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Generating transverse response explicitly from harmonic oscillators
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We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett
(CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal
and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field
and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding
to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous
representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate
that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics,
and provides a method to experimentally implement an effective magnetic field from coupling to the environment.
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I. INTRODUCTION

Quantifying dynamical response is essential to understand-
ing stochastic systems. Recent studies on exploring a general
framework of stochastic dynamics [1–5] find that the response
function not only contains the symmetric longitudinal part
representing dissipation [6], but also has an antisymmetric
transverse part as well [1,7–10]. The transverse response
has multiple corresponding physical phenomena, such as the
geometric magnetism in classical chaotic systems [11], the
magnetic field in vortex dynamics [12,13], and its counterpart
in the quantum regime leads to the geometric (Berry’s) phase
[14,15]. For longitudinal responses, both Markovian and
non-Markovian have been obtained from coupling between
the system and the harmonic oscillator bath in the CL model
[16,17], where the bath consists of a set of harmonic oscillators
thereby having a wide application to the dissipative effects on a
class of physical problems [18–20]. For transverse responses,
the CL model has been studied by explicit introduction of
external static magnetic field [21–24]. Nevertheless, to our
knowledge, there has been no exact generation of the longitu-
dinal and transverse responses simultaneously from coupling
to a single bath of harmonic oscillators. This task is necessary,
because, for example, the simultaneous generation of both
responses affects the Landau-Zener transition probability in
the manner that cannot be realized from an incoherent sum
of purely longitudinal and purely transversal noises [25]. In
addition, an explicit expression for transverse responses in
terms of a bath of harmonic oscillators would allow us to
experimentally implement and control an effective magnetic
field by manipulating the coupling with bath similarly as that
for dissipation [19].
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In previous studies, the instantaneous transverse response
can be described by Berry’s geometric magnetic field [26–28].
When the time scale of interest is of the same order as or
faster than the environment, the transverse responses may not
be instantaneous [29,30], and then Berry’s approach could
not be applied due to the restriction of adiabatic condition.
Besides, the ultrafast processes in these systems lead to the
failure of Markov approximation [31,32]. Such memory effect
has been widely observed such as in the electron gas [33–
35] and the electrodynamics responses of the semiconductor
in the Penn model [36]. Therefore the generation of the
transverse response beyond adiabatic condition and Markov
approximation remains elusive.

In this paper, we obtain exactly a stochastic dynamics in
Eq. (16) where an effective magnetic field and time-dependent
responses with both longitudinal and transverse parts are
explicitly produced from the bath of harmonic oscillators
without Markov approximation. As an extension of the original
CL model, we consider a Hamiltonian (Lagrangian) with
a general bilinear coupling that includes both position and
momentum (velocity) variables between the system and the
bath in high dimensional space, and therefore generally breaks
the time-reversal symmetry. The effective magnetic field is
time-independent corresponding to the geometric magnetism
[11], and the time-dependent transverse response may have
memory [33–35]. Thus the velocity-dependent coupling intro-
duced in our model leads to new effects on the dynamics
including the presence of geometric magnetism. Besides,
the response function and the noise correlation function
obey the fluctuation-dissipation theorem [37–40]. We further
demonstrate that our model reproduces the previous stochastic
dynamics describing nonequilibrium processes [1,41].

The paper is organized as follows. In Sec. II, we present
the model of interest and review the influence functional
approach. The effective stochastic dynamics of the subject
system including equations of motion, response functions, and
noise is derived by the influence functional method in Sec. III.
Then, we also analyze several special cases in which our
model reduces to previous representative examples. Finally,
we conclude our results and discuss them by comparing with
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previous works in Sec. IV and append the detailed derivation
of effective dynamics in Appendices.

II. MODEL AND GENERAL FRAMEWORK

In this part, we give the Hamiltonian of our system and
the corresponding Lagrangian and introduce the influence
functional method in a general manner [16,42].

