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Unusual two-dimensional behavior of iron-based superconductors with low anisotropy
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We study angular-dependent magnetoresistance in iron-based superconductors Ba1−xNaxFe2As2 and
FeTe1−xSex . Both superconductors have relatively small anisotropies γ ∼ 2 and exhibit a three-dimensional
(3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional
behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the
unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to
layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field
exceeds the upper critical field Hc2(T ) for destruction of bulk superconductivity. We argue that the corresponding
3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.
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I. INTRODUCTION

The importance of low dimensionality for achieving high-
temperature superconductivity is a long-standing question [1].
Cuprate superconductors do have a quasi-two-dimensional
layered structure, confirmed by observation of the intrin-
sic Josephson effect [2–4]. But, iron-based superconduc-
tors, which contain both three-dimensional (3D) and two-
dimensional (2D) electronic bands [5,6], may either be highly
anisotropic [7,8], moderately anisotropic [9,10], or nearly
isotropic [11]. Therefore, the role of dimensionality for iron-
based superconductors remains to be understood.

The well-known signature of layeredness is a dimensional
3D-2D crossover. It occurs upon decreasing of temperature
and is due to temperature variation of the coherence length
ξ (T ) [12–17]. Close to Tc, the ξ (T ) is larger than the
separation between layers s and the superconductor is in a
spatially averaged 3D state. The 3D-2D transition takes place
upon decreasing T when the out-of-plane coherence length
ξ⊥(T2D) becomes smaller than s/

√
2 [13,14]. The decoupling

and subsequent 3D-2D crossover may also take place at a
fixed T upon increasing of magnetic field, which suppresses
superconductivity in intermediate weakly superconducting
layers [16]. A related dimensional transition occurs in the
vortex structure from 3D Abrikosov vortex lines to 2D pancake
vortices [18]. For the dimensional crossover to take place, the
anisotropy γ has to be larger than the critical value γcr �√

2ξ‖(0)/s, where ξ‖ = γ ξ⊥ is the in-plane coherence length.
For high-temperature superconductors ξ‖(0) ∼ 3–5 nm, s � 1
nm and the critical anisotropy γcr ∼ 4–10. This condition
is not satisfied at least for some iron pnictides [11]. This
raises a question if superconductivity ever behaves as 2D
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in iron-based superconductors as in cuprates. The most clear
evidences for layeredness, such as the observation of interlayer
Josephson effect [15] and intrinsic pinning [16], have not been
found yet for iron-based compounds. On the other hand, a
cusplike 2D behavior of angular dependence of magnetoresis-
tance observed for some iron-based superconductors [19,20]
reminds the aforementioned 3D-2D crossover in layered
superconductors [12,17].

Recently, it has been demonstrated that 2D superconduc-
tivity may be observed even in isotropic superconductors,
such as Nb [21] at sufficiently high magnetic fields. This is
caused by appearance of 2D surface superconductivity. Surface
superconductivity (SSC) [22] exists in a thin surface layer with
the thickness of the order of ξ at fields Hc2 < H < Hc3 above
the upper critical field for destruction of bulk superconductivity
Hc2, but below the third critical field Hc3. For conventional
superconductors Hc3/Hc2 � 1.7, but this ratio depends on
parameters of the superconductor such as cleanliness [22] and
the quality of the surface [22–24]. Because SSC is sensitive
to the surface conditions, it has long been considered as a
fragile phenomenon that exists only in clean and well-polished
samples. However, recently it has been demonstrated that
the SSC is very robust and exists even in polycrystalline
films and in perpendicular magnetic fields [21]. Indeed, SSC
has been observed in a variety of superconductors, including
conventional low-Tc [21,24–26], MgB2 [27,28], and some iron
pnictides [29].

In this work we study angular dependence of mag-
netoresistance in Ba1−xNaxFe2As2 and FeTe1−xSex single
crystals. Superconductivity in both compounds is of a slightly
anisotropic 3D character. However, we observe that in applied
magnetic field they start to exhibit a profound 2D behavior
with increasing temperature. We demonstrate that the 2D
cusplike angular dependence of magnetoresistance occurs in
the whole region of a smeared superconducting transition.
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Contrary to the conventional 3D-2D crossover in layered
superconductors, the observed 3D-2D transition is temperature
inverted because it occurs upon increasing (rather than
decreasing) of temperature. We discuss possible origins of
the unexpected 2D behavior in low-anisotropic iron-based
superconductors and conclude that it is caused by persistence
of surface superconductivity at magnetic field above the bulk
Hc2. We argue that the corresponding bulk (3D) to surface (2D)
dimensional transition can be used for accurate determination
of Hc2 even in case of a broad and smeared superconducting
transition.

