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Skyrmions and multisublattice helical states in a frustrated chiral magnet

H. Y. Yuan,1,2,* O. Gomonay,1,3,† and Mathias Kläui1
1Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

2Department of Physics, Southern University of Science and Technology, Shenzhen, 518055 Guangdong, China
3National Technical University of Ukraine “KPI”, 03056 Kyiv, Ukraine

(Received 7 October 2016; revised manuscript received 30 August 2017; published 12 October 2017)

We show that frustrated exchange interactions could stabilize chiral states in a chiral ferromagnet by considering
the competition between ferromagnetic (FM) nearest-neighbor (NN) interaction and antiferromagnetic (AFM)
next-nearest-neighbor (NNN) interaction. In the low-field regime, a multisublattice helical state is found, which
is different from the normal one-sublattice helical states in a FM and the two-sublattice helical states in a
two-sublattice AFM. As the field increases further, the skyrmion lattice is even stable with a much larger
energy-preferable window than a system without frustration. We argue that the enlargement of the stability
window of skyrmions is a consequence of the reduced effective exchange interaction caused by the frustration.
As a byproduct, the hysteresis loop of the frustrated chiral system shrinks as the magnetization goes to zero
and then opens up again, which is known as the wasp-waist hysteresis loop. The critical field that separates the
narrow and wide part of the wasp-waist loop depends exponentially on the strength of NNN coupling. Our results
provide physical insight into the chiral states in the magnetic systems with the coexistence of frustrated exchange
and chiral interaction and might even prove important for novel devices, where the stability window of skyrmions
is a key asset.
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I. INTRODUCTION

Skyrmions are topologically protected spin structures and
are promising information carriers in spintronics because
they have smaller size and can be manipulated using low
current density [1]. Skyrmions in a magnetic system are
first predicted theoretically [2–4] and then realized in the
bulk magnets with noncentrosymmetric structures [5] and in
the thin films with broken inversion symmetry [6–8]. The
existence of Dzyaloshinskii-Moriya interaction (DMI) [9,10]
in these systems is a key ingredient to stabilize skyrmions.
The DMI prefers a chiral magnetic structure, while exchange
interaction and Zeeman interaction prefer a uniform structure
and they interplay to form a skyrmion/skyrmion lattice.
One skyrmion could be represented by a topological charge
q = 1/4π

∫
dxdyS · (∂xS × ∂yS), where S is the unit vector

of the spin orientation and the Cartesian coordinates x − y

lie in the surface area. The nontrivial topological charge
carried by a skyrmion suggests that the skyrmion should be
stable against external perturbations, such as the fluctuation
of applied fields. Nevertheless, an extremely large field will
destabilize the skyrmion structures and align all the spins to
form a ferromagnet state; therefore, a skyrmion can only be
stabilized at a particular field range in a magnet. For technical
applications, the stability window of skyrmions is an important
asset since it determines the working window and operational
flexibility of the skyrmion-based devices. Here we show the
possibility to enlarge the stability window of skyrmions using
frustrated exchange interaction.

Frustration in spin systems refers to competing interactions
that cannot be satisfied simultaneously and this phenomenon
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has attracted significant scientific attention in the last few
decades due to its unusual ordering properties of the ground
states [11–14]. Frustration may come from the geometry of
the lattice, such as antiferromagnetically coupled Ising spins
on a triangular lattice, and from the competing exchange
interactions in a regular lattice, such as a two-dimensional
(2D) square lattice with competing nearest-neighbor (NN)
(J1) and next-nearest-neighbor (NNN) exchange interaction
(J2) [15]. To consider the influence of frustrated exchange
interaction on the ground-state properties of a chiral system,
it is convenient to model the frustrated system as an extended
Heisenberg Hamiltonian [16–19] and achieve the ground states
via micromagnetic simulations, Monte Carlo simulations, and
first-principles calculations. To reproduce the skyrmion phase
in an ultrathin film Fe/Ir(111), four-spin exchange interaction
and DMI are included in the Heisenberg model and this
model successfully explains the reciprocal vector of skyrmion
lattice identified by scanning tunneling microscopy [17–19].
According to the simulations, the four-spin interaction plays a
crucial role to form skyrmions, but the DMI only makes a dif-
ference between skyrmions and antiskyrmions in Fe/Ir(111).
Using similar methods, skyrmions are shown to exist in a
frustrated system without DMI [20–22]. Indeed, this type
of skyrmions stabilized solely by frustration is well studied.
Meanwhile, there is another type of system with the coex-
istence of DMI and frustrated exchange interaction where
their strength may be comparable. It is still not known how
frustration influences the energy-preferable window of such
type of skyrmions. This motivates our current work.

