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Using an infinite matrix product state (iMPS) technique based on the time-dependent variational principle
(TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field
Ising model (TFIM) with long-range power-law (∝1/rα with r interspin distance) interactions out of equilibrium
in the thermodynamic limit—DPT-I: based on an order parameter in a (quasi-)steady state, and DPT-II: based on
nonanalyticities (cusps) in the Loschmidt-echo return rate. We construct the corresponding rich dynamical phase
diagram, while considering different quench initial conditions. We find a nontrivial connection between both
types of DPT based on their critical lines. Moreover, and very interestingly, we detect a new DPT-II dynamical
phase in a certain range of interaction exponent α, characterized by what we call anomalous cusps that are distinct
from the regular cusps usually associated with DPT-II. Our results provide the characterization of experimentally
accessible signatures of the dynamical phases studied in this work.
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I. INTRODUCTION

Phase transitions are among the most fascinating phenom-
ena in physics, whereby a small change in a control parameter
of the system can drive the system between extremely different
phases that are not adiabatically connected to one another. This
gives rise to nonanalyticities in the free energy even when the
system itself is described by a completely analytic Hamiltonian
without any singularities. Quantum and classical equilibrium
phase transitions are textbook subjects that have been very
well studied and established in various systems. Recently,
and particularly in the context of closed quantum systems,
quench dynamics [1] and post-quench system behavior have
received a lot of attention. Of special interest is the concept
of DPTs, where, in one type (DPT-I) thereof, critical behavior
is inspected in a post-quench (quasi-)steady state, such as a
(pre)thermal state at (intermediate) long times. Reaching a
(quasi-)steady state is crucial in DPT-I in order to extract a
steady-state value of the order parameter under consideration.
On the other hand, a second type (DPT-II) was defined in
the seminal work of Ref. [2], and has been studied extensively
analytically [3–12] and numerically [13–22] in several models,
and has just recently even been observed experimentally
[23,24]. DPT-II also involves a quench between an initial and
a final Hamiltonian, however, unlike DPT-I, reaching a steady
state is not a requirement, not least because DPT-II actually
manifests itself as nonanalyticities in the Loschmidt-echo
return rate [2] as a function of evolution time, and does not in
principle rely on a Landau-type order parameter. In general,
DPT-II occurs when an initial state undergoes a quench where
the control parameter crosses the quantum equilibrium critical
point [2,4,8], and has been observed in the nearest-neighbor
TFIM (NN-TFIM) with such quenches from both equilibrium
phases [2,8]. However, there are exceptions to this rule, where
DPT-II occurs for quenches within the same equilibrium phase
and is absent in quenches across the quantum equilibrium
critical point [6,17].

In a related study [25] we demonstrate that DPT-I in
the long-range TFIM (LR-TFIM) exists in situations even

when the system under consideration does not exhibit a
finite-temperature phase transition [26]. For further details,
we refer the reader to Ref. [25]. In this work, we shall focus
on the behavior of DPT-II, its detection in the framework of
iMPS [27–29] in the thermodynamic limit, the characterization
of its different phases, and its relation to DPT-I. Our results
are summarized in the dynamical phase diagram shown in
Fig. 1. We find it very advantageous to work with iMPS
here as opposed to finite-size time-dependent density matrix
renormalization group (t-DMRG) methods [30–32] in order to
see actual nonanalytic cusps in the Loschmidt-echo return rate
[2], which in finite systems are inherently nonexistent and thus
have to be extracted through a finite-size scaling procedure (for
technical details, see Ref. [33]).

The paper is organized as follows: In Sec. II we present
the main model used in the iMPS simulations for this work,
and additionally review the Loschmidt-echo return rate, the
motivation behind it, and the types of quench that give rise to
it. In Sec. III we present the main results of this paper, and
introduce and characterize the anomalous dynamical phase.
We conclude in Sec. IV.

