results for
V ≈ 2.5 is qualitatively consistent with Refs. [82,83], and a
detailed understanding and significance of such a gap will
be addressed elsewhere. But this naturally prompts us to
limit the applicability of PNS formalism to larger disorder
strengths, as a gap in the NS-DOS goes against a simple
pairing theory like ours. Moreover, strong disorder has other
intricacies [48] demanding higher-order refinements to our
pairing description.

E. Pairing of limited states with close by energies

As discussed in Sec. II C, the PNS method amounts
to pairing between all the eigenstates of HNS, making its
numerical implementation computationally as demanding as
that of GIMT. However, technical gain can be insured by
having to pair only a limited number of normal states α and β

that are not too far from the Fermi energy, such that, ξα ≈ ξβ .
Such an expectation is, of course, motivated by the structure
of the BCS gap equation.

In search of this simplification, we plot in Figs. 7(a)
and 7(b), the fully self-consistent and disorder averaged
profiles of |
αβ | in the eigenspace of α and β. The near
diagonal structures of |
αβ | implies that the states α, β which
are far in energies, have negligible contributions in 
αβ . Such
a diagonal character of 
αβ is well maintained for V � 3.

The diagonal nature is preserved when the same |
αβ | is
plotted against ξα and ξβ [shown for V = 2.5 in Fig. 7(c)]. We
also note that not all normal states contribute to “diagonal”

134518-7



DEBMALYA CHAKRABORTY, NITIN KAUSHAL, AND AMIT GHOSAL PHYSICAL REVIEW B 96, 134518 (2017)

FIG. 7. Intensity plot of |
αβ | in the normal state eigenbasis α-β
for (a) V = 1.0 and (b) 2.5. We show |
αβ | in a limited range of α,β

(only the central part) for a better resolution. The presented values
of |
αβ | are scaled by their maximum values for clarity (0.35 for
V = 1.0 and 0.3 for V = 2.5). The near-diagonal nature of the pairing
is evident for both V . The color scales are identical to that in Fig. 1. (c)
Density plot of |
αβ | against ξα and ξβ across the full (renormalized)
bandwidth for V = 2.5. While the diagonal character of |
αβ | is
evident, only negligible contribution to |
αα| comes from the states
near band edges. (d) Accuracy of PNS (with respect to GIMT) is
shown along y axis, against the percentage of states paired (along
x axis). This accuracy, already impressive with about 10% NSGIMT

participating in pairing, becomes better as more states included in
Cooper pairing.

pairing, particularly those states lying close to band edges con-
tribute only negligibly to |
αα|. Such contribution would have
been limited only to a narrow energy window, ±h̄ωD , in simple
BCS theory (ωD being the Debye frequency). In the present
case of strongly correlated anisotropic superconductors in the
presence of disorder, the energy range of contribution is wider.
The asymmetry of the states about the Fermi energy (ξ = 0)
in GIMT energy band in Fig. 7(c) reflects the same imbalance
of N

(0)
GIMT(ω) of Fig. 6(c). The final profile of |
αβ |, as seen

from Fig. 7(c), hints that the summations in Eqs. (13) and (14)
can be further restricted to a limited set (leaving out the states
close to band edges) to achieve a desired accuracy.

Motivated by these findings, we simplify the PNS cal-
culations by limiting progressively the smaller number of
total states contributing to pairing. The corresponding output
of 
OP, as its percentage deviation from the GIMT value,
is shown in Fig. 7(d) against the fraction of normal states
participated in pairing. To illustrate our choice of restricted
states for V = 2.5, we show the bounding box BH in Fig. 7(c)
by a thin dotted line that includes about 19% of the normal
states for pairing, and results into more than 99% accuracy in

OP [the last data point along x axis in Fig. 7(d)]. It is apparent
that our bounding box encloses states that subscribe to |
αβ |

of significance [84]. Evidently, PNS results achieve perfection
when increasing fraction of states are included. Yet, we see
that only about 10% of NSGIMT ensures 95% accuracy of the
results, even for disorder as large as V = 2.5!