In this paper, we focus on a model with competing exchange
interaction and DM interaction in a square lattice and show that
the frustrated interaction could enhance the effect of the DMI
and then enlarge the energy-preferable window of skyrmions.
We also find a multisublattice helical structure that is quite
different from the known three-sublattice states observed in an
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antiferromagnetic triangular lattice [23]. The phase diagram
that contains skyrmions, helical states, and ferromagnetic
states is identified. The paper is organized as follows. In Sec. II,
the model and numerical method are introduced. In Sec. III, the
phase diagram of skyrmions and wasp-waist hysteresis loop
are presented, together with detailed analysis. The discussions
and conclusions are given in Sec. IV.

II. MODEL AND METHOD

We consider a two-dimensional square lattice where the
x, y, and z axes are along the length, width, and thickness
directions, respectively. The lateral dimensions of the film are
L × L. We consider the magnetic Hamiltonian given by

H = −J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj

+
∑

〈i,j〉
D · Si × Sj − H

∑

i

Sz
i , (1)

where Si labels the classical spin orientation at site i, the
first and second sums are taken over all NN and NNN pairs,
respectively, and J1, J2 refer to the corresponding exchange
interaction strength. The third term is DMI which results in
the stabilization of skyrmions in the lattice and D is the DM
vector. This term is one type of Lifshitz invariant that stabilizes
a skyrmion state [2,24,25]. The fourth term is Zeeman energy,
where the external field H is along the thickness direction (+z).
A single spin-flip Monte Carlo (MC) method [26] is used
to simulate the ground states. To mimic an infinite system,
periodic boundary conditions in the x and y directions are
used. A typical simulation begins with a completely random
state at a sufficient high temperature, T = 10 J1/kB , where
kB is Boltzmann constant, and then the system is annealed to a
target temperature after at least 10 temperature steps. At each
temperature, 104 MC steps are taken before measurements are
performed. If not stated differently, the grid size L = 32 and
NN coupling is set to J1 = 1.0.

III. RESULTS

In Sec. III A, we show the stability of a multisublattice
helical (MSH) state in the low-field regime and defend that
it is a competing result between frustration and DMI. In
Sec. III B, we illustrate the phase diagram in the H − J2

plane that includes three distinguishable phases: ferromagnetic
(FM) states, skyrmions, and helical states (H), especially the
enlarged energy-preferable window (EPW) of the skyrmion
phase and helical phase. The expansion of the EPW of
skyrmions is attributed to the enhanced DMI in the frustrated
system. In Sec. III C, we show and discuss the wasp-waist
hysteresis loops and propose to measure the strength of NNN
using the characteristic jumps in such a loop.

A. Multisublattice helical state

Figure 1(a) shows the spin configuration of a typical MSH
state when J2/J1 = 0.8 under zero field. The spin orientation
is almost uniform in the horizontal direction (x), while it is
nonuniform in the vertical direction (y). The state by rotating
the spin configuration in Fig. 1(a) by π/2 around the z direction

FIG. 1. (a),(b) Ground states of the system for J2/J1 = 0.8 and 0,
respectively, under zero field. The pink arrows indicate the direction
of period. The color codes Sz from −1 (green), 0 (white), to +1
(orange). (c) Sz as a function of the spin position (y). (d) Replot
of Sz − y when the sites are classified into three classes, i = 3n −
2,3n − 1,3n, where n is a positive integer. y = ia, where a is the
lattice constant. Black, red, and blue squares represent 3n − 2,3n −
1,3n, respectively. (e) Sz − y for 3n − 2 sites at various fields in the
units of J1. (f) The average magnetization of the 3n − 2,3n − 1, and
3n sites Sz as a function of unit-cell coordinates (y) for various fields.
Sz = (Sz

3n−2 + Sz
3n−1 + Sz

3n)/3.

is also possible to exist in our system because there is no
in-plane anisotropy in our 2D square lattice and the two
configurations are energetically degenerate. This MSH state is
different from the normal helical state where spins rotate with
a fixed chirality in the diagonal direction of the square lattice,
as shown in Fig. 1(b). The normal helical state is stable in the
regime J2/J1 � 0.5 within our model. In the transition region
0.5 < J2/J1 < 0.8, the spin distribution of the ground state is
irregular where a curved strip pattern may appear.