II. MODEL AND RETURN RATE

We consider the LR-TFIM with power-law interactions
[34–38]

H = −J

L∑

j>i=1

σ z
i σ z

j

|i − j |α − h

L∑

i=1

σx
i , (1)

where σ
x,z
i are Pauli matrices acting on site i, J is the spin-

spin coupling constant, h is the magnetic field, L is the number
of sites, and we consider the ferromagnetic case J > 0 in the
thermodynamic limit L → ∞. The efficient implementation
of the long-range interactions is based on Ref. [39]. The model
(1) is known is to exhibit a finite-temperature phase transition
for α < 2 only [26], while its quantum critical point he

c(α)
is α dependent (cf. Fig. 1). For α � 5/3 mean-field analysis
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FIG. 1. Dynamical phase diagram of the LR-TFIM: he
c is the

equilibrium critical line, hI
c,z is the DPT-I critical line, and hII

c,z(x) is
the DPT-II critical line for quenches from hi = 0 (hi → ∞) which
signifies the onset of regular cusps for quenches above (below) it.
Note how the critical lines hII

c,x and he
c overlap very well within the

precision of our numerical simulations. For quenches from hi = 0 to
below hII

c,z, the system exhibits a trivial (cusp-free) phase for α � 2.3
and an anomalous phase for α � 2.3. The dynamically ordered and
disordered phases are related to DPT-I [25] and are separated by hI

c,z.
For a discussion of the error bounds see the Appendix.

is exact, while for α � 3 the universality class is that of the
nearest-neighbor Ising chain [40].

For quenches whose time evolution is propagated by H, the
motivation [2] for studying nonanalyticities in the Loschmidt
amplitude [41], i.e., the overlap between the initial and time-
evolved states

G(t) = 〈ψ(0)|ψ(t)〉 = 〈ψ(0)|e−iHt |ψ(0)〉 , (2)

is to exploit the similarity between (2) and the partition func-
tion Z(β) = Tr e−βH of the system in thermal equilibrium at
inverse temperature β, and interpret (2) as a boundary partition
function with boundary conditions |ψ(0)〉 and complex inverse
temperature z,

Zb(z) = 〈ψ(0)|e−zH|ψ(0)〉 , (3)

along the imaginary axis z = it . With the return probability
(Loschmidt echo) L(t) = |G(t)|2, the return rate function

r(t) = − lim
L→∞

1

L
ln |G(t)|2 (4)

can thus be construed as an analog of the free energy per site, in
which nonanalyticities indicate the presence of DPT-II, thereby
making a connection between finite-temperature partition
functions and time evolution, asking whether the latter can
exhibit phase transitions as well [42]. DPT-II has been studied
in various systems, and in the case of the transverse-field
Ising model (TFIM), it has been shown for the integrable
cases of nearest-neighbor [2,8] (α → ∞) and infinite-range
interactions (α = 0) [12,22]. In this work we study DPT-II in
the one-dimensional nonintegrable ferromagnetic LR-TFIM
for 1 < α < ∞ in the thermodynamic limit.

To study DPT-II, we calculate the return rate function per
site (4), after performing a quantum quench, where we prepare
the system in the ground state |ψ(0)〉 of H(hi) [that is (1) with
h = hi], and then abruptly change the magnetic field from

hi to hf �= hi at time t = 0. As the system evolves in time
as propagated by H(hf), the return rate function per site (4)
can then be calculated from the overlap (2) of the initial state
with its time-evolved self. The return rate function can be
calculated efficiently directly in the thermodynamic limit with
iMPS techniques as (minus) the logarithm of the dominant
eigenvalue of the (mixed) matrix product state (MPS) transfer
matrix arising in the overlap between the initial state and the
time-evolved state at time t . Cusps in the return rate occur
when there is a level crossing of the dominant eigenvalues of
this transfer matrix. For the technical details of this method,
we refer the reader to Ref. [33].