II. EXPERIMENT

We study magnetoresistance of two types of iron-pnictide
Ba1−xNaxFe2As2 and iron-chalcogenide Fe1+δTe1−xSex su-
perconductors. The pnictide crystals were grown using a
self-flux high-temperature solution growth technique [30]. The
Na substitution, similarly to K substitution in Ba1−xKxFe2As2

[10], results in hole doping that leads to the suppression of
the spin-density-wave order and induces superconductivity
up to 34 K for x = 0.4 [31]. Here, we used slightly
underdoped Ba1−xNaxFe2As2 crystals (x = 0.35–0.4) from
the same batch, as studied in Ref. [30]. Detailed char-
acterization of those crystals, including specific-heat mea-
surements and angular-resolved photoemission spectroscopy,
can be found in Ref. [30]. The quality of crystals was
investigated by energy-dispersive x-ray spectroscopy. The
composition and the dopant (Na) concentration was obtained
by averaging over several parts of each crystal. The standard
deviation for the pristine crystals with nominal values x =
0.35–0.40 was 0.01. The small standard deviation indicates
uniform distribution of Na and a good homogeneity of the
crystals.

The Fe1+δTe1−xSex crystals with x � 0.28 were grown
in evacuated quartz ampoules using the KCl/NaCl flux
technique with a constant temperature gradient (for details
see Refs. [32,33]). The FeSexTe1−x samples show the su-
perconducting transition temperature that varies from 12
to 15 K with a broad maximum at around x = 0.3−0.4.
Such crystals exhibit Curie-Weiss behavior at temperatures
above 100 K, suggesting the coexistence of superconduc-
tivity and magnetic order. However, there are indications of
possible phase separation in those compounds [32,34]. The
phase separation is indeed confirmed below in the studied
crystals.

Figure 1 shows an image (top panel) of one of the
studied samples and a 3D sketch (middle panel). Pnictide and
chalcogenide samples were fabricated in the manner, similar
to cuprate mesa structures [35]. First, a single crystal was
glued to a sapphire substrate by an epoxy glue with the c-axis
oriented perpendicularly to the substrate. The crystal was
cleaved along the ab planes (easy cleavage plane) and covered
by the first metallization layer (Nb). After that, a long narrow
line in Nb (a diagonal stripe in Fig. 1) was patterned using
photolithography and reactive ion etching. Unlike cuprates,
iron-based superconductors form a good metallic contact with
various metals. Therefore, in order to avoid short-circuiting
outside the contact area, the surface of the crystal around the
long Nb line was carefully isolated by a SiO2 layer and epoxy.

FIG. 1. The top panel shows scanning electron microscope image
of one of the studied samples. The middle panel represents a 3D sketch
of the sample. The bottom panel shows contact configuration used
for four-probe measurement of the in-plane resistance.

After that, a second metallization layer (Nb) is deposited by
(dc+rf) magnetron sputtering and six electrodes are patterned
across the window in the insulating layer by photolithography.
Subsequent reactive ion etching results in six small contacts in
a row with attached electrodes at the top. A long (several hours)
processing time in deposition and plasma etching chambers is
equivalent to soft vacuum annealing. This leads to a reduction
of the doping level reflected in a modest reduction of Tc. The
exact doping level is not important for the results presented
below.

Measurements were performed in a gas-flow 4He cryostat
in a temperature range down to 1.8 K and magnetic field H

up to 17 T. Samples were mounted on a rotatable sample
holder with the alignment accuracy better than 0.02◦. Details
of the measurement setup can be found in Ref. [36]. In-
plane resistance of our samples is measured in a four-probe
configuration: current is sent through the outmost contacts,
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FIG. 2. Experimental characteristics of a slightly underdoped Ba1−xNaxFe2As2 single crystal N.1. (a), (b) In-plane resistance versus
temperature in (a) perpendicular and (b) parallel fields of 0, 5, 10, and 15 T. Inset in (a) shows R(T ) at zero field in a broader T range. Inset in
(b) shows zoomed-in part of R(T ) at H‖ = 0 and 15 T. Symbols demonstrate determination criteria for 0%, 10%, 90%, and 100% of the resistive
transition. (c) Temperature dependencies of the bottom R ∼ 0 (crosses, dotted lines), 10% (solid symbols and lines), 90% (open symbols,
dashed-dotted lines), and the top R ∼ Rn (plus symbols, dashed lines) of the resistive transition in perpendicular (blue) and parallel (red)
fields. The horizontal arrow indicates the range of temperatures at which the 2D cusp occurs in angular-dependent magnetoresistance at 10 T.
(d), (e) Angular dependence of resistance at 10 T and different temperatures. Note appearance of a 2D cusp at elevated temperatures, indicating
occurrence of surface superconductivity. Thin red and blue lines in (e) represent standard angular dependencies of flux-flow resistances in 2D
and 3D cases, respectively, for a given amplitude R(90◦) − R(0◦) at T = 25.4 K. (f) The sharpness of the cusp versus T for the data from (d).
A rapid onset of the cusp at T > 21 K manifests the unusual temperature-inverted 3D-2D transition (dashed line).

voltage is measured over the two inner unbiased contacts, as
shown in the bottom panel of Fig. 1.