A. Extended Caldeira-Leggett model

We consider a subject system interacting with a heat bath
that can be described by the Hamiltonian

H = Hsys + Hbath + Hint, (1)

where the subscript “sys” and “int” denote the subject system
and the interaction separately. The Hamiltonian of the system
is Hsys = − 1

2m
∂2

∂x2 + V (x), where h̄ is set as unit. The position
variable of the system is denoted by an N -dimensional
vector x. The system has one particle with mass m in the
external potential field V (x). The Hamiltonian of the bath is
Hbath(R) = − ∑

j
1

2mj

∂2

∂R2
j

+ 1
2

∑
k,j Vbath(Rk,Rj ), which can

have an infinite number of particles with the mutual interaction
potential Vbath(Rk,Rj ). The position variable of the j th particle
with mass mj is given by the real number Rj without loss
of generality that general dimensions can be reached by
choices of total oscillator numbers. The interaction between
the system and bath is described by the Hamiltonian Hint =
Vint(x,−i∂x ; Rj ,−i∂Rj

), which can include different couplings
for the system and the bath, such as the momentum-momentum
coupling.

To achieve our purpose, we construct the Hamiltonian

H =
[
px +

∑
k

(
EkRk − m−1

k WkPRk

)]T
m̃

2m2

[
px +

∑
k

(
EkRk − m−1

k WkPRk

)]
+ V (x)

+
∑

j

⎧⎨
⎩

[
px +

∑
k

(
EkRk − m−1

k WkPRk

)]T
Wj

2mmj

{
PRj

− m−1WT
j

[
px +

∑
k

(
EkRk − m−1

k WkPRk

)]}
+ H.c.

⎫⎬
⎭

+
∑

j

{
PRj

− m−1WT
j

[
px +

∑
k

(
EkRk − m−1

k WkPRk

)]}T
1

2mj

{
PRj

− m−1WT
j

[
px +

∑
k

(
EkRk − m−1

k WkPRk

)]}

+
∑

j

mj

2
ω2

j

(
Rj + CT

j x

mjω
2
j

)2

, (2)

where x and px are the canonical coordinate and momentum
of the subject system, and Rj s and PRj

s those for the j th
harmonic oscillator of the heat bath. The coefficients C,E,W

are real N -dimensional column vectors and the superscript
T denotes transpose. Thus our analysis is valid for general
N -dimensional space not restricted to two or three dimensions.
The subscript “H.c.” denotes Hermitian conjugation to make
the Hamiltonian Hermitian in order to describe a closed
quantum system. Besides,

m̃ = m +
∑

j

WjW
T
j

/
mj . (3)

This mass matrix is positive definite and the additional
term to the bare mass m is used to eliminate the mass
shift [18].

By the Legendre transform, we get the Lagrangian of our
model:

L =
[
m

2
ẋ2 − V (x)

]
+

∑
j

[
mj

2
Ṙ2

j − mj

2
ω2

jR
2
j

]
− �(x,ẋ)

+
∑

j

[−(xT Cj + ẋT Ej )Rj + ẋT Wj Ṙj ], (4)

where

�(x,ẋ) =
∑

j

[
xT

(
CjC

T
j

/
2mjω

2
j

)
x − ẋT

(
WjW

T
j

/
2mj

)
ẋ

]
,

(5)

which is used to eliminate the potential shift in addition to the
mass shift [18]. For later convenience, we introduce

Lsys(x,ẋ)
.= [mẋ2/2 − V (x) − �(x,ẋ)] (6)

with the subscript “sys” denoting the subject system.
The coupling in Eq. (4) is in the bilinear form including

three types: position-position, velocity-position, and velocity-
velocity, where the first variable and the second denote those
of the subject system and the heat bath respectively. Due
to simultaneous appearance of coupling Cj s and Ej s, there
exists no canonical time-reversal symmetry for our model in
Eq. (4). The coupling with velocity of the subject system can
be physically realized in a black-body radiation field [17,43],
a Josephson junction [44], and a superconducting quantum
interference device (SQUID) [16,18]. Interacting with the
dynamical radiation field, the momentum of the subject system
is coupled with the bath oscillator creation operators [17,43].
Since the creation operator is a linear combination of both
coordinate and momentum operators, the system momentum
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is coupled with bath oscillator coordinates and momentums
simultaneously. In the original CL model [16], only the
couplings Cj and Ej are separately taken to be nonzero.
Therefore our model can be seen as an extension of the CL
model.

