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Linear stability analysis of a levitated nanomagnet in a static magnetic field:
Quantum spin stabilized magnetic levitation
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We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field.
We show that, apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical
Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the
system. Despite the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation.
For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full
analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes
the system via the Einstein–de Haas effect. These results are obtained with a linear stability analysis of a single
magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.

DOI: 10.1103/PhysRevB.96.134419

I. INTRODUCTION

According to the Earnshaw theorem [1,2] a ferromagnet
can be stably levitated in a static magnetic field only when it
is mechanically rotating about its magnetization axis. Such
a gyroscopic-based stabilization mechanism can be neatly
observed with a Levitron [3–7]. The Earnshaw theorem
does not account for the microscopic quantum origin of
magnetization. For instance, a single neutral magnetic atom
can be stably trapped in a static magnetic field by means
of the Larmor precession of its quantum magnetic moment
[8,9]. In both the Levitron and the atom, the magnetization,
initially antialigned to the magnetic field, adiabatically follows
the local direction of the magnetic field, thereby confining the
center-of-mass motion [6].

In this paper, we study the stability of a levitated single
magnetic domain particle (nanomagnet) in a static magnetic
field. The magnetization of the nanomagnet couples to its
center-of-mass motion via the interaction with the external
inhomogeneous magnetic field, and to its orientation via
the magnetocrystalline anisotropy [10,11]. The latter induces
magnetic rigidity, namely, its magnetic moment cannot freely
move with respect to a given orientation of the crystal structure
of the nanomagnet. Together with the quantum spin origin of
the magnetization, given by the gyromagnetic relation, this
leads to the well-known Einstein–de Haas (EdH) effect [12].
That is, a change of magnetization is accompanied by mechan-
ical rotation in order to conserve total angular momentum. The
Einstein–de Haas effect is boosted at small scales due to the
small moment-of-inertia-to-magnetic-moment ratio [13–15].

We shall argue that the quantum spin origin of magneti-
zation opens the possibility to magnetically levitate a nonro-
tating nanomagnet in a static field configuration. Indeed, we
encounter two stable phases of different physical origin. The
atom (A) phase appears at sufficiently large magnetic fields
where the nanomagnet effectively behaves as a soft magnet,
namely, its magnetization can freely move with respect to
its orientation. The EdH phase appears at sufficiently small
magnetic fields where the nanomagnet effectively behaves as
a hard magnet, namely, the magnetization sticks to the crystal.

The EdH phase requires the magnet to be sufficiently small.
Furthermore, we also recover the Levitron (L) phase for a larger
rotating magnet, which can be predicted without accounting
for the quantum spin origin of the magnetization. Such a rich
stability phase diagram could be experimentally tested and
opens the possibility to cool several degrees of freedom of the
nanomagnet in the stable phases to the quantum regime.

This paper is structured as follows. In Sec. II, we model a
single magnetic domain nanoparticle in a static field. Both a
quantum and a classical description of the model are given.
In Sec. III we derive the stability criterion as a function of
the physical parameters of the system. In Sec. IV we discuss
the stability diagrams and the physical origin of the different
stable phases. We draw our conclusions and discuss further
directions in Sec. V.

II. SINGLE MAGNETIC DOMAIN NANOPARTICLE
IN A STATIC MAGNETIC FIELD

We consider a single magnetic domain nanoparticle in
an external static magnetic field B(r). The nanomagnet is
modeled as a rigid sphere of radius R, mass M , and with a
magnetic moment μ. B(r) is assumed to be approximately
homogeneous within the volume of the sphere such that the
interaction energy between μ and B(r) can be expressed as
Vb = −μ · B(r), where r is the center-of-mass position of the
sphere (point-dipole approximation). The exchange interaction
between the magnetic dipoles inside a magnetic domain is
assumed to be the strongest energy scale of the problem.
Under this assumption, μ ≡ |μ| can be approximated to be
a constant. The degrees of freedom of the system are hence (i)
the center-of-mass motion (described by six parameters), (ii)
the rotational motion (described by six parameters), and (iii)
the magnetization dynamics (described by two parameters)
[16].

The orientation of the rigid sphere is represented by the
three Euler angles � ≡ (α,β,γ ) in the ZYZ parametrization
[17], which specify the mutual orientation between the frame
Oe1e2e3, fixed in the object and centered in its center of mass,
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and the frame Oexeyez, fixed in the laboratory. According
to this convention the coordinate axes of the frame Oe1e2e3

and the coordinate axes of the frame Oexeyez are related
through (e1,e2,e3)T = R(�)(ex,ey,ez)T , where the transfor-
mation matrix reads R(�) ≡ Rz(γ )Ry(β)Rz(α), where Rn(θ )
is the clockwise rotation of the coordinate frame (passive
rotation) of an angle θ about the direction n (see [17] for further
details). Hereafter Latin indices i,j,k, . . . = 1,2,3 label the
body frame axes while Greek indices μ,ν,λ . . . = x,y,z label
the laboratory frame axes.

Ferromagnetic materials exhibit magnetocrystalline
anisotropy, namely, they magnetize more easily in some
directions than others, due to the interaction between the
magnetic moment and the crystal structure of the material
[10]. This interaction determines preferred directions along
which the magnetic energy of the system is minimized. We
consider uniaxial anisotropy, for which the preferred direction
is a single axis (easy axis) in the crystal. By choosing e3 to
be the easy axis, the uniaxial anisotropy energy is given by
Va ≡ −kaV (e3 · μ/μ)2, where ka and V are, respectively, the
anisotropy energy density and the volume of the nanomagnet.
Va has two minima corresponding to μ being aligned or
antialigned to e3. Note that e3 depends on �, and hence
Va couples the magnetization with the orientation of the
nanomagnet.