III. RESULTS

A. 2D behavior in Ba1−xNaxFe2As2 crystals

Figures 2(a) and 2(b) show the in-plane resistance versus
temperature for a slightly underdoped Ba1−xNaxFe2As2 crys-
tal N.1 measured in magnetic fields of 0, 5, 10, and 15 T
perpendicular [Fig. 2(a)] and parallel [Fig. 2(b)] to ab planes.
Inset in Fig. 2(a) shows R(T ) at H = 0 in a broad T range.
The crystal has a Tc ∼ 28 K and a characteristic R(T ) shape
typical for slightly underdoped Ba1−xNaxFe2As2 pnictides
with x � 0.35 [30]. The resistive transition R(T ) in zero field
is about 4 K broad and the width is only slightly changing with
field.

Figure 2(c) represents field-temperature diagram of
resistive transitions in parallel (red) and perpendicular (blue)
to ab-plane field orientations. Crosses (dotted lines) and
pluses (dashed lines) correspond to bottom and top of the

transitions R(T ) � 0 and R(T ) � Rn, solid symbols (solid
lines) and open symbols (dashed-dotted lines) correspond to
10% R(T ) � 0.1Rn and 90% R(T ) � 0.9Rn of the transitions,
respectively. Determination of those points is demonstrated
by the corresponding symbols in the inset in Fig. 2(b) for
H‖ = 15 T.

In order to investigate the dimensionality of supercon-
ductivity, we analyze angular dependencies of the in-plane
magnetoresistance R(�). As discussed in the Appendix, 3D
and 2D cases can be unambiguously discriminated from the
analysis of R(�) shapes close to the in-plane field orientation.
In the 3D case there is a soft (parabolic) minimum with zero
derivative, while in the 2D case there is a cusp with finite
dR/d�, as demonstrated by dashed (blue) and thin solid (red)
lines in Fig. 2(e).

Figures 2(d) and 2(e) show measured R(�) for the same
crystal at the applied field of 10 T and at several temperatures.
� = 0◦ and 90◦ correspond to the field parallel and perpen-
dicular to the ab plane, respectively. The 122 pnictides have
a rather small anisotropy and even isotropic Hc2 has been
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FIG. 3. Characteristics of a nearly optimally doped Ba1−xNaxFe2As2 single crystal N.2 with approximately three times larger thickness
than the crystal N.1. (a)–(c) Angular dependence of in-plane resistance at fields (a) 2.5 T, (b) 5 T, and (c) 10 T. The 2D behavior in the resistive
transition area appears at all fields. (d) Temperature dependencies of the cusp sharpness at 2.5, 5, and 10 T. (e) Field dependencies of resistance
R(H ) at different temperatures for perpendicular (thin) and parallel (thick lines) fields at different T . For T = 28 K, a field-induced 3D-2D
transition is indicated by the dashed line. (f) Temperature dependencies of field corresponding to 10% (solid symbols and lines) and 90% (open
symbols, dashed-dotted lines) of the resistive transition.

reported [11], although the latter may not reflect the actual
anisotropy in this case when Hc2 is close to the paramagnetic
limit [37]. From Fig. 2(c) it follows that the anisotropy H‖/H⊥
is ranging from γ = 1.64 for R/Rn = 0.1 to γ = 2.06 for
R/Rn = 0.9. As discussed in the Introduction, this does not
exceed the threshold value γcr for being considered as a layered
superconductor. Consistently, bulk superconductivity in the
studied crystal at low T and H < Hc2 has a weakly anisotropic
3D character. This is seen from the angular dependence of
resistance at T ∼ 20 K in Fig. 2(e) with a flat parabolic
minimum at � = 0.

However, at higher temperature and larger resistance a
qualitative modification of R(�) curves occurs: they acquire
a characteristic for the 2D superconductivity sharp cusp at
� = 0 [12,17,22,38]. With increasing temperature the cusp
becomes sharper, but loses the amplitude and eventually
disappears above T > 28 K. From comparison with the
standard 2D dependence (for details see the Appendix) for
a given amplitude of magnetoresistance [see the red line
in Fig. 2(e)], it is seen that at higher T , close to the top
of the resistive transition, the angular dependence becomes
extremely sharp, much sharper than even the standard 2D
dependence. As discussed in the Appendix, such an extreme
2D behavior can be expected when the field exceeds the

upper critical field H > Hc2(⊥ ,T ). This squeezes the range of
angles for existence of bulk superconductivity to the vicinity
of the in-plane orientation [37]. Furthermore, above Hc2 bulk
superconductivity is suppressed and only 2D surface super-
conductivity is persisting up to Hc3 � 1.7Hc2 [22]. The latter
indeed may lead to appearance of extraordinary sharp cusps,
caused by nonlinearity of current-voltage characteristics [21].
The surface superconductivity always has the 2D character and
can be observed even in isotropic superconductors [21,27,39].

Figure 2(f) shows temperature dependence of the absolute
value of the angular derivative dR/d�(0). It clearly shows
how a fairly abrupt 3D (small dR/d�) to 2D (large dR/d�)
transition takes place at T � 21 K. Contrary to the conven-
tional 3D-2D crossover in layered superconductors, it occurs
with increasing temperature.