III. RESULTS AND DISCUSSION

We shall now discuss the results of our numerical simula-
tions for two types of quenches in the LR-TFIM (1) and extract
signatures of criticality for DPT-II: (i) A quench from hi → ∞,
corresponding to an initial state that is completely polarized in
the positive x direction (X quench), and (ii) a quench from
hi = 0, where the ground state is twofold degenerate. We
choose the state completely polarized in the positive z direction
as initial state (Z quench).

For the X quenches we find a critical phase with the
occurrence of conventional cusps in the return rate (4), as
first observed in the NN-TFIM [2]. Henceforth, these cusps
will be called regular cusps. We also find a trivial phase
with no cusps in the return rate. These two phases exist for
all studied α. For Z quenches we again find a regular and a
trivial phase, but additionally encounter an anomalous phase,
replacing the trivial phase for α � 2.3 only. The anomalous
cusps appearing in this phase are qualitatively different from
the regular ones. Lastly, signatures of criticality for DPT-I,
studied and characterized in Ref. [25], are also included for
comparison. See Fig. 1 for the dynamical phase diagram.

First, let us consider the case of X quenches to some
final value hf of the transverse field, where we encounter the
same situation as for the NN-TFIM [2]. For quenches within
the disordered equilibrium phase hf > he

c(α), with he
c(α) the

quantum equilibrium critical point [43] at the given α, we
observe a trivial phase with no cusps at all in the return rate.
However, quenching across he

c(α) into the ordered equilibrium
phase, we encounter a regular critical phase and (regular) cusps
appear. Figure 2 shows an example for α = 2.8 and various
hf across the equilibrium critical point. It is apparent that the
deeper the quench into the ordered phase, the more pronounced
the cusps are, and the smaller the time intervals between the

t0 1 2 3 4 5 6

r(t)

0

0.2

0.4
α = 2.8, hi → ∞

FIG. 2. Return-rate function r(t) for α = 2.8, quenches from
hi → ∞ to hf ∈ [0.75,1.40] (from green to red).
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FIG. 3. Return-rate function r(t) for quenches from hi = 0 to
hf ∈ [1.50,2.30] (from green to red) for α = 2.8 (top) and hf ∈
[1.80,2.80] (from green to red) for α = 2.2 (bottom). This behavior
is qualitatively the same for all α.

cusps become. As the quench approaches the critical point
from below, these cusps appear less sharp and the intervals
between them get longer. All cusps completely disappear
simultaneously when crossing he

c(α) from below, i.e., when
quenching within the disordered phase. The similarity to
the NN-TFIM case is indicated in Fig. 1 by the overlap
of the DPT-II critical line hII

c,x for X quenches with the
quantum equilibrium critical line he

c within the precision of
our numerical simulations.

On the other hand, for Z quenches, we see three distinct
DPT-II phases: (I) a regular phase with only regular cusps in
the return rate (as for X quenches above) that occurs when
quenching across a DPT-II critical field value hII

c,z(α), which
is however smaller than he

c(α) (cf. Fig. 1). For quenches below
hII

c,z(α) we encounter (IIa) a trivial phase for α � 2.3 that
exhibits no cusps at all in the return rate, and interestingly,
(IIb) an anomalous phase for α � 2.3, that exhibits anomalous
cusps in the return rate that are qualitatively different from
the regular cusps in phase (I). The additional appearance of
phase (IIb) featuring anomalous cusps and a critical field
hII

c,z(α) different from he
c(α) for this quench are the two major

differences to such a quench in the NN-TFIM.
Let us focus on the regular phase (I) first. In Fig. 3 we show

results for Z quenches for various α and hf > hII
c,z, where

cusps in the rate function are separated by roughly equal time
intervals. With lowering hf and approaching hII

c,z, these time
intervals increase and the cusps get less sharp until they all
vanish simultaneously upon crossing hII