To identify the spin arrangements of a MSH state, we
plot the z component of a spin (Sz) as a function of spin
position in the y direction in Fig. 1(c). Although it shows
a periodic behavior with a period of LH = 32a (a is the
lattice constant), it is difficult to recognize the multisublattice
chiral structure from this plot directly. Here we introduce
a unit cell containing three sublattices with site number
3n − 2, 3n − 1, and 3n, respectively, where n is a positive
integer. Figure 1(d) shows the space variation of spins of
the three sublattices, respectively. A cosine/sine curve with
period LH = 48a is observed for all three sublattices and a
constant phase lag exists for adjacent sublattices. Therefore,
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the spin configuration of each sublattice is a normal helical
structure, while each unit cell includes three sublattices. That
is the reason to name the state as a MSH state. The chirality
of the helix in the +y direction is counterclockwise, which
is the same as the helical states at small J2. We defend
that the existence of such a multisublattice helical state is
the competing result between DMI and exchange coupling.
Specifically, when J2/J1 < 0.5, the NNN coupling is weak,
and hence ferromagnetic NN coupling and DMI dominate
the other interactions in the system and the ground state is
a normal helical state. When J2/J1 > 0.5, the AFM NNN
coupling begins to surpass the ferromagnetic NN coupling
and competes with the DMI. Without DMI, the ground state
is a two-sublattice Néel state, where spins in a row/column
would align ferromagnetically with each other and the spins in
a column/row align antiferromagnetically. Once DMI appears,
it will prefer a chiral rotation of spins in a particular direction.
As a result of this balance, the spins keep their ferromagnetic
order in the x direction and change the two-sublattice AFM
to a three-sublattice helical state in the y direction. The
multisublattice state is very stable as it gains from both the
AFM interaction and DMI. It should be noted that one unit
cell may contain three, four, and five sublattices in a MSH
state, which depends on the strength of frustration.

To see the influence of finite fields on the stability of the
MSH state, we anneal the system under different fields and
find that the MSH state is still the ground state for fields up
to H/J1 = 1.3. Figure 1(e) shows the Sz − y for the 3n − 2
sublattice as we increase the fields (H/J1) from 0 to 1.3. It
shows that the MSH state is stable as the field increases up
to 1.2. The phase differences of the Sz − y curves among
various fields in Fig. 1(e) are randomly distributed, which
is related to the stochastic nature of the spin-flip process in
a MC simulation to obtain these states. Nevertheless, as the
field increases, the phase difference of the three sites within a
unit cell keeps adjusting to increase the average magnetization
to gain Zeeman energy, as shown in Fig. 1(f). At the phase
boundary H/J1 = 1.3, all the spins in one unit cell tilt along
the external field direction such that Sz ≈ 1.

B. Phase diagram

Besides the MSH states and the normal helical states in the
low-field regime, the ground state of a frustrated chiral system
may be skyrmion lattices in the intermediate-field regime and
ferromagnetic domains in the high-field regime. The phase
diagram of the ground states in the HJ1/D

2 − J2/J1 plane
is shown in Fig. 2, where the skyrmion phase and FM phase
are denoted as orange and yellow regions, respectively. For
J2 = 0, the EPW of the skyrmion phase is 0.24 � HJ1/D

2 <

0.73, which is consistent with literature [1]. When the reduced
field is close to 0.73, the density of skyrmions in the lattice
decreases and the hexagonal structure of the skyrmion lattice
becomes irregular. This observation may be related to the strip-
out instability of a skyrmion lattice [25]. With the increase of
frustration strength J2/J1, the EPW of the skyrmion phase first
enlarges and then shrinks, as shown by the orange region in
Fig. 2. Up to J2/J1 = 0.9, the EPW is wider than a frustration-
free system (J2 = 0) and the maximum enlargement ratio is
2.2 around J2/J1 = 0.6. As a comparison, we also simulate