Figure 3 represents similar data for a second Ba1−x

NaxFe2As2 crystal N.2 from the same batch. The measured
normal-state resistance of this sample is approximately three
times smaller than for the crystal N.1 (Fig. 2). Since the
contact configuration is exactly the same, we conclude that
the N.2 crystal is approximately three times thicker than the
N.1. It also has a sharper resistive transition with a higher
midpoint Tc � 29.7 K at H = 0. The difference in Tc for the
two samples indicates that the doping state of the crystals
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is somewhat affected by the processing (thin-film deposition
and plasma etching), which is equivalent to soft annealing in
vacuum during several hours. Thinner crystals are apparently
affected stronger than thicker crystals, suggesting that the out-
diffusion of dopants during annealing occurs predominantly
in the c-axis direction. This is due to a flakelike geometry
of our crystals with the thickness (just a few microns) much
smaller than the lateral sizes (several hundreds of microns).
Despite the difference in Tc, the general behavior of the two
Ba1−xNaxFe2As2 crystals is similar.

Figures 3(a)–3(c) show angular dependencies of the in-
plane resistance at different temperatures for applied fields of
(a) 2.5 T, (b) 5 T, and (c) 10 T. It is seen that the 2D behavior
appears with increasing T at all shown fields, qualitatively
similar to that in Fig. 2(d). Quantitatively, however, the
thinner crystal N.1 exhibits a more profound and sharper
cusp in R(�) than the thicker N.2 crystal [cf. Figs. 2(d) and
3(c)]. This may indicate that the 2D behavior is originated
from the surface of the crystal because the relative weight
of the surface contribution decreases with increasing crystal
thickness, following the surface-to-volume ratio.

Figure 3(d) represents the sharpness of the cusp in R(�)
as a function of T for applied field of 2.5, 5, and 10 T. It
is seen that the 2D behavior with a cusp occurs at all those
fields, but the range of temperatures shifts to lower T with
increasing field, following the corresponding shift of Tc(H )
[see Figs. 2(a) and 2(b)]. From this plot it also follows that
at a given T the 2D behavior can be induced by the applied
magnetic field. For example, at T � 28 K the crystal is in the
3D state at 2.5 T, but turns into the 2D state above 5 T.

Figure 3(e) shows field dependencies of resistance R(H )
at different temperatures for perpendicular (thin) and parallel
(thick lines) fields. For T = 28K (green), a field-induced 3D-
2D transition is indicated by the dashed line. Interestingly,
R(H ) is nonlinear in the 3D and linear in the 2D state. Linear-
in-field R(H ) dependence is characteristic for pinning-free
flux-flow regime [40]. Thus, the vortex pinning is essential in
the 3D case and weak in the 2D state, as expected [18].

In Fig. 3(f) we show magnetic fields, corresponding to
10% and 90% of resistive transitions. The anisotropy is
γ � 2, consistent with that for the N.1 crystal [Fig. 2(c)].
Since the anisotropy is low, the Ba1−xNaxFe2As2 crystals
should be considered as 3D superconductors. Interestingly,
for both crystals the 2D behavior is observed when the
measured resistance R(H,T ) exceeds ∼0.1Rn. As shown in
Ref. [21], this level is typical for H � Hc2, at which the bulk
superconductivity is destroyed.

B. 2D behavior in Fe1+δTe1−xSex crystals

Figure 4(a) shows the in-plane resistance versus temper-
ature at H = 0 for a Fe1+δTe1−xSex crystal N.3, x � 0.28.
Unlike Ba1−xNaxFe2As2, it has a nonmetallic behavior with
increasing resistance upon cooling down. Figures 4(b) and
4(c) show R(T ) transitions for the same sample, measured in
different magnetic fields perpendicular [Fig. 4(b)] and parallel
[Fig. 4(c)] to ab planes. It is seen that the superconducting
transition has two steps a small one at Tc1 � 7 K and a larger at
Tc2 � 13 K. Apparently, there is a significant spatial inhomo-
geneity with two dominant superconducting phases. Although

such a crystal does not seem to be an optimal object for studies,
however, as we will argue below it emphasizes the robustness
of 2D behavior even in a such an inhomogeneous sample.

Figure 4(d) represents field-temperature diagram in parallel
(red) and perpendicular (blue) to ab-plane field orientations.
Solid symbols/solid lines correspond to ∼10% of the resistive
transition, marked by the lower dashed lines in Figs. 4(b) and
4(c), which occurs also close to the top of the transition of the
low-Tc phase. Open symbols/dashed-dotted lines correspond
to 90% of the transition R(T ) � 0.9Rn, marked by top dashed
lines in Figs. 4(b) and 4(c). Pluses/dashed lines correspond to
the top of transitions R(T ) � Rn. The values of anisotropies
H‖/H⊥ are γ = 2.55 for R = 0.1Rn, which corresponds
primarily to the low-Tc phase, and γ = 1.59 for R = 0.9Rn,
which corresponds primarily to the high-Tc phase. Those
values are consistent with previous studies on FeSe0.6Te0.4

epitaxial thin films with a higher Tc [41].
Figure 4(e) shows temperature dependencies of R(�) at