Regarding B(r), we consider the Ioffe-Pritchard field given
by [18]

B(r) = ex

(
B ′x − B ′′

2
xz

)
− ey

(
B ′y + B ′′

2
zy

)

+ ez

[
B0 + B ′′

2

(
z2 − x2 + y2

2

)]
, (1)

where B0,B
′, and B ′′ are the three parameters characterizing

the Ioffe-Pritchard trap, namely, the bias, the gradient, and
the curvature. This field, which is commonly used to trap
magnetic atoms [18], is nonzero at its center, i.e., B(0) = B0ez.
Gravity is assumed to be along the z axis. This shifts the trap
center from the origin r = 0 along z by an amount Mg/(μB ′′),
where g is the gravitational acceleration. Provided this shift is
smaller than the length scale (B0/B

′′)1/2 (B ′/B ′′) over which
the Ioffe-Pritchard field significantly changes along z on axis
(off axis), gravity can be safely neglected. In the parameter
regime considered in this paper, this is always the case. Indeed,
we have checked that the stability diagrams shown do not
change when gravity is included. Gravity is hence neglected
in the analysis hereafter. Finally, we remark that since both M

and μ scale with the volume the condition to neglect gravity
is the same as for a magnetically trapped atom.

In summary, our model, the physical parameters of which
are listed in Table I [19], assumes a single magnetic domain,
rigid body, spherical shape, constant magnetization, uniaxial
anisotropy, Ioffe-Pritchard magnetic field, and point-dipole
approximation. In Sec. V, we discuss these assumptions and
the potential generalization of the model.

Given a set of values in Table I, can the nanomagnet be
stably levitated? To address this question, we first need to
describe the dynamics of the system. This can be done using
either quantum mechanics or classical mechanics [20].

TABLE I. Physical parameters of the model. Whenever re-
quired, the following values are used: ρM = 104 Kg/m3, ρμ =
[h̄γ0ρM/(50 amu)] J/(T m3) [where γ0 = 1.760 × 1011 rad/(s T) is
the electronic gyromagnetic ratio], ka = 104 J/m3, B ′ = 104 T/m,
and B ′′ = 106 T/m2.

Parameter Description (dimension SI)

ρM ≡ M/V Mass density (Kg m−3)

R Radius (m)

ρμ ≡ μ/V Magnetization (J T−1 m−3)

ka Magnetic anisotropy constant (J m−3)

B0 Field bias (T)

B ′ Field gradient (T m−1)

B ′′ Field curvature (T m−2)

A. Quantum description

The degrees of freedom of the nanomagnet are described
in quantum mechanics through the following quantum op-
erators. The center-of-mass motion by r̂ = (x̂,ŷ,ẑ) and p̂ =
(p̂x,p̂y,p̂z), where [r̂ν ,p̂λ] = ih̄δνλ. The rotational motion by
�̂ = (α̂,β̂,γ̂ ) and L̂ = (L̂x,L̂y,L̂z), where the Euler angle
operators commute with themselves, [L̂ν,L̂λ] = iενλρL̂ρ , and
the commutators [�̂,L̂], which are more involved [17], are
actually not required (see below). Regarding the magnetization
dynamics, the magnetic moment is given by μ̂ = h̄γ0F̂, where
γ0 is the gyromagnetic ratio, and F̂ is the total spin of
the nanomagnet (macrospin), where [F̂ν,F̂λ] = iενλρF̂ρ . F̂ is
obtained as the sum of the spin of the N constituents of
the nanomagnet, F̂ = ∑N

i=1 F̂i . In the quantum description,
the constant magnetization assumption can be incorporated
via the macrospin approximation: the total spin is projected
into the subspace with F̂2 = Nf (Nf + 1) ≡ F (F + 1), where
f is the total spin of a single constituent (assumed to be
identical for simplicity). Under the macrospin approximation
the magnetization dynamics can thus be described by the two
spin ladder operators F̂± ≡ F̂x ± iF̂y . The degrees of freedom
of the nanomagnet can hence be represented by the 14 quantum
operators {r̂,p̂,�̂,L̂,F̂±}.

In the coordinate frame Oexeyez, the quantum-mechanical
Hamiltonian of the nanomagnet in terms of these operators
reads [17]

Ĥ = p̂2

2M
+ h̄2

2I
L̂2 − h̄γ0F̂ · B(r̂) − h̄2D[e3(�̂) · F̂]2, (2)

where I ≡ 2MR2/5 is the moment of inertia of a sphere,
and D ≡ kaV/(h̄F )2 parametrizes the uniaxial anisotropy
strength.

