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Andreev levels as a quantum dissipative environment
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We argue that at subgap energies quantum behavior of superconducting weak links can be exactly accounted
for by an effective Hamiltonian for a Josephson particle in a quantum dissipative environment formed by Andreev
levels. This environment can constitute an important source for intrinsic inelastic relaxation and dephasing in
highly transparent weak links. We investigate the problem of macroscopic quantum tunneling in such weak
links demonstrating that—depending on the barrier transmission—the supercurrent decay can be described by
three different regimes: (i) weak intrinsic dissipation, (ii) strong intrinsic dissipation, and (iii) strong capacitance
renormalization. Crossover between quantum and thermally assisted supercurrent decay regimes can also be
strongly affected by the Andreev level environment.
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I. INTRODUCTION

Quantum dissipation is known to occur as a result of
interaction with an effective environment. Quite generally, this
environment can be modeled as a set of harmonic oscillators.
Tracing out the oscillator degrees of freedom one naturally
arrives at the Feynman-Vernon influence functional theory [1]
and the Caldeira-Leggett description of quantum dissipation
[2,3]. Electrons in metallic conductors can also play the role
of a quantum dissipative environment, as it is illustrated,
e.g., by the Ambegaokar-Eckern-Schön (AES) effective action
treatment of metallic tunnel junctions [4,5]. Further extension
of the influence functional technique also allows us to directly
account for Fermi statistics [6] in the situation when electrons
in a metal form an effective environment “for themselves.”

In superconducting tunnel junctions dissipation at low
enough temperatures/energies can only occur extrinsically
(e.g., by attaching an Ohmic shunt resistor [2,3,5]) as there
exist no states with energies below the superconducting gap �

in such junctions. The situation changes if one goes beyond the
tunneling limit. In this case subgap Andreev bound states [7]
are formed inside superconducting weak links. For sufficiently
short junctions the corresponding bound state energies are
±εn(ϕ), where

εn(ϕ) = �
√

1 − Tn sin2(ϕ/2), (1)

Tn denote normal transmissions of conducting channels and
ϕ is the superconducting phase difference across the junction.
While in the tunneling limit Tn � 1 one has εn(ϕ) � � for
any value ϕ, at higher transmissions the energies of Andreev
levels (1) can drop well below � and may even tend to zero
for fully open channels and ϕ ≈ π .

Here we will demonstrate that Andreev bound states—
along with model oscillators [1–3] or electrons in a metal [4–
6]—may act as intrinsic quantum dissipative environment for
the Josephson phase ϕ strongly affecting quantum properties
of superconducting weak links.

II. EFFECTIVE HAMILTONIAN FOR A WEAK LINK

In what follows we will consider a current biased super-
conducting junction characterized by a geometric capacitance

C0 and an arbitrary distribution of normal transmissions Tn

among N transport channels. Provided the phase ϕ does not
fluctuate the junction may conduct the supercurrent [8]

IS(ϕ) = e�2 sin ϕ

2

∑
n

Tn

εn(ϕ)
tanh

εn(ϕ)

2T
. (2)

Here and below the sum runs over all channels from n = 1 to
n = N . In order to describe quantum fluctuation effects it is
necessary to treat the phase ϕ as a quantum variable [5]. The
generalization of the AES type-of-approach can be worked out
also beyond the tunneling limit employing both Matsubara [9]
and Keldysh [10] techniques, however the resulting effective
action becomes tractable only in certain physical situations.

One of such situations is realized if phase fluctuations
remain sufficiently weak [11,12]. Splitting the phase variable
into constant and fluctuating parts ϕ(t) = χ + φ(t) and as-
suming |φ(t)| � 1 one can express the kernel of the Keldysh
evolution operator J as a double path integral

J =
∫

DφFDφB exp(iS0[φF ] − iS0[φB] + iSR − SI), (3)

where the phase variables φF,B are defined respectively on the
forward and backward branches of the Keldysh contour and
S0[φF,B] define local in time contributions

S0[φ] =
∫ t

0
dt ′

[
Cφ̇2

8e2
− U [χ + φ(t ′)]

]
. (4)

Here C is the effective junction capacitance which may differ
from C0 due to retardation effects [11] and

U (ϕ) = −2T
∑

n

ln

[
cosh

εn(ϕ)

2T

]
− Iϕ

2e
(5)

is the effective potential where the first term is recovered by
integrating the supercurrent (2) over ϕ and the second term
accounts for the bias current I .