10 T. Here again we see the qualitative modification of
R(�) curves with increasing temperature. However, due
to presence of two superconducting phases, we see two
temperature-inverted 3D-2D transitions in R(�). The cusp
originating from the low-Tc phase appears above ∼2 K
and is washed away above ∼7 K, while the cusp from
the high-Tc phase appears above 8 K and vanishes above
∼14 K, as demonstrated in Fig. 4(f). Horizontal arrows
in Fig. 4(d) mark the range of existence of 2D cusps in
angular-dependent magnetoresistance, which are apparently
connected with the range of resistive transitions of the two
dominant superconducting phases [see Figs. 4(b) and 4(c)].
Despite an obviously strong inhomogeneity of this crystal,
even in this case it is seen that the 2D behavior exists almost
in the full range (from the bottom R ∼ 0 to the top R ∼ Rn)
of the corresponding two resistive transitions.

IV. DISCUSSION

In Table I we summarize parameters of the studied crystals,
such as estimated characteristic fields at T = 0, coherence
lengths ξ (T = 0), and corresponding anisotropies of ξ (0).
Here, H⊥,‖(0) represent results of the linear extrapolation
to T = 0 of the measured linear experimental dependencies
H (T ) from Figs. 2(c), 3(f), and 4(d). For comparison, we
also show extrapolated values of the upper critical field,
obtained using Werthamer-Helfand-Hohenberg (WHH) theory
[42] for the clean case without spin-orbit effects: Hc2‖,⊥(0) =
0.693Tc(dH‖,⊥/dT ). The values of ξ were obtained using
relations Hc2⊥ = φ0/2πξ 2

‖ and Hc2‖ = φ0/2πξ‖ξ⊥. For both
Ba1−xNaxFe2As2 crystals, μ0Hc2⊥(0) is close to the param-
agnetic field Bp(0) = 1.84kBTc/μB , but μ0Hc2‖(0) is twice
larger than Bp(0). For FeSe1−xTex crystal, both μ0Hc2‖,⊥ are
larger than Bp(0). Such an exercise demonstrates significance
of spin-orbit coupling in both types of iron-based supercon-
ductors, consistent with data obtained in higher fields [11].

As follows from our data, both types of studied iron-based
superconductors exhibit 2D behavior in magnetic field at
elevated temperatures. We want to emphasize that the 2D
behavior is unexpected for these compounds with a relatively
low anisotropy γ ∼ 2 (see Table I). Furthermore, the reported
3D-2D transition is temperature inverted with respect to
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TABLE I. Estimated parameters of studied crystals. dH‖,⊥/dT and H‖,⊥(0) are slopes and linear extrapolations to T = 0, of field-
temperature diagrams in Figs. 2(c), 3(f), and 4(d); Tc is the mean value of the critical temperature at zero magnetic field; Hc2‖,⊥(0) is the upper
critical field obtained from the WHH fit [42]; ξ‖,⊥ are coherence lengths at T = 0, estimated from Hc2‖,⊥(0); and γ is the anisotropy of ξ (0).

μ0dH‖/dT μ0dH⊥/dT μ0H‖(0) μ0H⊥(0) Tc μ0Hc2‖(0) μ0Hc2⊥(0) ξ‖ ξ⊥ γ

N Compound Criteria (T/K) (T/K) (T ) (T ) (K) (T ) (T ) (nm) (nm) ξ‖/ξ⊥

0.9Rn −4.87 −2.36 134.94 64.81 27.58 93.1 45.12 2.70 1.31 2.06
1 Ba1−xNaxFe2As2 0.1Rn −3.69 −2.25 89.29 53.53 24.02 61.44 37.46 2.96 1.81 1.64

0.9Rn −5.99 −3.24 181.95 97.80 30.28 125.7 68.00 2.20 1.19 1.85
2 Ba1−xNaxFe2As2 0.1Rn −6.20 −2.98 179.37 86.15 28.92 124.3 59.74 2.35 1.13 2.08

0.9Rn −7.02 −4.42 92.87 58.45 13.23 64.38 40.53 2.85 1.79 1.59
3 Fe1+δTe1−xSex 0.1Rn −12.06 −4.73 79.94 29.52 6.44 53.83 21.11 3.95 1.55 2.55

the 3D-2D crossover in layered superconductors. Layered
superconductors are in the 2D state at low T but turn into the
3D state with T → Tc due to a divergence of the coherence
length [12–17]. In our case, the situation is opposite: at low T

both superconductors are in the 3D state, but start to exhibit
the 2D behavior at elevated T close to Tc. Consequently, the
observed 2D behavior is not related to intrinsic layeredness
of the studied compounds. Below, we discuss two possible

“extrinsic” origins of the 2D behavior: (i) laminated crystal
structure, and (ii) surface superconductivity.

