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Quantum Kkinetic equations and anomalous nonequilibrium Cooper-pair spin accumulation in
Rashba wires with Zeeman splitting
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We derive the theoretical and numerical framework for investigating nonequilibrium properties of spin-orbit
coupled wires with Zeeman splitting proximized by a superconductor in the nonlinear diffusive regime. We
demonstrate that the anisotropic behavior of triplet Cooper pairs in this system leads to novel spin accumulation
profiles tunable by the magnetic field and strength of applied voltage bias. This paves the way for enhanced
manipulation of superconducting spintronic devices, and it enables further investigation of nonequilibrium
effects in proximity-coupled superconducting structures more generally.
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I. INTRODUCTION

Superconducting spintronics has captured the minds of
theoreticians and experimentalists alike with the promise
of low-dissipation control of charge and spin transport in
cryogenic devices [1,2]. This wave of interest has resulted
in new insights into the underlying physical mechanisms, such
as those that generate and control long-range spin-polarized
triplet supercurrents [3—13]. This is accompanied by encour-
aging experimental results demonstrating key features such
as enhanced quasiparticle spin lifetimes [14], spin relaxation
lengths [15], spin Hall effects [16], and the confirmation
of long-range dissipationless current through both strong
ferromagnets [ 17-20] and spin-polarized Cooper pairs induced
in conventional superconductors [21,22].

In this work, we derive the quantum kinetic equations for
investigating nonequilibrium properties of spin-orbit coupled
nanowires with Zeeman splitting proximized by a conventional
s-wave superconductor, and we investigate these both numer-
ically and analytically. As an application of the equations,
we investigate spin accumulation in such a nanowire under a
voltage bias. We study the regime where the exchange field
is of the same order of magnitude as the superconducting
gap A, which may be induced via an external magnetic
field, or included via an intrinsically ferromagnetic wire.
Spin accumulation effects in superconducting systems without
spin-orbit coupling have been studied in previous works
[23-27]. When the exchange splitting is much greater than
A, the superconducting proximity effect is negligible and
the transport properties are instead governed by the interface
[28]. We demonstrate that intrinsic spin-orbit coupling (SOC),
which has been shown to be instrumental in generating
and controlling equilibrium charge and spin supercurrents
in homogeneous ferromagnets [9-11], reveals novel features
in the spin accumulation due to the anisotropic behavior of
triplet Cooper pairs. We show that the spin accumulation
perpendicular to the field can be switched on and off, and
that the spin accumulation may oscillate within the sample as
a linear function of the strength of the SOC. Moreover, a small
increase in the field strength may either shift the maximal
magnetization toward higher bias values, or enhance the peak
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magnetization without a bias shift, depending on the field
rotation. To supplement the analytical considerations of the
effects mentioned above, we also briefly examine the local
density of states and charge conductance of the system.

II. THEORY

When materials have intrinsic or extrinsic SOC, the injec-
tion of a charge current leads to transverse spin accumulation,
i.e., induced nonequilibrium magnetization, along the sample
edges, known as the spin Hall effect [29-31]. We will consider
the effective one-dimensional (1D) heterostructure depicted in
Fig. 1, which shows a nanowire with intrinsic SOC and Zeeman
splitting. The wire is proximized by a conventional s-wave
superconductor, and a voltage bias is applied to the system via
a bulk normal metal. Here, we consider a small magnetization
exchange field oriented in the plane of the cross section
(hereafter referred to as in-plane), and this field may be either
intrinsic or extrinsic. The latter case can be achieved via an
external field or a proximate ferromagnetic insulator. The case
of an externally applied field should be particularly suitable for
producing an in-plane exchange field, whereas an intrinsically
occurring magnetization likely would favor a field oriented
along the wire due to shape anisotropy (we briefly discuss this
case in the Appendix, for completeness). Since the nanowire
is considered to be a 1D structure, the spin accumulation does
not occur on any lateral faces but varies along the wire.