As discussed in [17], it is more convenient to express Ĥ

in the coordinate frame Oe1e2e3. This is done via the change
of variables Âi(�̂) ≡ ∑

ν Riν(�̂)Âν for Â = L̂,F̂,B(r̂). The
operators Riμ(�̂) can be written as a function of the nine D-
matrix tensor operators D̂1

mk , where m,k = ±1,0 [17]. These
nine D-matrix operators are not independent. They must satisfy
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the following relations [21]:

(−1)k−mD̂j

mk = (D̂j

−m−k)†, (3)∑
m

D̂1
mk

(
D̂1

mk′
)† = δkk′1, (4)

∑
k

(
D̂1

mk

)†D̂1
m′k = δmm′1. (5)

Using the D-matrix tensor operators, the Hamiltonian in the
body frame reads [17]

Ĥ = p̂2

2M
+ h̄2

2I

(
Ĵ2 + 2Ŝ3Ĵ3 + Ĵ↑Ŝ↓ + Ĵ↓Ŝ↑

)
+ h̄γ0Ŝ · B(r̂,�̂) − h̄2DŜ2

3 (6)

by defining Ĵ ≡ L̂ − Ŝ, Ĵ↑↓ ≡ Ĵ1 ∓ iĴ2, and Ŝ↑↓ ≡ Ŝ1 ∓ iŜ2,
where Ŝ ≡ −F̂ for convenience. The D-matrix
operators fulfill the following commutations rules:
[D̂j

mk,D̂
j ′
m′k′] = 0, [Ĵ3,D̂j

mk] = kD̂j

mk , and [Ĵ↑↓,D̂j

mk] =√
(j ∓ k)(j ± k + 1)D̂j

mk±1 (see [17] for further details). The
Hamiltonian Ĥ is invariant under a rotation about the easy
axis of the nanomagnet, namely, [Ĥ ,L̂3] = [Ĥ ,Ĵ3 − Ŝ3] = 0
[17]. Therefore it is convenient to define ωS ≡ −h̄〈L̂3〉/I ,
which represents the rotational frequency of the nanomagnet
about the easy axis e3. Note that 〈Ĵ3〉 for a given ωS can
then be written in terms of 〈Ŝ↑〉 and 〈Ŝ↓〉. Furthermore, using
Eqs. (3)–(5) one can express 〈D̂1

mk〉 ∈ C∀m,k as a function
of 〈D̂1

11〉,〈D̂1
0−1〉, and 〈D̂1

−10〉, which are given by three real
independent parameters. Hence, we define the 13 operators

ξ̂ ≡ (
r̂,p̂,Ĵ↑,Ĵ↓,D̂1

11,D̂1
0−1,D̂1

−10,Ŝ↑,Ŝ↓
)
, (7)

the expectation values of which describe the degrees of
freedom of the system in the semiclassical approximation.
With this approximation, the evolution of Eq. (7) as described
by Ĥ , Eq. (6), is used in Sec. III to analyze the linear stability of
the system for a given value of ωS and the physical parameters
given in Table I.

B. Classical description

Let us now give a classical description of the system
in the Lagrangian formalism. The center-of-mass position
of the nanomagnet is described by the coordinate vector
r = (x,y,z) and its orientation is described by the Euler angles
� = (α,β,γ ). The direction of the magnetic moment μ/μ is
described by (φ,θ ), which represent, respectively, the polar
and azimuthal angles in the frame Oexeyez. The Lagrangian
of the system reads

L = Tcm + Trot + Tmag − Va − Vb, (8)

where Tcm, which represents the kinetic energy of the center-
of-mass motion, reads

Tcm ≡ M

2
(ẋ2 + ẏ2 + ż2). (9)

The rotational kinetic energy of the rigid body in the body
frame coordinate system Oe1e2e3 reads [22]

Trot ≡ I

2
(α̇2 + β̇2 + γ̇ 2 + 2α̇γ̇ cos β). (10)

Tmag accounts for the kinetic energy associated to the motion
of the magnetic moment, namely [16],

Tmag ≡ − μ

γ0
φ̇ cos θ. (11)

We remark that Eq. (11) leads to the phenomenological
Landau-Lifshitz-Gilbert equations describing the magnetiza-
tion dynamics [16,23]. The quantum description given in
Sec. II A has the advantage to describe this from first principles.
The classical uniaxial anisotropy interaction reads

Va ≡ −kaV [sin β sin θ cos (α − φ) + cos β cos θ]2, (12)

where we recall that e3 coincides with the anisotropy axis. The
magnetic dipole interaction between the external field B(r) and
the magnetic moment μ reads

Vb ≡ −μ[Bx(r) cos φ sin θ + By(r) sin φ sin θ

+Bz(r) cos θ ]. (13)

Note that Va (Vb) couples the magnetization μ with the
orientation � (center of mass r) of the nanomagnet.

The Lagrangian L is independent of θ̇ , thereby θ is not an
independent dynamical variable. In the absence of dissipation,
the magnetic moment μ undergoes a constant precession
around a direction determined by Eqs. (12) and (13), and thus
can be described with a single precession angle [16].

Furthermore, L is independent on γ , and thus L3 ≡
∂L/∂γ̇ = I (γ̇ + α̇ cos β) is a constant of motion. The quantity
L3 represents the rotational angular momentum of the rigid
sphere about the axis e3. Once ωS ≡ −L3/I is fixed, the state
of the system can thus be described by the 13 independent
parameters r,p,�,α̇,β̇,φ,φ̇. These are, roughly speaking, the
classical analogs to the quantum operators Eq. (7).