A. Artificial lamination

An artificial 2D behavior may occur if crystals have a
laminated structure with thin flakes along ab planes having
a higher Tc. Since the Tc depends on the doping state, this

FIG. 4. (a) In-plane resistance versus temperature for a Fe1+δTe1−xSex crystal in zero magnetic field. (b), (c) Resistive transitions in
perpendicular (b) and parallel (c) fields of 0, 5, 10, and 15 T. (d) Temperature dependencies of the bottom R ∼ 0.1Rn (solid symbols and lines),
R ∼ 0.9Rn (open symbols, dashed-dotted lines), and the top R ∼ Rn (plus symbols, dashed line) of the resistive transition in perpendicular (blue)
and parallel (red) fields. Horizontal arrows indicate the range of temperatures at which 2D cusps occur in angular-dependent magnetoresistance
at 10 T. (e) Angular dependence of resistance at 10 T and different temperatures. (f) The sharpness of the cusp as a function of temperature for
the data from (e). Two distinct cusps are seen manifesting appearance of 2D superconductivity in each of the two dominant superconducting
phases.
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may be due to stratification of the dopant atoms, and not
necessarily direct crystal defects. Certain spread of the doping
concentration for both types of crystals is obvious from
broadening of superconducting transitions in zero field. Such
a stratification with two superconducting phases is apparent
for Fe1+δTe1−xSex crystals. However, the lamination may not
explain all the observed features.

First of all, lamination does not lead to formation of a
true multilayer in the c-axis direction because an artificial
multilayer would still exhibit a regular 3D-2D crossover upon
decreasing temperature. In this case, the diverging coherence
length at T → Tc would ensure the 3D state of the multilayer
at elevated temperatures. This is opposite to the reported
behavior. Therefore, there could only be few flakes, separated
by a relative large distance in the c-axis direction.

Second, for the phase-segregated Fe1+δTe1−xSex crystals
we observe two steps in the resistive transition with two
corresponding 2D regions [see Fig. 4(f)]. This implies that the
phases are in fact not flakelike but bulk. Indeed, a transition of
few decoupled parallel to ab-plane flakes of the low-Tc phase
into the normal state would not lead to a disruption of the
supercurrent flow along the ab plane and, thus, would not be
visible in experiment.

Third, true lamination should lead to the corresponding
2D behavior of the temperature dependence of the upper
critical field H

‖
c2(T ) ∝ √

1 − T/Tc, while the perpendicular
field should have the same linear dependence as in the 3D
case H⊥

c2(T ) ∝ 1 − T/Tc. This has been reported both for
artificial multilayers [12–17] and for layered cuprates [37].
Different temperature dependencies should lead to a large
anisotropy of Hc2 close to Tc, H

‖
c2/H

⊥
c2(T ) ∝ 1/

√
1 − T/Tc.

However, all our samples for both studied compounds exhibit
linear T dependencies H

‖
c2(T ) = γH⊥

c2(T ) ∝ 1 − T/Tc at
both orientations with a relatively small γ ∼ 2 [see Figs. 2(c),
3(f), and 4(d)]. Such a 3D temperature dependence of H

‖
c2(T )

does not support the assumption of artificial crystal lamination
as the source of the observed 2D behavior.

B. Surface superconductivity

It is known that bulk 3D superconductors may exhibit
2D surface superconductivity in magnetic field parallel to
the surface, larger than the bulk upper critical field, but
lower than the third critical field Hc3 � 1.7Hc2 [22]. SSC
has been observed in a variety of superconductors, including
conventional low-Tc [21,23–26], MgB2 [27,28], and some
pnictides [29]. In the latter case, a very large Hc3/Hc2 � 4.4
ratio has been reported, suggesting an unusual robustness of
SSC. Since SSC occurs only in the surface layer with the
thickness ξ⊥, it exhibits a pure 2D behavior.

Surface superconductivity can explain the unusual
temperature-inverted appearance of the 2D behavior. Indeed,
it is expected that at a fixed H such a 3D-2D bulk-to-surface
transition would occur with increasing temperature when H

exceeds Hc2(T ) and bulk superconductivity is suppressed. A
similar 3D-2D bulk-to-surface transition occurs at a fixed T

upon increasing of magnetic field above Hc2(T ) [21]. Such a
field-induced 3D-2D transition is demonstrated in Figs. 3(d)
and 3(e).

The variation of the cusp with the crystal thickness is also
consistent with the SSC scenario. Indeed, the thinner crystal
N.1 exhibits a more profound and sharper cusp in R(�) than
the thicker N.2 [cf. Figs. 2(d) and 3(c)]. This is consistent
with the corresponding increment of the surface to volume
ratio with decreasing crystal thickness, which makes 2D SSC
contribution more profound in the thinner crystal.

For Fe1+δTe1−xSex appearance of 2D surface superconduc-
tivity for each of the two phases indicates that those phases
are spatially segregated with sharp interfaces in-between. The
appearance of 2D SSC definitely proves phase segregation,
suspected in those compounds [32,34].