FIG. 2. The calculated phase diagram in the HJ1/D
2 − J2/J1

plane. T = 6.6 × 10−3J1/kB. The color represents various phases
including FM (yellow), skyrmion (orange), H (light blue), transition
(dark blue), and MSH (pink). The dashed line refers to J2 = 0.

the case when NNN coupling is ferromagnetic (J2 < 0) and
find that the stability region of the skyrmion shrinks. One can
check the phase boundary in Fig. 2 by comparing the energy
difference between the FM, skyrmions, and helical states [27].
The choice of reference energy to calculate the energy of each
state does not influence the position of the phase boundary in
Fig. 2.

Now we provide a qualitative understanding of the phase
diagram. First, as shown in Fig. 3(a), one spin A has four
nearest spins Ann and another four NNN spins Annn. The

FIG. 3. (a) Scheme of a site A and its neighbors Ann,Annn on
a square lattice. (b) Effective NN exchange Jeff as a function of
NNN exchange strength. The red line is the fitting curve using the
formula Jeff/J1 = Exp(−1.22J2/J1). The blue line is the theoretical
prediction. (c) Calculated phase boundary using effective NN cou-
pling Jeff (red line) for H/skyrmion (0.24HJeff/D

2) and skyrmion/FM
(0.73HJeff/D

2). (d) Energy density difference between a helical state
and a FM state calculated from a 1D frustrated model under fields
H/J1 = 0 (black square), 0.6 (red dots), and 1.2 (blue up-triangles),
respectively. The light blue/yellow region refers to the regions with
FM and helix as the ground states, respectively.

134415-3



H. Y. YUAN, O. GOMONAY, AND MATHIAS KLÄUI PHYSICAL REVIEW B 96, 134415 (2017)

introduction of an antiferromagnetic NNN coupling would
prefer the spin Annn to tilt antiparallel to the central spin
A. Even though this trend would be suppressed by the
ferromagnetic NN coupling between A and Ann, it would
weaken the NN coupling strength effectively. As a result, the
effect of the DMI would be more pronounced and make the
skyrmion lattice more energetically favorable. On the other
hand, the reduction of the effective exchange coupling would
lead to a reduction of the skyrmion size within our simulations
[27]. Quantitatively, if it is assumed that the phase boundary
between the skyrmion and FM in Fig. 2 still follows the
theoretical relation HcJ1/D

2 = 0.73 derived in a frustration-
free system [27], with the exchange coupling replaced by an
effective exchange coupling that includes the effect of NNN
interaction, then the effective coupling Jeff as a function of J2

could be extracted, as shown by the black dots in Fig. 3(b). An
exponential fitting Jeff/J1 = Exp(−1.22J2/J1) describes the
J2 dependence of Jeff well. The effective exchange coupling
could well fit the phase boundary between the skyrmion and
FM state and the phase boundary between the skyrmion and
normal helical state, as shown in the red lines of Fig. 3(c).
However, the effective exchange interaction cannot capture the
phase boundary between the skyrmion phase and MSH state
for J2/J1 > 0.5. This may be attributed to the pronounced
stability of the MSH state, as discussed in Sec. III A.

To further understand the influence of frustration on the
chiral states, we consider a frustrated spin chain described by
the following Hamiltonian:

H =
∑

i

( − J1Si · Si+1 + J2Si · Si+2

−Dey · Si × Si+1 − HSz
i

)
.

The energy density of FM is EFM/J1 = −1 + J2/J1 − H/J1.
For the helical state, it is assumed that the spin rotates in the xz

plane such that Sn = (sin nqa,0, cos nqa), and the wave vector
q = 2π/LH , where LH is the period of the helix. Substituting
this trial function Sn into the Hamiltonian and minimizing the
total energy gives a quartic polynomial equation,

Dx4 + (2J1 + 4J2)x3 + (2J1 − 4J2)x − D = 0,

where x = tan(qa/2). For J2 = 0, the solution is J1 tan(qa) =
D, which is consistent with the literature [28]. For J2 �= 0, the
quartic solution has a positive real root (q0), which indicates the
existence of a helical structure. Substituting this root (q0) back
to the Hamiltonian, we could calculate the energy of the helix.
Figure 3(d) shows the energy density difference between the
helical state and FM state as a function of J2/J1. For H/J1 <