The appearance of the long-range (LR) spin-polarized
triplet component of the superconducting correlations occurs
in the presence of SOC when the Cooper-pair spins have
projections parallel to the exchange field. The components
of the spins with perpendicular projection relax over much
shorter distances of the order of the wire’s coherence length.
Formally, the criterion for the existence of the LR component
in a nanowire with the spin-orbit gauge field A oriented along
the wire is that the commutator [A, k - o] must be nonvanishing
[10], where h is the exchange field vector and o is the Pauli
vector [32,33]. However, satisfying the criterion does not
guarantee experimentally measurable observables or features
useful for experimental manipulation of the system [12,13]. By
deriving the quantum kinetic equations for driven, diffusive
superconductor-nanowire systems with SOC and Zeeman
splitting, we can investigate the nonequilibrium dynamics
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FIG. 1. The model: nanowire with intrinsic spin-orbit coupling
and Zeeman splitting, proximized by an s-wave superconductor and
a voltage bias Vi, applied via a bulk normal metal. The magnetization
exchange field h is purely in-plane.

and extract experimentally measurable markers. Below we
will demonstrate that the anisotropy of the triplet Cooper
pairs leads to novel control over the spin accumulation in
such nonequilibrium structures, tunable via the relationship
between the exchange field and the external bias.

To derive the quantum kinetic equations and investigate the
diffusive regime of the above heterostructure out of equilib-
rium, we employ the Keldysh formulation of quasiclassical
theory [34,35], in which the full 8 x 8 Green’s function g
is expressed in terms of its retarded (R), advanced (A), and
Keldysh (K) components as

5R 5K
s (8" &

In the absence of SO coupling, the Usadel equation [36] for
the nanowire reads

DpV(gVQ) +ileps +diag(h -o,(h-06)),81 =0, (2)
|

PHYSICAL REVIEW B 96, 134513 (2017)

where € denotes the quasiparticle energy, * denotes complex
conjugation, and the matrix g3 = diag(1,1,—1,—1). Toinvesti-
gate the Keldysh component of the Green’s function explicitly,
we take g5 = gR®h — hg?, and we substitute this into Eq. (2).
Here the matrix & contains the distribution functions, and
the advanced component of the Green’s function is simply
gh = — 32" ps.

The SOC is included in the model by replacing all
derivatives with their gauge covariant counterpart [10,37]

V() > V() =V()—ilA, -], 3

where A has both a vector structure in geometric space and a
4 x 4 matrix structure in spin-Nambu space: A= diag(A, —
A*), with the SO gauge field A = (A,,A,,A;). For the case
of a nanowire with pure Rashba SOC as in Fig. 1, the only
nonzero component of A is A, = a(o, — o,), where o; denote
the usual Pauli matrices. The coefficient «« is normalized to the
superconducting gap A and sample length L, such that for
A~ 1-3meV and L/&s = 0.8, the SOC will be of the order
a ~ 107" —107"2 eV m, which agrees well with experimental
estimates [38].

The Riccati-parametrized Usadel equation for g® including
intrinsic SOC was derived for the equilibrium case in Ref. [13],
and itis provided in Appendix A 1. The remaining step in order
to investigate the Keldysh component explicitly is then to find
the corresponding equation for the distribution functions:

Dp(82h — g®(82h)§") = +ilg" eps + diag(h - o,(h - 0))] + Dp( — (8*8.8%)(3.h) + (3,h)(8"9.8")
+0,8M0.m8" + 8% 0. 0.8" +ig%A.(0.8M +iA.25(3.8") — 2ig%(.8")A.
—2ig%(@.8MA, +i(3.80)A.8% — (.80 A, +igRA(3.8%) +iA,8"%(5.8%)

Z

+i(0,85)A. 8" —i(9,85)8" A, + AgRAgS

—RAGKA + AgFAg! — gKAgA

—(0.8%9.8%)h — g% (828")h + h(d.8"9.8") + hg" (828")). )

Here A, = diag(A,, — A?Y) is the only nonzero component of the field A in the special case of a nanowire oriented along the
junction, where A, = A, = 0. The corresponding Kupriyanov-Lukichev boundary conditions [39] take the form

2L;t;(9:h;

- gf(azﬁi)g?) = [g.,8r1% —2L;¢;

LihgA A, 8N +igRAheA — igRﬁAng), (5)

where the subscripts j = {L, R} indicate the left and right sides
of the interface. Finding ¢* in practice then involves solving
a series of coupled partial differential equations for both g®
and . This can be achieved numerically by first employing
the Riccati parametrization [13,40] to solve for &® (see the
Appendix for details), and using this as an input in solving for
h via Eq. (4), as we do below.