III. LINEAR STABILITY ANALYSIS

Let us now describe the criterion which determines the
linear stability of the system. While both the classical and the
quantum description lead to the same results, as discussed
at the end of the section, we derive the criterion using
the quantum description. The Heisenberg equation for the
operators ξ̂ Eq. (7) using the Hamiltonian Eq. (6) can be written
as ∂t ξ̂ = [ξ̂ ,Ĥ ]/ih̄ ≡ G(ξ̂ ). G is a vector function of ξ̂ that
depends on the physical parameters given in Table I. These
Heisenberg equations are a nonlinear system of differential
equations for the operators of the system. The stability of the
system is studied in the semiclassical approximation, namely,
the system is considered to be in a quantum state ρ̂ such that

Tr [ξ̂i ξ̂j ρ̂] = 〈ξ̂i ξ̂j 〉 � 〈ξ̂i〉〈ξ̂j 〉 ∀i,j, (14)

where ξ̂i is the ith component of ξ̂ . Furthermore since L̂3 is a
constant of motion, we consider ρ̂ to lie in the Hilbert subspace
of eigenstates of L̂3 with eigenvalue −IωS/h̄. Within this
subspace one can thus use L̂3 = −IωS1/h̄. The Heisenberg
equations of motion for a given ωS can be approximated by
the closed set of semiclassical equations

∂t 〈ξ̂ 〉 = G(〈ξ̂ 〉) (15)
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by using Eq. (14) to approximate 〈G(ξ̂ )〉 � G(〈ξ̂ 〉). A solution
of Eq. (15) is given by

ξ 0(t) ≡ (
0,0,0,0,

〈
D̂1

11

〉
0 = ei(ϕ−ωSt),0,0,0,0

)
, (16)

where ϕ is a phase factor fixed by the initial condition
on 〈D̂1

11〉0. This solution [24] corresponds to a nanomagnet
rotating at the frequency ωS along e3, at rest in the center of
the field (B(0) = B0ez), and with μ/μ = −e3 = −ez, namely,
magnetization parallel to the easy axis and antialigned to the
field at the center [see Fig. 1(a)].

The linear stability of this solution is analyzed through the
dynamics of the fluctuations δξ (t) ≡ 〈ξ̂ (t)〉 − ξ 0. To linear
order in δξ (t), these are governed by the linear equations
δ̇ξ = C(t) δξ , where the matrix Cij (t) ≡ ∂jGi(ξ 0) depends
periodically on time with a period 2π/ωS . We remark that since
ωS is a constant of motion δD1

11(t) = δD1
11(0) exp(−iωSt),

which corresponds to a trivial stable evolution. Hence we
redefine δξ (t) as a 12 component vector by removing its
δD1

11 component. Physically these are the fluctuations of
the 12 parameters describing the degrees of freedom of
a nanomagnet with constant rotational motion about the
anisotropy axis. The time dependence of C(t) can be removed
with the following change of variables: δJ r

↑ = (δJ r
↓)† ≡

δJ↑ exp[−i(ϕ − ωSt)] and δSr
↑ = (δSr

↓)† ≡ δS↑ exp[−i(ϕ −
ωSt)]. The linear system reduces then to ˙δξ r = Aδξ r , where
the matrix A is time independent and δξ r is obtained replacing
the old variables with the new ones, δSr

↑↓ and δJ r
↑↓. In

TABLE II. Definition of the relevant frequencies of the system
as appearing in (17) and (19).

Symbol Definition

ωI h̄S/I = 5h̄ρμ/(2μBρMR2)
ωD h̄DS = kaμB/(h̄ρμ)
ωL γ0B0

ωZ

√
h̄γ0B ′′S/M

ωT

√
h̄γ0S(B ′2 − B0B ′′/2)/MB0

ωS −h̄〈L̂3〉/I

the absence of dissipation, linear stability corresponds to the
eigenvalues of A being all purely imaginary [25].

The 12 × 12 complex matrix A can be block-diagonalized
as AZ ⊕ AT ⊕ A∗

T , where AZ is a 2 × 2 matrix defined as

∂t

(
δz

δpz

)
= AZ

(
δz

δpz

)
≡

(
0 1/M

−Mω2
Z 0

)(
δz

δpz

)
, (17)

where ωZ is defined in Table II. AT is a 5 × 5 matrix defined
as

∂t

⎛
⎜⎜⎜⎜⎝

δp+
δρ+
δJ r

↑
δSr

↑
δD1

−10

⎞
⎟⎟⎟⎟⎠ = AT

⎛
⎜⎜⎜⎜⎝

δp+
δρ+
δJ r

↑
δSr

↑
δD1

−10

⎞
⎟⎟⎟⎟⎠, (18)

where

AT ≡ i

⎛
⎜⎜⎜⎜⎝

0 −ih̄ωLB ′′S/(2B0) 0 ih̄γ0B
′ ih̄γ0

√
2SB ′

−i/M 0 0 0 0
0 ωLSB ′/B0 ωI + ωS ωI + ωS − ωL −ωL

√
2S

0 −ωLSB ′/B0 −ωI ωL − ωI − 2ωD ωL

√
2S

0 0 ωI/(
√

2S) ωI/(
√

2S) 0

⎞
⎟⎟⎟⎟⎠, (19)

with δρ± ≡ δx ± iδy and δp± ≡ δpx ± iδpy . The relevant
frequencies ωL,ωI ,ωT ,ωD are defined in Table II. The eigen-
values of AZ , given by the roots of PZ(λ) ≡ λ2 + ω2

Z , are
purely imaginary for B ′′ > 0. This leads to stable harmonic
oscillations of the center-of-mass motion along the ez direction
with frequency ωZ . AT accounts for the fluctuations of the
remaining degrees of freedom and its eigenvalues are given by
the roots of the fifth-order polynomial

PT (λ) = a0 + a1λ + a2λ
2 + a3λ

3 + a4λ
4 + a5λ

5, (20)

the coefficients of which are given by

a0 ≡ − 2ωDωIωLω2
T ,

a1 ≡ i
[
ωDω2

Z(ωS + ωI ) + ωSωLω2
T

]
,

a2 ≡ − 2ωDωIωL − 1

2
(2ωD − ωS)ω2

Z − ωLω2
T ,

a3 ≡ i

[
−2ωD(ωS + ωI ) + ωSωL + 1

2
ω2

Z

]
,

a4 ≡ 2ωD − ωS − ωL,

a5 ≡ − i.