c,z. The time intervals
as a function of hf seem to be largely independent of α (see
Fig. 4) and are also reflected in the oscillation period of the
order parameter m(t) = 〈σ z(t)〉. The times at which regular
cusps appear match the zero crossings of m(t) up to a temporal
shift, as shown in Fig. 5. This fact has already been observed
in the NN-TFIM [2,13] and next-nearest-neighbor TFIM [13].
It is worth noting here that the periodicity of the return rate
is doubled [2,13] if one considers the return rate with respect
to the degenerate subspace of the initial state rather than the

t0 1 2 3 4 5 6 7 8

hf

2

3

4

α = 2.0
α = 2.2
α = 2.4
α = 2.6
α = 2.8
α = 3.0

FIG. 4. Times of regular cusps (cf. Fig. 3), appearing in quenches
from hi = 0, for various α ∈ [2,3] and hf > hII

c,z. It is clearly visible
that the respective times of the cusps decrease with increasing
hf . Moreover, the dependence of the times for each cusp seems
independent of α, within an uncertainty of ≈5%. Missing points
at higher times, especially for low hf , are due to limited simulation
times.

initial state itself as we do. Thus, the only difference of this
phase to conventional DPT-II criticality in the NN-TFIM is the
critical field hII

c,z.
The regular critical phase goes over into an anomalous

critical phase (IIb) for quenches below hII
c,z and α � 2.3. There,

after a coexistence region with the regular cusps in a finite
range of values of hf around hII

c,z, a qualitatively different type
of cusps in the rate function appears (see Fig. 6). Upon further
lowering hf , the time intervals between these cusps decreases,
contrary to the regular cusps in phase (I), and they vanish one
by one as hf → 0, starting at early times, as can be seen in
Figs. 6 and 7. As our evolution times for accurate simulations
are limited, we can only conjecture here that this type of cusps
exists for any small hf > 0, albeit only appearing at very large
times. This has in fact been confirmed in the α → 0 limit in
a follow-up paper to this work [22]. It is worth mentioning
that some of these anomalous cusps show a “double-cusp”
structure, where the location of these double cusps also drifts
with α. This behavior is showcased in Ref. [33] and was also
observed in Ref. [13].

We emphasize here that the two types of observed cusps are
qualitatively different, as can be seen in how they arise from
two qualitatively different groups of rate-function branches
calculated from the MPS transfer matrix where it is always the
lowest branch that corresponds to the actual return rate function
[33]. The characteristic feature distinguishing the anomalous

1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

FIG. 5. Return rate function r(t) plotted together with the
(absolute value of the) order parameter |m(t)|. The cusps in the return
rate coincide with zeros of the shifted order parameter.
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FIG. 6. Examples of anomalous cusps (marked by vertical dashed
lines) for hf < hII

c,z. It is apparent that with increasing hf more
such cusps develop at smaller times, while their respective locations
however move to higher times (cf. also Fig. 7).

phase from the regular phase is that its cusps only appear
after the first minimum in the return rate, with more and more
smooth peaks preceding the first cusp for smaller and smaller
quenches. Regular cusps on the other hand always appear over
the entire time range, with the first cusp always appearing
before the first minimum. Additionally, the time intervals
between the crossings behave differently in both phases upon
varying hf . Reference [33] provides further technical details on
the crossover between the regular phase (I) and the anomalous
phase (IIb), and discusses the physical origin of these two
different types of cusps to different groups of Fisher-zero lines
of (3) in the complex plane [2] cutting the imaginary axis in
different ways.