Once the Keldysh Green’s function is found, the spin
accumulation M- along the unit vector 7 is found as follows
[41,42]:

M, = MO/ de Tr{t diag(o,0*)g%}. (6)

o0

(

The constant My = gugNoA /16, with the Landé g-factor
g =~ 2 for electrons and wp is the Bohr magneton. The unit
vector T determines which polarization component of the
spin accumulation is investigated. For instance, computing
the component of the spin accumulation along the exchange
field h renders © equal to the unit vector of the exchange field.
Similarly, one can define vectors perpendicular to the field to
probe the spin accumulation polarization perpendicular to k.
We underline that Eq. (6), which we will refer to as the total
spin accumulation when there may be ambiguity, contains an
equilibrium and nonequilibrium contribution. The equilibrium
contribution exists even in the absence of any applied voltage,
and it describes the proximity-induced magnetization due to
the presence of odd-frequency triplet Cooper pairs coexisting

134513-2



QUANTUM KINETIC EQUATIONS AND ANOMALOUS ...

PHYSICAL REVIEW B 96, 134513 (2017)

0=n/4

\h|=0.5A

h1=A

075 0. =
2T o 0.5 . S
808 0105 025 p 8706037
0

0

eVIA eVIA <0

FIG. 2. Total spin accumulation M, along unit vectors t for a nanowire with SOC and Zeeman splitting as a function of the applied voltage
bias. Two field orientations are shown: & = |k|(1,0,0) in the upper half, and k = |h| /+/2(1,1,0) in the lower half. Two field strengths are
displayed for each orientation: || = 0.5A in the first row, and |k| = A in the second row. The first column represents spin accumulation along
the field (as indicated on the coordinate schematic), while the others show perpendicular components. The nanowire has length L/&s = 0.8
and the SOC is of pure Rashba type with coefficient « = 5/L. Spin accumulation amplitudes are given in units of 2M,.

in a nonunitary fashion with singlet pairs. The nonequilibrium
contribution (often by itself called spin accumulation in the
literature) exists only in the presence of an applied voltage.
Different measurement methods may be employed to measure
either the total or nonequilibrium components, and therefore
we shall present results both for the total spin accumulation
and the pure nonequilibrium part below.

Herein we will also examine the normalized charge conduc-
tance 0 /0., where 0 =613 /8V and o is the normal-state
value at high bias, eV > A, V is the applied voltage bias in
volts, e is the electronic charge, and the charge current I is
found by

oo
o= 1o, | Trlpa(@a.d) e )
—0o0

Here Ip, = NoDAAe/4L, where Ny is the normal-state
density of states at the Fermi level, D is the diffusion
constant, and A is the interfacial contact area. The integral
in Egs. (7) is dimensionless since the energies have been
normalized to the bulk superconducting gap A and the
lengths have been normalized to the nanowire length L. When
including SOC, the explicit expression for charge current
becomes

o0
Ip = IQO/ Tr{ps(0h + gR0g%h — hgtog” — aRohg”
—0o0
—igRAgh +ihg" Ag + ig"Ahg! — ig"hAg"))de.
3
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III. RESULTS

Having derived the kinetic equations for our nonequilibrium
system, we can use this result to consider the effect of voltage
bias for a Zeeman-split nanowire with intrinsic SOC as in
Fig. 1. To ensure the superconducting proximity effect is
dominant when we apply a voltage bias, we set the interface
parameter (ratio of bulk-to-interfacial resistance) ¢ = 15 at
the normal interface, corresponding to the strong tunneling
limit, and ¢, = 3 at the superconductor interface. We set the
temperature 7 = 0.0057¢. All spin accumulation amplitudes
are given in units of 2Mj, and the numerical integration is
in practice performed over the range 0—2, where Q is a
suitable high-energy cutoff. Taking a normal-state density
of states Ny~ 102 eV'em ™3, A~ 1 meV, and pug =
5.788 x 1075 eV T, the value of the normalization constant
Moy~172x108eV/Tem’.