(21)

This is one of the main results of this paper since the roots
of PZ(λ) and PT (λ) allow us to discern between stable and
unstable levitation as a function of the physical parameters of
the system via Tables I and II. In particular, stable levitation
corresponds to the roots of PZ(λ) and PT (λ) being purely
imaginary [26].

Let us remark that at the transition between stability and
instability the discriminants of PZ(λ) and PT (λ), defined as
�Z and �T , respectively, are zero. This happens whenever
two distinct eigenvalues become degenerate (Krein’s colli-
sion) [25]. The eigenvalues of the matrix associated to a
linear system of differential equations describing conservative
Hamiltonian dynamics, as the matrix AZ ⊕ AT ⊕ A∗

T in our
case, are always either complex quadruplets λ = {a + ib,a −
ib, − a + ib, − a − ib}, real pairs λ = {a, − a}, imaginary
pairs λ = {ib, − ib}, or pairs of zero eigenvalues λ = {0,0},
where a,b ∈ R. Therefore, the transition from stability to
instability, namely, from all imaginary eigenvalues to have
at least a complex quadruplet or a real pair, happens at a
Krein collision. Note that this is a necessary but not sufficient
condition since the colliding eigenvalues could still remain on
the imaginary axis [25].

134419-4



LINEAR STABILITY ANALYSIS OF A LEVITATED . . . PHYSICAL REVIEW B 96, 134419 (2017)

(a) (b)

0.1 1 10 102 103
103

105 15 20

104

105

106

107

108

109

R [nm]B0 [mT]
ω
/
2π

[H
z]

ex

ey

e1
e2

ez= e3

ωS

B(r)

µ

ωL

ωL
ωD

ωD

ωZωZ

ωT

ωT

ωI
ωI

FIG. 1. (a) Equilibrium solution for a levitated nanomagnet in a Ioffe-Pritchard magnetic field. The nanomagnet is at the center of the
trap, rotating about e3 with angular frequency ωS , and the magnetic moment is parallel to the anisotropy axis and antialigned to B(0). (b)
ωT ,ωZ,ωL,ωI , and ωD , which are defined in Table II, as a function of the bias field B0 for R = 4 nm (left panel) and of the radius R for
B0 = 2 mT (right panel). Other physical parameters are taken from the caption of Table I.

The polynomials PZ(λ) and PT (λ) have also been obtained
via the classical description of the nanomagnet discussed in
Sec. II B. The procedure is very similar to the one presented
above, but care must be taken when linearizing the system
around the solution represented in Fig. 1(a) since it corresponds
to a degeneracy point of the Euler angular coordinates in
the ZYZ convention. That is, for β = 0 it is not possible to
distinguish between rotation of the angle α and γ . This is the
so-called Gimbal lock problem which can be circumvented
either by using an alternative definition of the Euler angles,
which moves the degeneracy point elsewhere, or by changing
the parametrization of the Ioffe-Pritchard field Eq. (1), namely,
by aligning the bias along the ex or ey axis. The Gimbal lock
problem is avoided in the quantum description in the frame
Oe1e2e3 by the use of the D matrices.

IV. LINEAR STABILITY DIAGRAMS

Using the criterion derived in Sec. III, let us now analyze
the linear stability of the nanomagnet at the equilibrium point
illustrated in Fig. 1(a) (the nanomagnet at the center of the
trap antialigned to the local magnetic field) as a function of the
physical parameters given in Table I and the rotation frequency
ωS .

As shown below, the stability of the system depends very
much on the size of the magnet, parametrized by ωI , the
local magnetic field strength, parametrized by ωL, and the
magnetic rigidity given by the magnetic anisotropy energy,
parametrized by ωD . In particular, we distinguish the following
three regimes: (i) the small hard magnet (sHM) regime,
ωI ,ωD � ωL, (ii) the soft magnet regime (SM), ωD � ωL,
and (iii) the large hard magnet (lHM) regime, ωD � ωL � ωI .

We present the results in a two-dimensional phase diagram
with the x axis given by the bias field B0 and the y axis
given by the radius of the nanomagnet R. Results are shown
in Fig. 2. Note that in the sHM (lower left corner) and
SM (right part) regimes two stable phases are present for a
nonrotating nanomagnet (ωS = 0) (central panel). In the lHM
regime (upper left corner), on the other hand, stable levitation
is possible only for a mechanically rotating nanomagnet (ωS �=
0). As argued below, these three stable phases have a different

physical origin and represent three different loopholes in the
Earnshaw theorem: the Einstein–de Haas loophole, the atom
loophole, and Levitron loophole.