The remaining—nonlocal in time—terms

SR =
∫ t

0
dt ′

∫ t

0
dt ′′R(t ′ − t ′′)φ−(t ′)φ+(t ′′), (6)

SI =
∫ t

0
dt ′

∫ t

0
dt ′′I(t ′ − t ′′)φ−(t ′)φ−(t ′′) (7)
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describe the influence functional for the phase variable. Here
we denote φ+ = (φF + φB)/2 and φ− = φF − φB . Both ker-
nels R(t) and I(t) in Eqs. (6) and (7) are real functions related
to each other via the fluctuation-dissipation theorem. General
expressions for each of these kernels remain rather involved
[11] and contain three different contributions originating from
(i) the subgap Andreev bound states, (ii) the quasiparticle states
above the gap, and (iii) the interference between (i) and (ii).

Significant simplifications occur provided both temperature
and typical phase fluctuation frequencies remain well in
the subgap range, i.e., T ,ωφ � �. Under this condition the
contributions (ii) and (iii) to the kernel I vanish, while the
analogous contributions to the Fourier component of R can be
expanded in powers of ω/� up to terms ∼ω2 which yields an
effective capacitance renormalization. In the interesting for us
limit 1 − Tn � 1 and π − χ � π this renormalization yields

C � C0 + e2N /(4�). (8)

What remains is to account for the Andreev terms (i) in both
kernels R and I. Making use of the results [11,12], we obtain

R(t) =
∑

n

γn

2εn(χ )
θ (t) sin[2εn(χ )t], (9)

I(t) =
∑

n

γn

8εn(χ )
coth

(
εn(χ )

T

)
cos [2εn(χ )t], (10)

where

γn = T 2
n (1 − Tn)

�4

εn(χ )
sin4 χ

2
tanh

εn(χ )

2T
. (11)

Note that in the limit ω � � and provided εn(χ ) ∼ � the
Fourier component of the kernel R(t) in Eq. (9) can also be
expanded in powers of ω/εn up to terms ∼ω2 giving rise
to extra renormalization of C [11] (see below). For εn(χ ) �
�, however, this expansion is not justified anymore. For this
reason in what follows we will keep the kernel R(t) in its exact
form (9).

It is interesting to observe that the influence functional
defined in Eqs. (6)–(10) is exactly equivalent to that produced
by a bath of harmonic oscillators [1–3] coupled linearly to the
fluctuating part of the phase φ. In other words, our weak link
can also be described by an effective low energy Hamiltonian

Ĥ = −2e2

C

∂2

∂φ2
+ U (χ + φ)

+
∑

n

[
P̂ 2

n

2Mn

+ Mnω
2
n

2

(
Qn − cnφ

Mnω2
n

)2
]
. (12)

The first and the second lines of Eq. (12) account respec-
tively for the “Josephson particle” and for its Andreev level
environment which consists of N harmonic oscillators with
frequencies ωn = 2εn(χ ) coupled to the “particle coordinate”
φ. The coupling constants cn are identified by the condition
c2
n/Mn = γn. It is important to emphasize that the Hamiltonian

(12) follows directly from a fully microscopic effective action
[11] without any model assumptions.

Before dwelling into further calculations it is instructive to
also construct the grand partition function for our weak link
Z = Spe−Ĥ /T . Making use of the effective Hamiltonian in

Eq. (12) we can express Z in terms of the path integral over
both φ and the oscillator coordinates Qn. Integrating out all
Qn variables we obtain

Z =
∫

Dφ exp {−Seff[φ(τ )]}, (13)

where

Seff =
∫ 1/T

0
dτ

[
Cφ̇2

8e2
+ U [χ + φ(τ )]

]

+
∫ 1/T

0
dτ1

∫ 1/T

0
dτ2Y (τ1 − τ2)φ(τ1)φ(τ2) (14)

is the imaginary time effective action for our superconducting
contact and

Y (τ ) =
∑

n

γn

8εn

(
δ(τ )

εn

− cosh
[
2εn

(|τ | − 1
2T

)]
sinh[εn/T ]

)
. (15)

Expanding the kernel (15) in the Fourier series Y (τ ) =
T

∑
ωm

Yωm
e−iωmτ with ωm = 2πmT , we get

Yωm
(χ ) =

∑
n

γn(χ )

8ε2
n(χ )

ω2
m

ω2
m + 4ε2

n(χ )
. (16)

III. ANDREEV LEVEL BATH SPECTRUM
AND INELASTIC RELAXATION

To begin with, we observe that the coupling constants
c2
n ∝ γn (11) vanish in the limit Tn → 1. Thus, environmental

modes corresponding to fully open transport channels are
totally decoupled from the phase variable φ and, hence, cannot
influence its quantum dynamics.