B. Influence functional approach

The influence functional approach in the Feynman-Vernon
theory [16,42] serves an appropriate and general starting point
to obtain the equation of motion for the subject system.
The density matrix of the total system in the coordinate
representation is given by

〈x,R|ρ(t)|x ′,R′〉

=
∫

dx0dx ′
0dR0dR′

0K(x,R,t ; x0,R0,0)

× K∗(x ′,R′,t ; x ′
0,R

′
0,0)〈x0,R0|ρ(0)|x ′

0,R
′
0〉, (7)

where ρ(0) is the initial density matrix, x and x ′ are position
variables of the subject system, and R (R′) is the abbreviation
of the position variables for the set of bath particles {Rj }
({R′

j }). The propagator

K(x,R,t ; x0,R0,0) =
∫∫

DxDR exp iS[x,R]

and

K∗(x ′,R′,t ; x ′
0,R

′
0,0) =

∫∫
Dx ′DR′ exp −iS[x ′,R′],

where DxDR,Dx ′DR′ denote the path measure [42,45], and
the action function S[x] = ∫ t

0 L[x(s),ẋ(s),R(s),Ṙ(s)]ds.
The reduced density matrix for the subject system is

obtained through tracing out the bath coordinates:

ρsys(x,x ′,t) .=
∫

dRdR′δ(R − R′)〈x,R|ρ(t)|x ′,R′〉. (8)

We further suppose that the subject system is initially decou-
pled with the bath:

ρ(0) = ρsys(0)ρbath(0), (9)

where ρsys and ρbath are the density matrices of the subject
system and the bath respectively. Then, the reduced density
matrix for the subject system is

ρsys(x,x ′,t) =
∫

dx0dx ′
0J (x,x ′,t ; x0,x

′
0,0)ρsys(x0,x

′
0,0),

where the propagator of the reduced density matrix

J (x,x ′,t ; x0,x
′
0,0) =

∫∫
DxDx ′I[x,x ′] exp i(Ssys[x]-Ssys[x

′])

with Ssys[x] = ∫ t

0 Lsys[x(s),ẋ(s)]ds denoting action of the
subject system. The influence functional is

I[x,x ′] =
∫

dR0dR′
0ρbath(R0,R

′
0,0)

∫∫
DRDR′

× exp i(Sint[x,R] − Sint[x
′,R′]

+Sbath[R] − Sbath[R′]), (10)

where Sint and Sbath are actions for the Lagrangian of coupling
and bath in Eq. (4) separately. The influence functional con-
tains the full information of the bath’s effect on the subject sys-
tem. We also take the initial density matrix of the bath ρbath(0)
so that the ith bath particle is initially at equilibrium with
velocity-position coordinates (WT

i Ẋ0/mi,−CT
i X0/(miω

2
i )),

where X0 is the initial coordinate of the subject system
[20,46,47]. Otherwise, there would be additional artificial
terms in the effective equation of motion [46] (cf. Appendix C).
The equilibrium temperature of the bath is 1/(kBβ) with kB

denoting Boltzmann constant.

III. EFFECTIVE STOCHASTIC DYNAMICS

In the following, we discuss the effective stochastic dynam-
ics of the subject system. The response functions and noise are
derived and analyzed in both the discrete spectrum and the
continuum limit.

A. Equation of motion

To derive the equation of motion, we first add the total
differentiation term

�L =
∑

j

d

dt
(−ẋT WjRj ) (11)

to Eq. (4), and such addition will not change the equations
of motion in both the classical and the quantum-mechanical
regimes. Then, the total Lagrangian becomes

L = Lsys(x,ẋ) +
∑

j

(
mj

2
Ṙ2

j − mj

2
ω2

jR
2
j

)

−
∑

j

(xT Cj + ẋT Ej + ẍT Wj )Rj . (12)

The form of Eq. (12) is the same as the original CL model
except for that Rj s are coupling with the combination of x, ẋ,
and ẍ in our model. Despite of this difference, the result of
influence functional of CL model [16] can be still applied to
our model (cf. Appendix A).