F. Pairing theory with “uncorrelated” NS and with a different
model of disorder

We discuss below the prospects of our PNS proposal in
terms of “uncorrelated” normal states, in which all Gutzwiller
factors are set to unity. The impressive match of 
OP from
such pairing theory using NSIMT, in comparison with the
plain BdG results, has already been analyzed in Sec. III C.
In fact, we found that the IMT-normal states are very close
to the original exact eigenstates, except, of course, for the
Hartree and Fock shifts, which add only weak corrections in
the absence of Gutzwiler renormalization. While the success
of PNS formalism is evident, there are practical concerns
for the applicability of such implementation. The NSIMT are
naturally incapable of accounting for the strong correlation
effects, crucial for the qualitative physics of the strongly
correlated superconductors. In addition, the pairing of NSIMT

misses the near-diagonal nature of |
αβ | as found in Fig. 7 for
NSGIMT, making the NSIMT less useful, for deriving technical
advantages over IMT calculations, as discussed in Ref. [74].

We also verified that the results and conclusions of PNS
formalism remain valid even with a model of concentration
impurity, in which nimp fraction of the (random) lattice
sites contain a fixed disorder potential V0, provided we use
V0 � 3. Stronger V0 brings in subtle effects even in GIMT
implementation [48].

IV. DISCUSSIONS

The impressive match between the PNS and GIMT results
is inspiring from the perspective of developing simple under-
standing on the complex physics of disordered and strongly
correlated superconductors. However, we believe that it is the
conceptual advances offered by PNS technique, as described in
the previous sections, which have far reaching values. We will
discuss below a crucial notional gains from the PNS proposal.

A. Insensitivity of inhomogeneity in pairing

Our results make it evident that inhomogeneities are less
relevant for pairing in case of strongly correlated dSC. This
has already been illustrated in Ref. [40], by matching the
spectral density of states evaluated in GIMT for V � 3t , with
its d-wave BCS form convoluted with the near-Gaussian GIMT
distribution of 
ij . Here, we argue for a more direct evidence to
this assertion by noting that the spatial inhomogeneities in the
Gutzwiller factor g

xy

ij , arising from the spatial fluctuations in
the local density, has little role in the final self-consistent output
of 
ij on the bonds. This is, however, only true, provided
that the correct NSGIMT is obtained by taking care of all
inhomogeneities in their construction. For concreteness, we
can consider three independent implementations of g

xy

ij , with a
progressive degree of approximations of the inhomogeneities:
(a) a full self-consistency in local density ρi in the definition
of g

xy

ij is achieved during the iterative update of 
ij during the
pairing stage following Eq. (8). (b) We fix the inhomogeneous
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density profile to its form as obtained in NSGIMT, without
any update during the pairing self-consistency. (c) In the
extreme approximation, we set g

xy

ij = (1 − 0.5ρ)−2 for the
purpose of pairing self-consistency. Obviously, each degree
of approximation is associated with significant computational
gains. We find that even with the most drastic approximation,
the resulting order parameters are in good agreement (within
10%) with the GIMT findings. On the other hand, we found
that an approximate handling of heterogeneities in the normal
state leads to significant deviation of the final results.

B. What makes d-wave anisotropy of pairing so robust?

Why does not AG-theory capture the insensitivity of
strongly correlated d-wave superconductors to impurities?
Admittedly, such strongly coupled systems with short co-
herence length ξ , in addition to spatially fluctuating pairing
amplitude in response to disorder, fall outside the scope of
a true AG description. However, strong correlations have
recently been incorporated within a self-consistent T -matrix
calculation [76], and found a resulting weakening of the pair-
breaking mechanism [42]. While such a description still makes
homogeneous approximation of the disordered medium, we
show here that the true role of disorder in the presence of
strong electronic repulsion is more subtle. As substantiated in
Figs. 1 and 2, that even though the bare disorder describe only
the on-site random potential, the normal state quasiparticles
experience an emerging disorder in the hopping as well. In
fact, the immunity of strongly correlated superconductors to
impurity presents a classic example of “order by disorder,”
where spatially anticorrelated nature of teff and Veff weakens
the overall disorder in the system far more, even though the
individual (renormalized) components are not that weak. A
study of the normal states, thus, illustrates how the charge
inhomogeneities are spatially smeared out due to the repulsive
interactions within a quasiparticle description.