A. Einstein–de Haas phase

In the sHM regime, where ωD � ωL, the magnetic moment
can be considered, to a good approximation, fixed along
the direction of the magnetic anisotropy. Due to the small
dimension of the nanomagnet the spin angular momentum
plays a significant role in the dynamics of the system, namely,
ωI � ωL [see Fig. 1(b)]. The frequency 2ωI is indeed the
frequency at which the nanomagnet would rotate if the
magnetic moment flipped direction, in accordance with the
Einstein–de Haas effect [12]. Such effect thus plays a relevant
role in the dynamics of the system in the sHM regime due
to the small moment-of-inertia-to-magnetic-moment ratio. In
particular, a strong EdH effect, i.e., a large ωI compared to
the other frequencies of the system, has the effect of locking
the quantum spin along one of the anisotropy directions
due to energy conservation [13,27,28]. In the absence of
rotation, the spin-rotation interplay described by the Einstein–
de Haas effect thus stabilizes the nonrotating magnet by
keeping the macrospin aligned along the anisotropy direction.

The borders of the EdH stable phase in the nonrotating
case can be analytically approximated as follows (see Fig. 3).
The upper border can be approximated by keeping terms in
�T = 0 of zero order in ωZ/ωD � 1 and up to leading order in
ω/ωD � 1 (for ω = ωT ,ωL,ωI ). This is justified in the sHM
regime [see Fig. 1(b)]. This leads to the simple expression
ωI = 4ωL, which using Table II reads

Rc ≡
√

5ρμ

8γ 2
0 B0ρM

. (22)

Given B0, Eq. (22) approximates the maximum radius to allow
stable levitation. Such an approximated expression is in good
agreement with the exact upper border (see Fig. 3). The left
border can be approximated by keeping terms in �T = 0 of
zero order in ωZ/ωD � 1 and of highest order in ωI/ωD � 1,
which is justified in the sHM regime for R → 0 [see Fig. 1(b)].
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of radius R = 1 nm. Other physical parameters are taken from the caption of Table I. Stable phases are illustrated in red (EdH phase), blue
(A phase), and white (L phase). ωS > 0 (ωS < 0) corresponds to clockwise rotation (counterclockwise rotation).

This leads to ωL = 3
√

3ωT /2, which using Table II reads

Bc1 ≡ 3

(
ρμB ′2

4γ 2
0 ρM

) 1
3

, (23)

where we neglected the contribution B ′′ in ωT , since
B ′′B0/B

′2 � 1. This approximates the minimum B0 for stable
levitation in the EdH phase. As shown in Fig. 3, this gives
a good estimation of the left border. Plugging Eq. (23) into
Eq. (22) one obtains an approximated expression for the radius
R� of the largest nanomagnet that can be stably levitated in the
nonrotating EdH phase. Note that these expressions explain
the dependence of the EdH phase on the field gradient B ′ and
the uniaxial anisotropy strength ka shown in Fig. 4.

In particular, note that the EdH phase is nearly independent
of ka provided the condition ωD � ωL holds. Therefore, one
can describe this regime with a simplified model assuming
ka → ∞ (perfect hard magnet), which corresponds to the

Rc

0.1 1 10 102 103

B0 [mT]

10

5

15

20

R
[n

m
]

Bc1 Bc2

R

FIG. 3. Stability diagram for a nonrotating nanomagnet (ωS =
0). Other physical parameters are given in the caption of Table I.
The approximated borders of the red EdH phase (blue A phase) are
illustrated with red (blue) dashed lines.

magnetic moment frozen along e3 [rightmost panel in
Fig. 4(a)]. In this limit, the Hamiltonian of the system reads

ĤsHM = p̂2

2M
+ h̄2

2I
(Ĵ2 + 2SĴ3) + h̄γ0SB3(r̂,�̂). (24)

Equation (24) is obtained from Eq. (6) projecting the spin
degrees of freedom on the eigenstate |S〉 of Ŝ3, where S is the
largest value for the spin projection along e3. In the classical
description, this limit corresponds to the Lagrangian

LsHM = I

2
[α̇2 + β̇2 + (γ̇ + ωI )2 + 2(γ̇ + ωI )α̇ cos β]

+ M

2
(ẋ2 + ẏ2 + ż2) + μ[Bx(r) cos α sin β

+By(r) sin α sin β + Bz(r) cos β], (25)

where we set θ = β and φ = α. Equation (25) shows that ωI

appears as a shift of the rotational frequency of the nanomagnet
about e3. This shift, which must not be interpreted as an
actual mechanical rotation, represents the contribution of the
macrospin to the total angular momentum of the system. This
effect can also be seen in the characteristic polynomial (see
Table III). The linear stability analysis using Eq. (24) or (25)
leads to PZ(λ) (as in the general case) but to a simplified PT (λ)
given by

P sHM
T (λ) = asHM

0 + asHM
1 λ + asHM

2 λ2 + asHM
3 λ3 + asHM

4 λ4,

(26)
the coefficients of which are given in Table III. This leads to
the stability diagram shown in the rightmost panel of Fig. 4(a).
Note that P sHM

T (λ) is of fourth order since the magnetization
is frozen along e3 and hence there are only ten independent
parameters.

B. Atom phase

In the SM regime, where ωL � ωD [see Fig. 1(b)], the
coupling between the magnetization and the anisotropy is
negligible. In this regime, the magnetic moment undergoes
a free Larmor precession about the local magnetic field. This
stabilizes the system in full analogy to magnetic trapping of
neutral atoms [8,9].

134419-6



LINEAR STABILITY ANALYSIS OF A LEVITATED . . . PHYSICAL REVIEW B 96, 134419 (2017)

(b)

(a)

0.1 1 10 102 103

B0 [mT]
0.1 1 10 102 103

B0 [mT]
0.1 1 10 102 103

B0 [mT]
0.1 1 10 102 103

B0 [mT]
0.1 1 10 102 103

B0 [mT]

5

15

10

20

5

15

10

20

R
[n

m
]

R
[n

m
]
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B ′ [T/m] = 102,103,104,105,106. Other physical parameters are given in the caption of Table I. Stable phases are illustrated in red (EdH phase)
and blue (A phase).