0.6, the energy of the helix is always smaller than the energy of
the FM state; hence the ground state of the system is a helix. For
H/J1 > 0.6, the helix is energetically preferred in the larger
J2/J1 regime, while the FM is energetically preferred in the
smaller J2/J1 regime. By fitting the phase boundary between
the helix and FM state in the parameter space H − J2 using
an effective exchange constant Jeff , we could extract Jeff as a
function of J2/J1 in the frustrated system, as shown in the blue
line of Fig. 3(b). The theoretical curve in the one-dimensional
(1D) model (blue line) could roughly capture the trend of
numerical results (black dots) in the simulations.

FIG. 4. First magnetization curves for (a) J2 = 0 and (b) J2 =
0.4, and hysteresis loops for (c) J2/J1 = 0.0 and (d) 0.4. 〈Sz〉 is
defined as 〈Sz〉 = 1/L2

∑
i S

z
i . Blue: helix; orange: skyrmion; yellow:

FM state; gray: mixing of helix and skyrmion. (e) is the enlarged figure
of the circled part in (d). T = 6.6 × 10−3 J1/kB, L = 32. (e) 〈Sz〉 as
a function of sample size for the descending branch (blue circles)
and ascending branch (red squares), respectively. The left inset is the
critical field Hc as a function of J2/J1. The right inset is the size effect
of the hysteresis loop at small fields for L = 32 (black circles), 96
(blue triangles), and 192 (red hexagons), respectively.

C. Hysteresis loop

In this section, we investigate the shape of the hystere-
sis loop in a frustrated chiral system. The thermal effect
is suppressed by considering a system at sufficiently low
temperature, T = 6.67 × 10−3 J1/kB. Figures 4(a) and 4(b)
show the first magnetization curves. The average magnetiza-
tion is defined as 〈Sz〉 = 1/L2 ∑

i S
z
i . To simulate the first

magnetization curve, we start from a helical state obtained
from an annealing process under H = 0 and then increase the
field in the step of 0.1J1/D

2. For J2 = 0, the helical phase
is stable up to HJ1/D

2 = 0.76 and the skyrmion phase only
exists in a narrow window for 0.76 < HJ1/D

2 < 0.95, as
shown in Fig. 4(a). For J2 = 0.4, the skyrmion is stable at the
range 0.70 < HJ1/D

2 < 1.52, which is significantly larger
than the window at J2 = 0. For both J2 = 0 and J2 = 0.4, the
stability regime of the skyrmion phase is different from the
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phase diagram shown in Fig. 2, which is due to the hysteretic
nature of a magnetic system. The final spin configuration
depends sensitively on the evolution history, even though
the initial states are the same. At a fixed low temperature
(6.67 × 10−3 J1/kB), the thermal energy is too small for the
system to overcome the energy barrier to reach a skyrmion
state unless a sufficiently large field is applied such that the
energy barrier is substantially lowered. As a comparison, the
annealing procedure used to obtain the phase diagram in Fig. 2
is more efficient to reach the real global minimum states of the
system because sufficient energy is provided to the spins to
overcome the energy barrier between the skyrmion and H/FM.

Figures 4(c) and 4(d) show the hysteresis loops for J2 = 0
and J2 = 0.4, respectively. To simulate the hysteresis loop,
we start from a FM state obtained by annealing procedures
at high fields and then decrease the fields in the step of
0.1J1/D

2 to obtain the descending branch, and then reverse
the direction of the fields to get the ascending branch. Both of
the hysteresis loops in Figs. 4(c) and 4(d) take on a wasp-waist
shape, where the loop shrinks as the magnetization goes to
zero and then opens up again. The field that separates the
wide and narrow parts of the hysteresis loop is denoted as the
critical field (Hc). The critical field is Hc = 0 for J2 = 0,
while it is at Hc = 0.16D2/J1 for J2 = 0.4, as shown in
Figs. 4(c) and 4(d). To clearly see the shape of the loops in
the small magnetization regime and understand the role of the
finite-size effect in the simulations, we vary the system size as
L = 32, 64, 96, 128, 192 and plot all the L dependence of the
magnetization for the ascending branch and descending branch
at zero field in Fig. 4(e). The gap between the two branches
decreases gradually to a constant. Therefore, it is expected that
the loop at smaller fields would result in two closely parallel
branches as L → ∞.