In Fig. 2 we show how the total spin accumulation varies
with applied bias along the length of the wire for the case o« =
5/L. Two values of the exchange-field strength |k| = 0.5A
and || = A are given, as well as two field orientations 6 = 0
and 6 = /4, where the exchange field h = |h|(cos 6, sin6,0).
We remind the reader that the spin-orbit gauge field A points
along the wire (A || Z), and thus the exchange field is always
perpendicular to A. For comparison, we also provide in
Appendix A 2 the corresponding plots of the spin accumulation
without the equilibrium component, i.e., replacing gX in
Eq. (6) by ¢ — &£, where g = (8% — ") tanh(0.5¢/kpT)
is the usual Keldysh component in equilibrium, kg is the
Boltzmann constant, and 7 is temperature.

By comparing Figs. 2 and 5, we see as expected that the
equilibrium component dominates at low bias. In contrast,
the equilibrium and nonequilibrium portions tend to cancel
toward higher bias so that the total spin accumulation tends
to zero as eV > A. Consequently, there is a suppression
in magnitude of the total spin accumulation at intermediate
bias, but the interesting nonmonotonic behavior of the offset
nonequilibrium portion as a function of the applied voltage
V survives and matches well to the behavior of the total spin
accumulation in this region. This can be physically understood
from the fact that the equilibrium component of the spin
accumulation is completely independent of the applied voltage
for a fixed value of L. On the other hand, both the equilibrium
and nonequilibrium contributions to Eq. (6) vary with the
length L of the system as shown.

Consider now how the total spin accumulation varies within
the sample by increasing the exchange field |k| = 0.5A — A
in Fig. 2. When o« = 0 (not shown), the spin accumulation
exists along the field only, and rotating the field has no
effect. In this case, increasing the field strength has the
effect of shifting the peak magnetization toward higher bias
values. With SOC, increasing the field strength induces this
shift in the peak magnetization only for field orientation
0 = 0, something that is also seen in Fig. 5. By contrast, the
spin accumulation for 6 = m /4 is not bias-shifted, but the
magnitude of magnetization instead increases.

Secondly, we note the effect of the exchange-field rotation
for the case || = 0.5A (rows 1 and 3 of Fig. 2), where several
interesting features appear. We see that the oscillation period,
determined by the wave vector of the anomalous Green’s func-
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tion, does not vary appreciably between the cases. By contrast,
the amplitude of oscillation varies greatly with applied voltage
bias, in particular for the spin accumulation along the field
direction. Moreover, we see that we can in effect furn off the
spin accumulation perpendicular to the field by rotating the
field away from pure X-alignment. To explain all these features
of the spin accumulation, we will now consider the underlying
numerical structure and analytic limits in more detail.

We examine the numerical solution to the Usadel equations
in the Riccati formalism [Eq. (A2)] using f = 2Ny for the
anomalous Green’s function [top right quadrant of g% in
Eq. (A1)]. Wereexpress f in the so-called d-vector formalism,
in which f = (f; +d - 0)io,. In that case, the short-range
triplets are those aligned with the exchange field d = d - h,
and the long-range triplets are perpendicular, i.e., d; = |d %
h|. In that case, we may plot the components of the d-vector,
as we have shown in Fig. 6 in the Appendix. First, we see that
the triplet components reflect the dominance of the equilibrium
component of the magnetization at low bias, which was evident
from Fig. 5, as well as the diminution of total spin accumulation
at high bias. Secondly, we can see qualitatively that the
oscillations in the spin accumulation follow directly from the
real part of the corresponding components of the anomalous
Green’s function. That is, for 8 = 0, the spin accumulation
along the field, M,, follows d, = dj, the first perpendicular
component, My, follows d, = d, , and the second perpendicu-
lar, M, follows d,. For 8 = 7 /4, we see in Fig. 6 thatd, = d,.
Thus we have an enhanced component of spin accumulation
along the field M, ,, while the first perpendicular component
M,_, is significantly diminished—indeed it is zero when
the bias is negligible—since the dominant component of the
anomalous Green’s function is d| = (d, — d,)/ /2. That the
spin accumulation should be closely related to the d-vector
is reasonable, since we know that in equilibrium the induced
magnetization can be written as a Matsubara-sum over the
product of f; and the triplet vector [41].