On the other hand, channels with Tn < 1 do affect the
behavior of φ. As long as ωφ remains much smaller than
ωn the nth environmental mode may only contribute to extra
capacitance renormalization. Provided the inequality ωϕ � ωn

is fulfilled for all n we again recover the corresponding
result for the renormalized capacitance [11]. In the opposite
limit ωϕ 	 ωn Andreev levels may already act as a quantum
dissipative environment for the fluctuating phase. This is
because the oscillators can get excited to higher energy states
as a result of their interaction with ϕ(t). Note that since phase
fluctuations remain small the conjugate charge variable, in
contrast, fluctuates strongly implying that multiple electron
charge transfer is possible through each conducting channel.
Accordingly, many of such electrons can in general get excited
to the higher of the two Andreev levels while passing through
the nth channel. These processes translate into the excitation of
harmonic oscillators to higher levels illustrating the physical
reason why the effect of Andreev doublets is equivalent to that
of such oscillators.

The frequency spectrum of this quantum dissipative en-
vironment depends on the particular distribution of normal
transmissions Tn. Let us introduce

J (ω,χ ) = π

2

∑
n

γn

ωn

δ(ω − ωn), ωn = 2εn(χ ). (17)

For a junction with large number of channels N 	 1 and with
transmissions distributed in the interval 0 < Tn < 1 with the
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probability P (Tn) after a simple algebra for ωmin(χ ) < ω <

2� we get

J (ω,χ ) = π (�2 − ω2/4)

2ω
P (Tω)Tω(1 − Tω) tanh

ω

4T
(18)

and J (ω,χ ) = 0 otherwise. Here we define

Tω = 1 − ω2/(2�)2

sin2(χ/2)
, ωmin(χ ) = 2�| cos(χ/2)|. (19)

Intrinsic dissipation due to subgap Andreev levels can be
identified if we consider, e.g., the two lowest energy levels in
the Josephson potential well U (ϕ) which can also be treated
as a qubit. The corresponding inelastic relaxation rate for such
a qubit γin(χ ) reads

γin = EC

ω0
J (ω0,χ ) coth

ω0

2T
. (20)

Here EC = e2/2C is the junction charging energy, ω0 =√
8ECU ′′(χ ) is the plasma oscillation frequency, and the phase

χ is fixed by the condition IS(χ ) = I .
In many cases ωmin remains of order �. For example, in

diffusive junctions at T → 0 and I close to IC one finds ωmin �
1.1�. Only provided χ is close to π and, in addition, there
exist transmitting channels with Tn ≈ 1 the frequency ωmin can
go well below �. This situation occurs, e.g., in the problem
of macroscopic quantum tunneling (MQT) to be addressed
below.

IV. MQT IN HIGHLY TRANSPARENT WEAK LINKS

Provided a superconducting weak link with N 	 1 is
biased by the current I close to IC the zero resistance state
becomes unstable and can decay into a resistive state due to
quantum tunneling of the phase across the potential barrier
U (ϕ). In the case of superconducting tunnel barriers with
Tn � 1 this MQT problem with extrinsic dissipation was
thoroughly studied in the past [2,3]. Here we consider the
opposite limit of highly transparent weak links with Tn ≈ 1
in which case the critical current IC = IS(χc) is reached
at the phase value χ = χc close to π . Such weak links
can now be fabricated in a controlled manner employing a
variety of different materials including, e.g., atomic point
contacts [13], graphene-based weak links [14,15], high trans-
parency Al/BiTe/Al double barrier heterostructures [16], or
InAs nanowire Josephson junctions [17]. In some of these
experiments effective channel transmissions with values very
close to unity were demonstrated.

In what follows for simplicity we will assume that all
the junction transmissions have the same value Tn = T and,
hence, εn(χ ) ≡ ε(χ ), cf. Eq. (1). We also define the reflection
coefficient r = 1 − T � 1 and the parameter q(T ) = 1 −
I/IC(T ) � 1.

Let us evaluate the supercurrent decay rate with the
exponential accuracy � ∝ exp(−A). At T → 0 the effective
potential (5) reduces to a simple form

U (ϕ) = −Iϕ/2e − N�
√

1 − T sin2(ϕ/2). (21)

For q � √
r Eq. (21) can be simplified further by expanding it

in powers of φ around χ = χc = π − arccos[(1 − √
r)2/T ].