The borders of the A phase are approximately independent
of the rotational state of the nanomagnet ωS , as shown in Fig. 2.
Therefore, considering the case of a nonrotating nanomagnet,
they can be analytically approximated as follows (see Fig. 3).
The left border at low magnetic fields can be approximated by
keeping only terms in �T = 0 up to zero order in ωZ/ωL � 1
and up to leading order in ωI/ωL � 1 and ωT /ωL � 1, which
is well justified in the SM regime at R → ∞ [see Fig. 1(b)].
This leads to the condition ωL = 2ωD , which using Table II
reads

Bc2 ≡ 2ka

ρμ

. (27)

Bc2 approximates the lowest field bias for which stable
levitation is possible in the A phase (see Fig. 3). The A phase
extends up to the field bias Bc3 = 2B ′2/B ′′, above which ωT

becomes imaginary. This is shown in the leftmost diagram
in Fig. 4(b), while in the remaining panels it falls out of the
B0 interval shown. Note that there is no upper limit in R for
the A phase. However recall that our model assumes a single
magnetic domain nanomagnet, which most materials can only
sustain for sizes up to few hundreds of nanometers [29]. Note
that the dependence of Bc2 and Bc3 on the field gradient B ′
and the uniaxial anisotropy strength ka explains the qualitative
behavior of the A phase in Fig. 4.

In the limit of a vanishing magnetic anisotropy, ka = 0,
the Hamiltonian of the nanomagnet reads ĤSM = ĤAT +
h̄2L̂2/2I , where ĤAT = p̂2/2M − h̄γ0F̂ · B(r̂) represents the
Hamiltonian describing a single magnetic atom of mass M

and spin F in the external field B(r) [8,9]. In the same limit,
the system is described classically by the Lagrangian LSM

obtained from L by setting Va = 0, thus decoupling rotation
and magnetization dynamics. In this limit, the linear stability
analysis applied to ĤSM or to LSM leads to PZ(λ) (as in the
general case) and to

P SM
T (λ) = aSM

0 + aSM
1 λ + aSM

2 λ2 + aSM
3 λ3, (28)

the coefficients of which given in Table III are, as expected,
independent of ωS and ωI , namely, on the rotational state of

the nanomagnet. This leads to the stability diagram shown
in the leftmost panel in Fig. 4(a), the left border of which
coincides with Eq. (23). Note that P SM

T (λ) is only a third-order
polynomial because the rotational dynamics do not affect the
stability of the system. The only relevant degrees of freedom
for the stability are thus the magnetic moment and the center-
of-mass motion (eight independent parameters).

C. Levitron phase

In the lHM regime, the magnetic moment can be considered
to be fixed along the easy axis (ωD � ωL) and the contribution
of the spin to the total angular momentum can be neglected
due to the large dimension of the nanomagnet (ωL � ωI ) [see
Fig. 1(b)]. In this respect, the nanomagnet behaves in good
approximation like a classical Levitron. The dynamics in this
regime can be approximately described by the Hamiltonian

ĤlHM = p̂2

2M
+ h̄2

2I
L̂2 − μe3(�̂) · B(r̂), (29)

which is obtained from Ĥ by taking the limit ka → ∞
(magnetization frozen along the anisotropy axis) and by using
μ̂ = μe3(�̂). The latter treats the magnetization classically,
namely, μ is a scalar quantity instead of a quantum spin
operator. The classical description is given in this limit by

TABLE III. Coefficients of the stability polynomial PT (λ) in the
sHM, lHM, and SM regime.

sHM (asHM
i ) SM (aSM

i ) lHM (alHM
i )

a0 −ωIωLω2
T −ωLω2

T −ωIωLω2
T

a1 iω2
Z(ωS + ωI )/2 iω2

Z/2 iω2
ZωS/2

a2 −ωIωL − ω2
Z/2 −ωL −ωIωL − ω2

Z/2
a3 −i(ωS + ωI ) −i −iωS

a4 1 0 1
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the Lagrangian

LlHM = I

2
(α̇2 + β̇2 + γ̇ 2 + 2α̇γ̇ cos β)

+ M

2
(ẋ2 + ẏ2 + ż2) + μ · B(r), (30)

where μ = μ(cos α sin β, sin α sin β, cos β) for a magnetic
moment frozen along the anisotropy axis.

The linear stability analysis applied to this limit leads to
the polynomials PZ(λ) (as in the general case) and P lHM

T (λ) =
alHM

0 + alHM
1 λ + alHM

2 λ2 + alHM
3 λ3 + alHM

4 λ4, where its coef-
ficients are defined in Table III. The linear stability diagram
derived from PZ(λ) and P lHM

T (λ) corresponds to the L phase of
the lHM regime in Fig. 2, thus showing that stable levitation in
this regime requires mechanical rotation. Furthermore, in this
limit the stability region is symmetric with respect to clockwise
or counterclockwise rotation, as in the classical Levitron [4–6].