We may examine the zero-bias case analytically in the
weak proximity limit. To derive the analytic solution to the
nonequilibrium Usadel equations, we employ the Riccati
parametrization as given in Appendix A 1, along with the fact
that |y;;| < 1 and N ~ 1 in the weak proximity limit. Using
the d-vector formalism, the weak proximity equations become

Drd*f, = —2i(efs + |hld)),

Drd*dy = —2ied) — 2i|h| f; + 4Drpa’[1 — i cos(20)]d,
+4Dpa’i sin(26)d,
4+4Drpad(d;)(cosB + sinb),

Dpd*d, =—2ied, +4Dpa*[1 +icos(20)]d.

+4Dra’i sin(20)d;
—4Dpad(d,)(sinf — cos0),

Drd*d, = —2ied, + 8Drpa’d, — 4Drad(dy, +d;). (9)
From the equation for d, in (9), we see that the SO
parameter introduces pair-breaking (damping) that scales with
a?. Moreover, it is clear from all the equations that « introduces

a coupling between all triplet d-vector components. The
solutions to Egs. (9) are given explicitly in Appendix A 3 for
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FIG. 3. (a) Total spin accumulation along the field h = O.SA/ﬁ(l,l,O) for increasing SOC strength at zero bias, in units of 2M,. The
inset shows a linearly increasing spatial frequency of oscillation, derived by fitting the numerical curves to a sinusoid via least squares. Real and
imaginary parts of the component wave vectors with increasing Rashba coupling « for the analytic weak proximity solution at field orientation
(b) & = 0 [Egs. (A3)] and (c) = 7 /4 [Eqs. (A4)]. The nanowire has length L /&5 = 0.8.

both field orientations # = 0 and 7 /4, corresponding to those
in Fig. 2. By examining Eq. (9), we see that the long-range
triplet component d; cannot be generated from d; when
6 = 0. Consistently, the solution for d; [given in Eq. (A3)]
is independent of the exchange field for 6 = 0. The solutions
also allow us to extract the real and imaginary components of
the wave vectors, which we will go on to use to gain insight
into the damping and oscillation lengths.

In the case without spin-orbit coupling, the spin accumula-
tion can only have a component along the field. Furthermore,
increasing the field strength when there is no spin-orbit
coupling is known to decrease the oscillation period of the
triplet Green’s functions [43], which we can also reproduce
for large field strengths (not shown). However, for weak
fields we observe that the Rashba parameter « is by far the
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FIG. 4. Normalized charge conductance as a function of ap-
plied voltage bias for exchange-field orientations 6 = 0 and 7 /4,
where h = |h|(cos 6, sin6,0). The nanowire has length L/&s = 0.8,
exchange-field strength || = 0.5A, and the SOC is of pure Rashba
type with coefficient « = 5/L. The inset shows the local density of
states D(¢) in the middle of the sample.

dominant factor governing the oscillation frequency of the
spin accumulation within the sample. By examining Egs. (A3)
and (A4), we see that the leading term in « in the wave vectors
of the anomalous Green’s functions are of first order for both
field orientations, which explains why there is no appreciable
difference in oscillation upon rotation in Fig. 2. We show the
total numerical spin accumulation at zero bias with increasing
« in Fig. 3(a), where the inset shows the respective spatial
frequencies as a function of «, derived by fitting the curves to
a sinusoid via least squares. The analytical component wave
vectors from the solution in the weak proximity regime as a
function of « are given for field rotation & = 0in Fig. 3(b), and
for 6 = 7 /4 in Fig. 3(c). These plots confirm that the number
of oscillations within the sample scales linearly with o both
numerically and analytically for weak fields.