Moreover, our PNS formalism offers a simple and intuitive
perspective for the distinct outcome of the GIMT findings.
Such results (or the results from PNS, which produces
essentially identical results as GIMT) of the spatial profile
of 
ij on each bond on a square lattice is shown in Fig. 8(a),
for a specific realization of disorder.

We witness pairing amplitudes of opposite signs but of
nearly equal strengths on bonds along x̂ and ŷ directions from
each site for V = 2.5 [see Fig. 8(a)]. Such a phase differences
of π/2 between adjacent orthogonal bonds is the hallmark
of its dx2−y2 anisotropy of pairing amplitude [23–25] in the
clean systems, and remains near-perfect even at V = 2.5!
With the introduction of disorder, AG theory predicts that the
impurity scattering “mixes-up” such sensitive phase relations,
and thereby depletes d-wave superconductivity [6]. Instead,
we find a healthy d-wave anisotropy to survive. But, this
is naturally expected within the PNS formalism—there is
no disorder left to scramble phases at the second stage of
“pairing,” they are all consumed in generating the normal states
at the first stage of calculations!

Do such phase relations continue to hold for stronger
disorders? While additional considerations are necessary for
pushing the applicability of the PNS method to larger V , an
extension of GIMT-type calculation upon including localiza-

FIG. 8. 
ij on each bond for a section of the lattice for (a) V =
2.5 and (b) 4.5 for a specific realization of disorder. The π/2 phase
difference between 
i,i+x̂ and 
i,i+ŷ survives over the entire lattice as
seen in (a). The larger disorder strength of (b) still supports the d-wave
anisotropy in most parts (highlighted by the square boundary). It also
features regions of strong potential fluctuations (marked by circular
boundary), where 
i,i+x̂ and 
i,i+ŷ are closer in magnitude, but only
when both are vanishingly small!

tion physics for V � 3 has already been reported in Ref. [48],
and those results offer a significant pointer. By ramping up
V in such calculations, we find that for V = 4.5, the local
pairing amplitude tends to zero identically on both x̂ and ŷ

bonds in regions of strong fluctuation of disorder potential
[marked by circular boundary in Fig. 8(b)]. Yet, the d-wave
anisotropy remains intact in regions possessing a healthy 
ij

(marked by square boundary), albeit some inhomogeneity.
Thus, impurities can affect superconductivity by locally
collapsing the self-consistent pairing amplitudes, which are
due to the localization properties of the normal states, but are
not because of scrambling of the d-wave anisotropy.

V. CONCLUSION

In conclusion, we presented a description of disordered and
strongly correlated d-wave superconductors by implementing
simple pairing ideas of Anderson, but extending it by including
the effects of strong electronic correlations as well as disorder
induced inhomogeneities. The impressive match of the results
from the proposed PNS method and GIMT findings is
encouraging. In addition to offering a deeper understanding
of the GIMT findings, our formalism sheds important light on
some shortcomings of the conventional wisdom. The pivotal
advance offered by the PNS formalism lies in identifying
the underlying exact quasiparticle states of these strongly
correlated materials that participate in Cooper pairing in
unconventional superconductors. This motivates future survey
of the properties of NSGIMT by probing them using various
means, and in particular on their temperature dependences. It
will also be interesting to consider the robustness of the PNS
formalism upon including the physics of “competing orders”
in NSGIMT and their role in subsequent Cooper pairing.
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