Finally, we discuss the relationship between DPT-I and
DPT-II according to their critical lines in the rich dynamical
phase diagram of Fig. 1. The critical line of DPT-I is much
harder to obtain, as this kind of DPT relies on reaching
a (quasi-)steady state at time t ≈ τ , from which the order
parameter m̃ = m(τ ) is extracted, and then one tries to
establish the existence or absence of a nonanalyticity of
this order parameter as a function of hf , as in our case.
DPT-I in the nonintegrable LR-TFIM has been extensively
studied [25], and it was determined that prethermalization

t2 3 4 5 6 7

hf

0.8

1.2

1.6

α = 2.0

t2 3 4 5 6 7 8 9

hf

0.8

1.2

1.6

α = 2.2

FIG. 7. Times of anomalous cusps for α = 2 (top) and α = 2.2
(bottom) as a function of hf < hII

c,z. For hf > hII
c,z, the anomalous

cusps vanish as the regular cusps take over. Missing points at higher
times are due to limited simulation times, the terminated lines would
continue further to the top right.

conspires to give rise to DPT-I even for α > 2 where the
LR-TFIM exhibits no thermal phase transition in one spatial
dimension [26]. Comparing the DPT-I and DPT-II critical
lines, an unequivocal conclusion is unrealistic, given the
evolution times of accurate simulations reached, or by those
also carried out using finite-size t-DMRG [25]. However, from
the data, it seems that the two types of DPT are nontrivially
connected and at least show the same tendency in their α

dependence.

IV. CONCLUSION

In summary, we have carried out time-evolution simulations
of pure quantum states after global quantum quenches in the
one-dimensional LR-TFIM, and studied the corresponding
post-quench DPT-I and DPT-II phases in the thermodynamic
limit using an iMPS technique based on TDVP. Within the
precision of our numerics, we find that the DPT-II critical line
for X quenches overlaps with the quantum equilibrium critical
line separating two phases, one displaying (regular) cusps in
(4) when quenching across this line, and a phase with no cusps
otherwise. For Z quenches, the critical lines for both DPT-I and
DPT-II seem to show a nontrivial connection. Whereas in DPT-
I two dynamical phases (ordered and disordered) appear for all
α, we find three distinct DPT-II phases: a regular phase (I) for
quenches above the line for all α where regular cusps appear
in (4), a trivial phase (IIa) for quenches below the line for
α � 2.3 where no cusps appear, and a new anomalous phase
(IIb) for quenches below the line for α � 2.3 characterized
by anomalous cusps that are qualitatively different from their
regular counterparts present in (I). Finally, Ref. [37] reports on
two distinct types of equilibrium universality in the LR-TFIM
for α < 2.25 and α > 2.25. It would be interesting to know if
the appearance of the anomalous DPT-II phase for α � 2.3 is
connected to this change in universality. We leave this open
for future study.

While completing this manuscript, we became aware of
a study [46] that discusses some of our results in part on
finite-size systems.
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APPENDIX: ERROR BOUNDS FOR FIG. 1

In this section we discuss the error bounds of the dynamical
phase diagram displayed in Fig. 1 of the main text. he

c has been
determined by performing iMPS ground state calculations with
varying h while monitoring the expectation value of the order
parameter. he

c is then determined as the largest h for which
the order parameter is nonzero, and the error is given by
the step size in h. hI

c has been determined by extrapolating
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the order parameter m(t) = 〈σ z
i (t)〉 to the long-time limit

using the fit procedure presented in Ref. [25] and hI
c is again

the largest hf for which the extrapolated order parameter is
nonzero. Due to limited simulation times the extrapolated
values have large statistical error bars, resulting in error bars for
hI

c which are considerably larger than the step size of hf (see
also Figs. 3 and 4 in Ref. [25]). Tighter error bars are only
achievable with tremendously increased numerical efforts.
However, recently a promising new approach [47] could
permit additional qualitative statements about the behavior

of the order parameter at large times. hII
c,x and hII

c,z have been
determined by monitoring the appearance of cusps in the the
return rate function r(t) (4). They are defined as the largest
hf for which r(t) shows no cusps (for hII

c,z only in the case
α > 2.3). The error bars are thus given by the step size of
hf . In the case α < 2.3, hII

c,z is defined as the hf for which
anomalous cusps in r(t) are superseded by regular cusps. As
this process takes place within a finite range of hf values
(see also Ref. [33]), hII

c,z is taken at the center with error bars
estimating this regime.
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