FIG. 1. The exponential factor A plotted versus r for N = 400
and �/EC = 2.49 × 104, cf. Eq. (23).

Dropping an unimportant constant we get

U (χc + φ) � �N ν

2

[
qφ − φ3

6

]
, ν = 1 − √

r. (22)

Observing a strong inequality r � 1 below we will set ν � 1.
For q � √

r the expansion (22) is no more sufficient, and the
exact form of U (21) should be employed.

Provided geometric capacitance C0 is large it suffices to
ignore both effects of capacitance renormalization (8) and of
Andreev levels by formally setting C = C0 and Y (τ ) → 0 in
Eq. (14). Then our MQT problem reduces to that of a quantum
particle with mass C0/4e2 which tunnels under the barrier in
the potential (21). This problem is resolved easily with the
result

A = 36κU0

5ω0
, κ =

{
1, q � √

r,

2
√

2
3+√

6
, q 	 √

r,
(23)

where U0 = �N (2q)3/2/3 defines the potential barrier height
and ω2

0 = 2e2�N (2q)1/2/C0.
Note that the numerical prefactor κ is almost two times

bigger in the limit q � √
r than in the opposite one q 	 √

r .
Since A 	 1 we conclude that for 1 − T � 1 an increase
of T by a very small value can result in an increase of
the supercurrent decay rate � by orders of magnitude. This
is because the potential barrier U in the limit q 	 √

r is
substantially “thinner” than that at q � √

r , while the barrier
height U0 remains the same in both limits. Hence, the tunneling
probability can be much bigger in the former limit, see also
Fig. 1.

Let us now assume that C0 is small and the capacitance
C is dominated by the last term in Eq. (8), i.e., we set
C � e2N /(4�). Provided

√
r � q the coupling constant (11)

between the particle φ and the Andreev bath is sufficiently
small. Accordingly, dissipation remains weak and can be
treated perturbatively. At

√
r � q we find

A � 4(3 − √
6)

5
N (2q)5/4

[
1 + α

(√
r

q

)]
, (24)
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where α � 1 accounts for dissipation [18]. As long as
√

r � q

the value A grows with r merely due to the potential profile
change [as accounted for by the parameter κ in Eq. (23) and
also illustrated in Fig. 1] rather than due to dissipation. Hence,
in the limit

√
r � q the function α can be safely neglected.

For
√

r > q effective coupling of φ to the Andreev level
bath becomes strong and the last term in Eq. (14) should
be treated nonperturbatively. It is well known that quantum
tunneling can be described in terms of classical dynamics
of the particle φ propagating in the inverted potential −U

along the so-called bounce trajectory. Identifying the bounce
frequency with that of small oscillations ω̃0 near the bottom of
this potential at φ = √

2q and setting again C � e2N /(4�),
after trivial algebra we get

ω̃0 = �(q,r1/4), (25)

where we introduced the function

�(q,y) = 2�

√
Z

2
+

√
Z2

4
+ y2

√
8q, (26)

with Z = √
8q − y2 − r/y3. For the potential (22) we find

A � 36U0/(5ω̃0). (27)

This formula together with Eqs. (25) and (26) accounts for
a trade-off between two different tunneling regimes. Let us
define the value qc from the equation �(qc,r

1/4) = 2ε(χc) =
2�r1/4 which yields qc = √

r/32 + (r3/4 + r)/8. In the adia-
batic limit ωφ � 2�r1/4 (or q < qc) Andreev oscillators are
“fast” and provide strong capacitance renormalization [19]

C∗ = C + e2N /(4�r1/4). (28)

The particle φ then becomes heavier albeit its energy remains
conserved during tunneling and Eq. (27) yields

A � (6/5)23/4Nq5/4r−1/8. (29)

In the opposite antiadiabatic limit ωφ 	 2�r1/4 (or q>qc)
Andreev oscillators become “slow” generating effective poten-
tial renormalization U → U + �N r1/4φ2/8. Such oscillators
can get excited to higher levels taking energy from the tunnel-
ing particle φ. Hence, for qc < q � √

r Eq. (27) describes a
strong dissipation regime and matches smoothly with Eq. (24)
at q ∼ √

r .

V. QUANTUM-TO-CLASSICAL CROSSOVER

Quantum decay can only occur at low enough temperatures
T < T0, whereas at T > T0 thermal activation takes over with
� ∝ exp(−U0/T ). In order to analyze the crossover between
these two regimes we will employ an approximate form (22)
for the potential energy U . At lower T � ε(χc) = �r1/4

Eq. (22) holds for q � √
r , as we already indicated above.