In Figs. 3(b) and 3(c), we also see that both the damping
and oscillation lengths, i.e., the real and imaginary parts of
the wave vector, become equal for « = 0 as expected. For
the case 0 = m /4 this requires the component wave vectors
(as defined in Appendix A3) gs = g7 =0 at o« = 0, while
they may be nonzero more generally. Notice also that the
damping and oscillation lengths may diverge significantly
with increasing o, although one requires the solution to the
equations for the boundary conditions in order to specify the
relative proportion of each wave vector. It is interesting that
the introduction of spin-orbit coupling may render the decay
and oscillation lengths of the superconducting correlations to
be very different.

To investigate the role of the triplet Cooper pairs further,
we plot in Fig. 4 the normalized charge conductance as a
function of the applied bias for different orientations of the
in-plane exchange field, and we note several features. First, we
see that the charge conductance is symmetric about 6 = 7 /4
for the in-plane exchange field & = |h|(cos 6, sin#,0), and
a quick calculation of the charge current shows that this
is peaked at zero bias for 6§ = {0,7/2} and suppressed at
6 = m/4. This is consistent with the control of spectral
features exhibited by ferromagnets with SOC, in which the
local density of states can be tuned from fully gapped to
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peaked to normal-state at € = O upon altering the orientation
of the exchange field [13]. For reference, the local density
of states for the current example, which is not fully gapped
but nevertheless displays a considerable peak-to-trough on
rotation 6 = 0 — m /4, is given in the inset of Fig. 4. Note
that the density of states is independent of applied voltage,
but that the charge-conductance/bias profile follows that of
the energy distribution of the local density of states for the
parameter regime considered here. The SOC-induced strong
anisotropy in the conductance shown here is consistent with
the strong anisotropies found in the supercurrent [44,45] and
Meissner effect [46] in similar structures.

A gapped density of states indicates that the current is
carried entirely by singlets, while a peak is the characteristic
signature of long-range triplets. However, it has been shown
for normal metals that the charge conductance can be peaked at
low temperatures and zero bias simply due to coherent Andreev
reflection when the proximity effect is strong [47]. In this
case, the strength of the proximity effect is not altered, but the
presence of SOC means the direction of the exchange field can
be used to tune the carriers from singlets to triplets. By looking
at the normal-state limit 2 = O (not shown), we can confirm
that the case in which the carriers are predominantly singlet
(60 = m/4) corresponds to the superconductor-normal metal
(SN) charge conductance profile (note that we can also recover
the typical SN conductance profile for longer samples [48]).

Finally, we can now also explain why the peak in the spin
accumulation is shifted to higher bias voltages upon increasing
the exchange field, as shown in Figs. 2 and 5. The shift toward
higher bias values for 8 = 0 can be explained by likening to
a spin-split superconductor, in which the different spins of the
spin-split minigaps increasingly move toward higher positive
and negative energies in the density of states as the field is
increased. Similarly, the bias would engender a shift in the
magnetization, broadly following the profile of the density
of states (see Fig. 7 in the Appendix). Such energy shifts
in the spin-splitting have also been noted for increasingly
spin-active interfaces, where the spin-active parameter takes
the role of the exchange field [49]. In contrast, Fig. 7 shows
that the electronic spectral features remain very similar upon
increasing the exchange field when 6 = /4. As a result, the
spin accumulation profile also remains qualitatively invariant
for this orientation when |k| increases.