To conclude this section, let us compare the description
of the magnetic moment in the approximated models of the
lHM and the sHM regimes. The lHM and sHM both describe
a nanomagnet with a large magnetic rigidity the magnetic
moment of which can be approximated to be frozen along
the easy axis e3. In the lHM regime, due to the negligible
role played by the macrospin angular momentum (ωI � ωL),
the magnetic moment is modeled as μ̂ = μe3(�̂), where μ is a
classical scalar quantity. In the sHM regime, on the other hand,
the role of the spin angular momentum is crucial (ωI � ωL),
and the quantum origin of the nanomagnet’s magnetic moment
has to be taken into account. The magnetic moment is thus
given by μ̂ = h̄γ0[F̂ · e3(�̂)]e3(�̂). This crucial difference is
manifested in the coefficients of the characteristic polynomial
(see Table III). In the sHM regime the rotational frequency
ωS is shifted by ωI , thus retaining the contribution of the
spin angular momentum F̂ to the total angular momentum
of the system. In essence, the quantum spin origin of the
magnetization plays the same role as mechanical rotation, a
manifestation of the Einstein–de Haas effect.

V. CONCLUSIONS

In conclusion, we discussed the linear stability of a
single magnetic domain nanosphere in a static external Ioffe-
Pritchard magnetic field at the equilibrium point illustrated in
Fig. 1(a). This corresponds to a nanomagnet at the center of
the field, with the magnetic moment parallel to the anisotropy
axis, antialigned to the magnetic field, and mechanically
spinning with a frequency ωS . We derived a stability criterion
given by the roots of both a second-order polynomial PZ(λ)
and a fifth-order polynomial PT (λ). Eigenvalues with zero
(nonzero) real component correspond to stability (instability).
This stability criterion is derived both with a quantum
description and a (phenomenological) classical description of
the nanomagnet. Apart from the known gyroscopic-stabilized
levitation (Levitron L phase), we found two additional stable
phases, arising from the quantum-mechanical origin of the
magnetization, μ̂ = h̄γ0F̂, which surprisingly (according to
Earnshaw’s theorem) allows us to stably levitate a nonrotating
magnet. The atom phase appears at a high magnetic bias field
(ωL � ωD), where despite the magnetocrystalline anisotropy
the magnetic moment freely precesses along the local direction

of the magnetic field. The stability mechanism is thus fully
analogous to the magnetic trapping of neutral atoms [8,9].
The Einstein–de Haas EdH phase arises at a low magnetic
bias field (ωL � ωD), where the uniaxial magnetic anisotropy
interaction dominates the magnetization’s dynamics. The
magnetic moment is thus frozen along the easy axis and can
be modeled as μ̂ = −h̄γ0[F̂ · e3(�̂)]e3(�̂). In this case the
quantum spin origin of μ is crucial to stabilize the levitation
of a small nanomagnet through the Einstein–de Haas effect.
As the size of the nanomagnet increases, the contribution of
the spin angular momentum becomes negligible due to the
increasing moment-of-inertia-to-magnetic-moment ratio and
the classical Levitron behavior is recovered.

To derive these results, we assumed (i) a single mag-
netic domain, (ii) a macrospin approximation, (iii) a rigid
body, (iv) a sphere, (v) a uniaxial anisotropy, (vi) a Ioffe-
Pritchard magnetic field, (vii) a point-dipole approximation,
(viii) that gravity can be neglected, namely, Mg/(μB ′′) �
(B0/B

′′)1/2,(B ′/B ′′), and (ix) a dissipation-free dynamics for
the system. While not addressed in this paper, it would be
very interesting to relax some of these assumptions and
study their impact on the stability diagrams. For instance,
levitating a multidomain magnet could allow one to study the
effects of the interactions between different domains on the
stability of the system. It would be particularly interesting to
explore if the A phase persists for a macroscopic multidomain
magnet at sufficiently high magnetic fields. In this scenario and
depending on the size of the magnet, not only assumption i and
ii but also iii, v, vii, viii, and ix should be carefully revisited.
One could use the exquisite isolation from the environment
obtained in levitation in high vacuum to study in-domain spin
dynamics beyond the macrospin approximation. Generaliza-
tion to different shapes and magnetocrystalline anisotropies
would allow one to investigate the shape dependence of the
stable phases, as done for the Levitron [4]. In particular,
one could explore the presence of multistability with other
magnetocrystalline anisotropies that contain more than a single
easy axis. Levitation in different magnetic field configurations,
such as quadrupole fields, might be used to further study
the role of B0 (crucial for the levitation of neutral magnetic
atoms [8,9]) in the levitation of a nanomagnet, in particular
to discern whether stable levitation can occur in a position
where the local magnetic field is zero. The effect of noise
and dissipation on the stability of the system might not only
enrich the stability diagram but also play a crucial role in any
experiments aiming at controlling the dynamics of a levitated
nanomagnet. We remark that linear stability is a necessary
but not sufficient condition for the stability of the system
at long time scales. A thorough analysis of the stability of
a nanomagnet in a magnetic field under realistic conditions
might demand consideration of nonlinear dynamics.

To conclude, we remark that one could consider cooling
the fluctuations of the system in the stable phases to the
quantum regime. The fluctuations of the degrees of free-
dom of the system could then be described as coupled
quantum harmonic oscillators using the bosonization tools
given in [17]. This procedure leads to a quadratic bosonic
Hamiltonian describing the dynamics around the equilibrium
point. The linear equations for the bosonic modes yield the
same characteristic polynomials PZ(λ) and PT (λ) derived in
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this paper within the classical and semiclassical approach.
Moreover, the bosonization approach allows one to study
the quantum properties (entanglement and squeezing) of the
relevant eigenstates of the quadratic bosonic Hamiltonian
[30], and exploit the rich physics of magnetically levitated
nanomagnets in the quantum regime.
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