At higher temperatures �r1/4 � T � � the approximation
(22) applies without any further restrictions. Indeed, at such T

and for r � 1 Eq. (2) reduces to

IS(ϕ) = eN� sin
ϕ

2
tanh

(
�

2T
cos

ϕ

2

)
(30)

reaching its maximum IS(ϕ) = IC(T ) at ϕ = χc, where now
χc = π − (2T/�)W (2�2/T 2) and W (z) is the Lambert W

function defined by the equation W exp(W ) = z. For q �

FIG. 2. The function T0(q) (32) for different values of r (solid
lines) together with the dependencies q(T ) for r = 10−6 (dotted
lines). The crossover temperature T0(I ) is determined as the inter-
section point of T0(q) and q(T ).

T 2/�2 we can again expand the potential U (5) in φ = ϕ − χc

and reproduce Eq. (22) with ν = 1.
At temperatures in the vicinity of the crossover to thermal

activation quantum tunneling is described by the bounce
trajectory φ̃(τ ) which remains close to the local maximum
of the potential U (22) at φ = √

2q. The value T0 is formally
identified [3,20,21] as a temperature at which the bounce first
reduces to φ̃(τ ) = √

2q meaning that A = U0/T0 at this point.
This is achieved provided the corresponding eigenvalue of the
operator δ2Seff/δφ

2
φ=√

2q
vanishes, which yields

π2T 2C/e2 + 2Y2πT (χc) = N�
√

q/2. (31)

Resolving Eq. (31) one determines the crossover temperature
T0. If the geometric capacitance C0 is large, it suffices to set
C = C0 and Y2πT → 0 in Eq. (31). Then we immediately
recover the standard result [22] T0 = ω0/(2π ), where ω0 is
defined below Eq. (23). This result holds for q � √

r . In the
limit

√
r � q Eq. (31) cannot be applied anymore. In this case

U0/T reaches the value A in Eq. (23) at T ≈ 2T0.
Perhaps the most interesting situation occurs if geometric

capacitance C0 is small and C is dominated by the last term
in Eq. (8). Substituting C = e2N /(4�) together with Eq. (16)
into Eq. (31) and resolving the latter with respect to T we
obtain

T0 = �(q,y)/(2π ), y = ε[χc(T0)]/�. (32)

In the limit T0 � �r1/4/π we have y � r1/4 and Eq. (32)
reduces to T0 = ω̃0/(2π ). In particular, at small enough q

we get T0 = �(8q)1/4r1/8/π . For T0 � �r1/4/π Eq. (32)
approaches the r-independent result T0 = �(8q)1/4/π . The
function T0(q) (32) is displayed in Figs. 2 and 3 (inset) for
different values of r .

Note that for very small r � 10−4 the function T0(q)
becomes multivalued for some values of q. This behavior,
however, does not imply the presence of several crossover
temperatures for a given bias I because the critical current IC

also depends on temperature and, hence, q = q(T ). For each
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FIG. 3. The bias current I0 separating the regimes of quantum
tunneling and thermal activation as a function of temperature plotted
together with IC(T ) for r = 0.1. The inset shows the dependence
T0(q) (32) for r = 0.1 and r = 0.01.

value I the crossover temperature T0 should be obtained from
the equation T0 = T0[q(T0)], as it is also illustrated in Fig. 2. As
a result, we arrive at the bias current value I = I0(T ) at which

quantum-to-classical crossover occurs at a given temperature.
The function I0(T ) is plotted in Fig. 3 for r = 0.1 together with
IC(T ). With decreasing r classical activation region shrinks
and I0(T ) rapidly approaches IC(T ).

In summary, we demonstrated that subgap Andreev bound
states in superconducting weak links form an intrinsic quantum
dissipative environment for the Josephson phase ϕ and derived
a microscopic low energy Hamiltonian for such weak links.
Effective coupling between ϕ and Andreev oscillators depends
on transport channel transmissions Tn and vanishes for fully
open channels with Tn → 1. In the case of highly transparent
weak links we analyzed both quantum and thermally assisted
decay of the supercurrent and identified the MQT regimes
of weak intrinsic dissipation, strong intrinsic dissipation,
and strong capacitance renormalization. Our predictions can
be directly tested by routinely measuring the statistics of
switching currents (see, e.g., recent experiment [23]) in highly
transparent superconducting weak links in combination with
Andreev level spectroscopy [24].
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