To understand the wasp-waist hysteresis, we refer to the
scheme in Fig. 3(a). As we reduce the fields slowly from
a high-field value, the system first stabilizes at a FM state,
where spins at A and its neighbors Ann and Annn (almost)
align in the +z direction. Similar to the arguments for the
first magnetization curves, even though the skyrmion/helical
states are the global minimum states for HJ1/D

2 < 0.76, the
FM states (q = 0) and skyrmions (q = ±1) are topologically
different [29,30], where the transformation between them
needs to overcome a finite-energy barrier. As the temperature
is low, the rotation degrees of freedom for the spins are frozen
and this makes the system difficult to climb across the barrier
to reach a lower-energy state. When antiferromagnetic NNN
coupling is present, the spins between Ann and A will tend to
align antiparallel to each other, which will destabilize the FM
state and lower the energy barrier between the FM and helical
states. That is why the critical field becomes finite. According
to this argument, the larger the NNN coupling (J2), the lower
the barrier between the FM and helical states; hence the larger
the critical field. The left inset in Fig. 4(e) demonstrates this
argument and further shows that the critical field increases
almost exponentially with the increase of J2. This also provides
a method to characterize the strength of NNN coupling in
a ferromagnetic film by measuring the critical field in the
wasp-waist hysteresis loop.

IV. DISCUSSIONS AND CONCLUSIONS

First, we compare our results with the known literature.
Skyrmions and helical states in an antiferromagnetic triangular
lattice are found to consist of three interpenetrating sublattices
[23]. The three-sublattice structure of the chiral states results
from the three-sublattice nature of the antiferromagnetic
triangular lattice and the authors also expect that the spins
have the tendency to form a two-sublattice structure in a
square lattice, which is quite different from the frustrated
square lattice we considered here. The skyrmion lattice in
our model does not have a multisublattice structure, while
the helical states in our model can consist of three, four, and
five sublattices, which depend on the strength of frustration.
Another literature studied the chiral states in an AFM square
lattice and found that the conventional skyrmion lattice is
absent in the system [31], which is also different from our
results. The difference also shows that the chiral states in a
AFM square lattice and frustrated square lattice are different.

Second, we would like to mention that a similar wasp-
waist hysteresis loop was experimentally observed in Co/Pt
multilayer structures with low disorder [32]. At the critical field
in which magnetization decreases significantly, a labyrinthlike
magnetic pattern was observed. Another system that allows for
the wasp-waist loop is a chiral system with in-plane easy-axis
anisotropy [33]. The critical field of the hysteresis loop de-
pends on the in-plane anisotropy strength. One should be care-
ful to clarify the source of the critical field when NNN coupling
and easy-axis anisotropy are possible to coexist in a system.

In conclusion, we have studied the existence and the energy-
preferable window of chiral states in a frustrated magnet. The
AFM NNN interaction diminishes the FM NN interaction to a
certain degree and the DMI becomes more pronounced; hence
both the helical states and skyrmions could be stabilized in an
even larger window compared to a system without frustration.
As the stability window of skyrmions is the key to fabricating
skyrmion-based devices, our results may be relevant for
applications. The theory based on the effective ferromagnetic
exchange could quantitatively capture the phase boundary
among skyrmions, FM states, and the helix, except for the
skyrmion/helix boundary when the AFM coupling is larger
than half of the FM coupling. In this regime, a multisublattice
helical state instead of a conventional helical state exists below
the skyrmion phase. The multisublattice state gains both AFM
and DM energy and is energetically preferable up to high fields.
Moreover, the hysteresis loop of the chiral frustrated system
takes on a wasp-waist shape and the critical field at which
the loop shrinks depends on the strength of NNN coupling.
By measuring the critical field, it is possible to determine the
strength of NNN coupling. It is known that the exchange cou-
pling of Fe could be both ferromagnetic and antiferromagnetic,
which depends on the substrates’ d-band filling [14,34,35].
Recently, an ab initio calculation showed that ferromagnetic
NN and AFM NNN interaction could coexist in some
multilayer structures such as Pt1−xIrx /Fe/Pd [36], where our
simulation results are promising to be verified experimentally.
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