C. Determination of Hc2 using 3D-2D bulk-to-surface transition

From Figs. 2(a)–2(c), it is seen that the resistive transition
is broadened: the difference in T between 90% and 10% of
the transition for the N.1 crystal is about 4 K. In this case, it
becomes difficult to determine Hc2 because there is no clear
criterion if Hc2(T ) corresponds to the beginning, the middle,
or the end of the transition. However, the appearance of SSC
unambiguously pinpoints H

‖
c2(T ) = H , as indicated by the

dashed line in Fig. 2(f). The horizontal arrow in Fig. 2(c)
indicates the range of temperatures for which a 2D cusp
in R(�) appears. It is seen that 2D behavior appears when
the resistance reaches ∼10% of the normal resistance and
persists up to the very top of the resistive transition. Thus,
Hc2 corresponds to the bottom of the resistive transition,
R ∼ 0.1Rn, while the rest of the transition is strongly affected
by surface superconductivity. This is consistent with a previous
conclusion [21] that surface superconductivity is making a
major contribution to broadening of the resistive transition
in magnetic field. Importantly, the onset of surface super-
conductivity allows unambiguous determination of Tc(H ) or,
equivalently Hc2(T ), which are most closely represented by
solid lines in Fig. 2(c).

V. CONCLUSIONS

To conclude, we observed an unexpected 2D behavior
in low anisotropic iron-based superconductors. Contrary to
the conventional dimensional 3D-2D crossover in layered
superconductors, it appears upon increasing of temperature.
Based on the similar observation in isotropic Nb films
[21], we argue that this type of temperature-inverted 3D-2D
transition is caused by transition from 3D bulk to 2D surface
superconductivity. Such a transition occurs with increasing T

when the applied field becomes larger than the temperature-
dependent upper critical field H > Hc2(T2D). The 2D state
persists up to a temperature at which the field exceeds the
temperature-dependent third critical field H > Hc3(T ).

The data presented above demonstrate that surface super-
conductivity is a common phenomenon both for conventional
low-Tc and unconventional high-Tc superconductors. More-
over, it is a very robust phenomenon and occurs not only in
perfect single crystals. Our data indicate that SSC remains
profound in a strongly inhomogeneous Fe1+δTe0.72Se0.28

chalcogenide with two dominant superconducting phases.
Furthermore, we observe that 2D surface superconductivity
persists up to the very end of the resistive transition R � Rn.
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This implies that SSC is making a significant contribution
to broadening of the superconducting transition in magnetic
field, consistent with a previous report [21]. This may
strongly affect [21] the standard analysis of superconducting
fluctuations, which does not take into consideration persistence
of nonfluctuating SSC (see, for example, [43]).

Finally, we point out that determination of the upper critical
field for unconventional superconductors remains notoriously
difficult and controversial [44]. The high Tc leads to an
extended region of thermally activated flux flow. The complex
physics of anisotropic pinning and melting of the vortex
lattice [18] makes it hard, if at all possible, to confidently
obtain Hc2 from flux-flow characteristics at T < Tc(H ). The
situation is further complicated by ill-defined normal state due
to persistence the normal-state pseudogap, inhomogeneity of
doping, strong superconducting fluctuations, and, as we show
in this work also the surface superconductivity phenomenon.
All of them lead to significant broadening of superconducting
transitions so that it becomes hard to ascribe any specific point
at the R(T ,H ) curve to H = Hc2. As we have shown above,
the reported bulk-to-surface superconductivity transition re-
moves this ambiguity. Bulk superconductivity is suppressed
at H = Hc2. Therefore, the appearance of a well-defined
cusp in angular dependence of magnetoresistance can be
used for unambiguous determination of the upper critical
field. Therefore, we encourage other researchers to use this
phenomenon for correct determination of Hc2.
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APPENDIX A: ANGULAR DEPENDENCIES
OF MAGNETORESISTANCE IN 3D AND 2D CASES

In this appendix, we intend to demonstrate that the cusp in
R(�) is an unambiguous signature of the 2D behavior. Angular
dependencies of critical fields for anisotropic 3D and 2D cases
are given by the following equations (see, e.g., Ref. [38]):(

Hc2(�) sin �

H⊥
c2

)2

+
(

Hc2(�) cos �

H
‖
c2

)2

= 1 (A1)

for the 3D case, and∣∣∣∣Hc2(�) sin �

H⊥
c2

∣∣∣∣ +
(

Hc2(�) cos �

H
‖
c2

)2

= 1 (A2)

for the 2D case.

In the simplest case, the flux-flow resistivity in mag-
netic field can be estimated from the Bardeen-Stephen
expression [40]

R(�) = Rn

H

Hc2(�)
. (A3)

The corresponding examples of R(�) obtained from
Eqs. (A1)–(A3) are shown by blue and red lines in Fig. 2(e).
The main qualitative difference between them is that R(� = 0)
has a flat (parabolic) minimum with dR/d�(� = 0) = 0 in
the 3D case and a cusplike dip with finite dR/d�(� =
±0) 
= 0 in the 2D case, reflecting corresponding angular
dependencies of critical fields from Eqs. (A1) and (A2),
respectively.

We note that the agreement of experimental data with such
curves is only qualitative. The main reason is that 3D/2D
models yield angular dependencies of critical fields, not of the
measured resistances. The straightforward connection between
Hc2(�) and R(�) using Eq. (A3) is an oversimplification
because it neglects pinning of vortices and assumes a linear
field dependence of resistivity (A3), which is not always the
case. Vortex pinning in the 3D case makes R(H ) nonlinear, as
shown in Fig. 3(e) and in particular leads to dropping of R(T )
to zero below certain T [see Figs. 1(a) and 1(b)].