IV. DISCUSSION AND OUTLOOK

We have derived the full quantum kinetic equations for
studying nonequilibrium effects in diffusive heterostructures
with intrinsic SOC, and we have provided an initial investi-
gation of the effect of the exchange field and voltage bias on
the spin accumulation and charge conductance in a nanowire
with Zeeman splitting. The work concurs with previous
investigations on charge conductance in SF systems, and
crucially demonstrates how SOC facilitates the tuning of the
spin accumulation via the strength and angle of the exchange
field, SOC strength, voltage bias, and position along the wire.
We have shown that the spin accumulation perpendicular to the
field can be eliminated, and we have shown both numerically
and analytically that the spin accumulation oscillates within
the sample as a linear function of the strength of the SOC.
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We have seen that a small increase in the field strength shifts
the maximal magnetization toward higher bias voltages for
certain orientations of the field. For other directions, the spin
accumulation profile remains qualitatively invariant as |h| is
varied in a regime of order ~A. This anisotropic behavior
is a direct consequence of how the relative orientation of the
exchange field and the spin-orbit vector causes the formation
of triplet Cooper pairs.

More generally, the analytic framework for investigating
the nonequilibrium physics of diffusive heterostructures with
superconducting elements that we present here opens up a vast
range of new phenomena to be explored, and we anticipate
many new discoveries to be made in this direction in the near
future. A natural next step would be to include the recently
derived generalized boundary conditions for arbitrarily strong
spin-polarization at interfaces [50] to include spin-active
heterostructures. Although a component of the SOC along the
junction direction is required to affect the boundary conditions,
it would also be instructive to look at thin-film examples where
Dresselhaus coupling could be included, such as in InAs, since
this has been shown to enhance control by some orders of
magnitude [11,13]. Finally, it will be interesting to compare
the present results with a complementary analysis of the effect
of SOC in wires or ferromagnets with a thermal gradient at zero
voltage bias, before considering the full case of simultaneous
voltage and temperature difference in the system.
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APPENDIX

1. Riccati parametrization

The Riccati parametrization for g¥ is given by

N +y7
3k ((+w)

=\ 2wy (Al

2Ny >
B —N(+7yy))’
where the normalization matrix is N = (1 — y7)~! and the
tilde operation denotes a combination of complex conjugation
i —> —i and energy € - —e, with y —> y, N — N. The
Riccati-parametrized Usadel equation including intrinsic SOC

can be solved independently of the solution for £, and it was
derived for the equilibrium case in Ref. [13], taking the form

Dr(82y +200.y)N7(3.v))
= —2iey —ih-(oy —ya™)
+ Dp[AAy —yA*A* +2(Ay + yA")N(A™ + 7 Ay)]
+2i Dp[(0:y)N(AZ + PAy) + (A. + Y AIP)N(3:p)].
(A2)
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FIG. 5. Spin accumulation M, without contribution from the equilibrium component of the Green’s function, along unit vectors t for a
nanowire with SOC and Zeeman splitting as a function of the applied voltage bias. All system parameters are as in Fig. 2.

Here € is the quasiparticle energy, k is the magnetization 2. Spin accumulation without equilibrium contribution
exchange field of the ferromagnet, and o is the Pauli vector.
This is used as an input in the Usadel equation for the matrix
h, presented in Eq. (4).

We show the nonequilibrium spin accumulation in Fig. 5,
which governs the voltage-dependence of the total spin
accumulation shown in the main body of the paper.

3. Weak proximity effect solution

The solutions to the weak proximity equations (9) for 6 = 0 give

f, = Cexp [ - z/—z(,/—ziD;oﬂ — | + Dpa2( — 1) + ie)/DF]
+Crexp :z\/—2(,/—2iD12,oe4 R + Dra2G — 1) + ie)/Dp]
4 Cyexp - z\/—z(,/—zibgoﬂ “ R = Dra2(i — 1) — ie)/DF]
4 Caexp :z,\/—2<,/—2iD§a4 “h]? = Dpa2(i — 1) — ie)/DF]
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= Cj exp(—zk;) + Cy exp(zk;) + Cz exp(—zky) + C4exp(zks),

= fox1 + foa2,
dy = (Dpa®(i + 1) — iy/=2i D}a* — |h|?) fyr /|| + (Dpa( + 1) 4 iy/ =2i D}a* — |hI?) fia/ |,
d, = Csexp(zy/[4Dra(i + 1) — 2i€]/Dr) + Coexp(—z+/[4Dpa(i + 1) — 2i€]/Dp). (A3)

Here the notation f.x; denotes the terms in the solution to the singlet component that have wave vector k; (i.e., the terms with con-
stant prefactors C and C»), while f;.» denotes those with wave vector k; (i.e., with constants C3 and C4). The constant prefactors
C1—Cg¢ can be determined by supplementing the solution with the associated Kupriyanov-Lukichev boundary conditions.