Due to oversimplifications of the models based on
Eqs. (A1)–(A3), we do not expect quantitative fits, but only
qualitative behavior a flat minimum in the 3D versus a sharp
cusp in the 2D case. In the absence of the exact fit, one can ask
how ambiguous is the interpretation of the observed cusp as
evidence of the 2D behavior. In other words, could a similar
cusp appear under some circumstances even in the 3D case?
To understand this, we analyze more rigorously the shape
of R(�) for 3D anisotropic superconductors, using a scaling
approach by Blatter and co-workers [45]. According to them,
in an anisotropic 3D case there is a universal scaling (see, e.g.,
Ref. [20])

R(�) = F
(
H̃

)
, H̃ = H

√
sin2 � + γ −2 cos2 �. (A4)

We remind that in our definition � = 0 corresponds to in-plane
(ab) and 90◦ to out-of-plane (c-axis) magnetic field. For the
derivative we obtain

dR

d�
= ∂F

∂H̃
H

sin � cos �(1 − γ −2)√
sin2 � + γ −2 cos2 �

. (A5)

In Fig. 5(a), we show corresponding variation of dR/d�

with increasing the anisotropy from isotropic γ = 1 (zero line
coincident with the horizontal axis) to strongly anisotropic
γ = 100. Importantly, irrespective of γ , dR/d�(� = 0) = 0
due to sin � term in the nominator of Eq. (A5).

From Eq. (A5) we obtain an asymptotic behavior close to
the in-plane orientation

R(� ∼ 0) � R(0)

[
1 + �2(γ − γ −1)

2

]
. (A6)

The corresponding parabolic angular dependencies are shown
in Fig. 5(b). It is seen that although angular dependencies be-
come stronger with increasing γ , however, even for a very large
γ = 100 there is an unmistakable flat minimum R(�= 0)
within several degrees from the in-plane orientation. It is
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FIG. 5. Simulated angular dependencies for the 3D scaling model
from Ref. [45] for different values of the anisotropy parameter γ from
1 to 100. (a) Angular derivatives. (b) Asymptotic behavior of R(�)
near in-plane field. Note that R(� → 0) has a parabolic behavior
with a flat minimum and zero derivative dR/d�, irrespective of γ .
This is qualitatively different from the cusp behavior in the 2D case.
Black symbols represent experimental cusplike behavior for the N.1
crystal, which quite apparently can not be fitted by the 3D model.

much coarser than the angular resolution of our measurement.
For comparison, we show by black open circles experimental
data for the N.1 crystal from Fig. 2(e) at T = 25.4 K. Quite
apparently, it can not be fitted by the 3D model.

APPENDIX B: SCALING ANALYSIS OF THE 3D CASE

Another way to distinguish 3D from 2D behavior is
to analyze how well the 3D scaling (A4) is satisfied.

2 4 6 8 10
0

2

4

6

8

10

12

27 28 29
1.5

2.0

2.5

5 T μ
0
H = 10 T

27
.3

K

27
.6

K

27
.9

K

28
.4

K

R
 (

m
Ω

)
μ

0
H(sin2Θ + γ-2cos2Θ)1/2  (T)

27
.0

K

T
=
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FIG. 6. Analysis of 3D scaling of angular-dependent magnetore-
sistance according to Eq. (A4) at different temperatures and at fields
2.5 T (red), 5 T (olive), and 10 T (blue curves) for the N.2 BNFA
crystal. It is seen that the 3D scaling fails in the vicinity of parallel
to the planes orientation of the field (the left ends of the curves),
at which there is a rapid falloff from the smooth 3D behavior. The
inset shows the anisotropy γ , which is the only free parameter in the
scaling.

In Fig. 6, we show the corresponding scaling R versus
H (sin2 � + γ −2 cos2 �)

1/2
for the N.2 BNFA crystal at

different temperatures and fields. The only free parameter for
such scaling is the anisotropy γ . It is shown in the inset in
Fig. 6. It is seen that γ � 2.2 is constant, as expected in the
Ginzburg-Landau limit close to Tc, and has a value consistent
with earlier estimations made in a similar way for a similar
K-doped pnictide [20] and with our estimations above, see
Table I. The 3D behavior in this scale is quasilinear [20] in
the intermediate angle range 0 � � � 90◦, as seen for the
curve at the lowest T = 27 K, where the soft 3D angular
dependence of magnetoresistance is observed [see the blue
line in Fig. 3(c)]. At higher T , when the 2D cusp appears in
R(�) at � = 0, a clear falloff from the quasilinear 3D behavior
occurs at the left edges of the curves, corresponding to the cusp
region � = 0. This is particularly well seen for T = 27.6, 27.9,
and 28.4 K at μ0H = 10 T and for T = 29.1 K at μ0H = 5 T.
This discrepancy confirms that the observed cusp in the angular
dependencies of magnetoresistance can not be confused with
3D characteristics and, therefore, indeed is an unambiguous
indication for appearance of the 2D behavior.
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