The solutions to the weak proximity equations (9) for 6 = 7 /4 are rather more complicated:

2Dpa?
fs= h; (—E1q2exp(—q32)/2 — E2q2€xp(q32)/2 — E3qaexp(—q52)/2 — E4q4 exp(gs52)/2
+iq6lEs exp(—q72) + E¢ exp(g72)]),
= fs:q3 + f:v:qS + fs:q7’
hq . h
dy = W(fs:rﬂ/‘ﬂ = Gs5:q5/92 + f5:q7/2iq6), d1L = W(fs:qa@/@ + fs:q598/494 + fs:q7910/96)- (A4)

Here f;.,3 contains the terms with wave vector g3 (with constants £ and E»), fi.,5 contains terms with g5 (i.e., E3 and E4), and
fs:q7 contains terms with g7 (i.e., E5 and Eg). These constants can again be determined by supplementing the solution with the

»»»»»»

the parameters «, D, and £, while the functions g3 5 7 that appear in the exponentials are also functions of €. As these contain
the relevant information about the wave vector, we provide these explicitly:

1/2
g3 = —((ﬁi — 1)(8D%a* +3|h?) — 2Y'P4Dra® — 3ie) + Y*3(V/3i + 1)) JV3DpY1/3,

12
gs = —((ﬁi + 1)(8D%a* + 3|k P2) — 2Y'A(4Dra? — 3ie) + Y3(V/3i — 1)) JV3DRY, (AS)

V2[8D2a* + 3[h|? — Y'3@4Dra? — 3ie) + Y2*)* 1 /3DpY 13,

q7

where Y = —8D3.a® + 9|h|*Dra® + 3\/768D%a12 —96D%ad|h|> + 33Dra|h|* + 3|h[°.

Re(dx) Re(dy) Re(dz)

0.2 0.2

0.1 0.1

-0.1 -0.1

02 02

1

0.75 0.5
0.25

05 .
/N °® 0o z/IL

075 05
05 0.25

/A % oo z/L {-}/on5 0% o= T Z/L

FIG. 6. Components of the d-vector at zero bias, for exchange-field orientations 6 = 0 and 7 /4. The field strength is || = 0.5A, and
similarly all other parameters are as given in Fig. 2.

134513-8



QUANTUM KINETIC EQUATIONS AND ANOMALOUS ... PHYSICAL REVIEW B 96, 134513 (2017)
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FIG. 7. Local density of states D(¢) in the middle of the sample for field strengths || = 0.5A and |k| = A, and rotations 6 = 0 and
0 =m/4.

4. d-vector and density of states

Figure 6 presents the real components of the d-vector for field strength |k| = 0.5A and rotations 6 = 0 and 7 /4, calculated
from the numerical solution to the full Usadel equations.

Figure 7 shows the local density of states D(€) in the middle of the sample for field strengths |k| = 0.5A and |k| = A, and
rotations @ = 0 and 0 = /4.

5. Exchange field along wire h = 0.5AZ

InFig. 8 we plot the total spin accumulation M, and isolated nonequilibrium component M along unit vector t for an exchange
field aligned along the nanowire, k = 0.5AZ. There is near equivalence in the X and y directions of the spin accumulation, and
once again we see a similar influence of the nonequilibrium portion, which suppresses the equilibrium contribution and introduces
offset oscillations along the wire in the intermediate bias regime. In this case, increasing the field strength increases the magnitude
of the spin accumulation, as was the case for the exchange field perpendicular to the SO gauge field, and there is no bias shift in
peak magnetization (not shown).

FIG. 8. Total spin accumulation M and isolated nonequilibrium component M_ along unit vector 7, for exchange field aligned along the
nanowire, h = 0.5AZ, i.e., parallel with the SO gauge field.
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