We next transform to the center of mass coordinate X
.=

(x + x ′)/2 and the relative coordinate Y
.= x − x ′ for the

subject system following the previous path integral approach
[48] to dissipative systems. Then, the influence functional for
Eq. (4) is explicitly calculated out:

I[X + Y/2,X − Y/2] = exp(iIm + Re), (13)

where

Im = −
∫ t

0
dτ

∫ τ

0
ds Y T

τ

⎡
⎣R(τ − s)Ẋs + BẊτ + �mẌτ

−
∑

j

(
CjC

T
j

/
mjω

2
j

)
Xτ − f (τ )

⎤
⎦ (14)

and

Re = −
∫ t

0
dτ

∫ t

0
ds Y T

τ G(τ − s)Ys/2. (15)
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The terms R(τ − s) and G(τ − s) are given in Eqs. (18) and
(22). f (τ ) is eliminated by the choice of the initial equilibrium
distribution of the bath at arbitrary temperature in Appendix C.
The mass shift �m = ∑

j (WjW
T
j /mj ) and the frequency shift

by − ∑
j (CjC

T
j /mjω

2
j ) are eliminated by �(x,ẋ) defined by

Eq. (5).
In the classical regime, the dominant contribution in the

propagator of the density operator comes from the path with
x(t) close to x ′(t) [49], which means |x − x ′| � |x + x ′|, i.e.,
|Y | � |X|. Thus we expand J [X,Y ] to the order of Y 2 and
integrate out Y . Then we achieve one of the main results of
this paper, the equation of motion for the subject system:

mẌτ = −�V (Xτ ) −
∫ τ

0
ds R(τ − s)Ẋs − BẊτ + Frand(τ ),

(16)

where the time-independent effective magnetic field is given
by the N × N dimensional matrix:

B =
∑

j

(
EjW

T
j − WjE

T
j

)
mj

, (17)

the detailed derivations and formulations of which are given
in Appendix B.

B. Response functions and noise

The N × N -dimensional response matrix R(τ − s) can be
decomposed as

R(τ − s) = Rl(τ − s) + Rt(τ − s), (18)

where the subscripts “l” and “t” denote “longitudinal” and
“transverse” separately. The longitudinal and the transverse
responses take the form of

Rl(τ − s) =
∑

j

cos ωj (τ − s)

mjω
2
j

[
ω2

jEjE
T
j + (

Cj − ω2
jWj

)

× (
Cj − ω2

jWj

)T ]
, (19)

Rt(τ − s) =
∑

j

sin ωj (τ − s)

mjωj

[(
ω2

jWj − Cj

)
ET

j

− Ej

(
ω2

jWj − Cj

)T ]
. (20)

The random force Frand obeys a Gaussian distribution with
〈Frand(τ )〉 = 0 and〈

Frand(τ )FT
rand(s)

〉 = G(τ − s). (21)

The N × N dimensional noise correlation matrix is

G(τ − s) =
∑

j

1

2
ωj coth

βωj

2
R(j )(τ − s), (22)

where R(j )(τ − s) denote the j th term in the summation of
R(τ − s).

From Eqs. (17), (19), and (20), the quantities B, Rl(τ −
s), and Rt (τ − s) can be independent with each other. Specifi-
cally, we can choose coupling constants C, E, and W to make
several of B,Rl(τ − s), and Rt (τ − s) nonzero. We list three
typical cases in Table I.

TABLE I. The response functions under three different choices
on the coupling coefficients in the discrete spectral case.

B Rl(τ − s) Rt (τ − s)

E = 0,

C − ω2W �= 0
zero nonzero zero

W = 0,

CET − ECT �= 0
zero nonzero nonzero

C − ω2W = 0,

EWT − WET �= 0
nonzero nonzero zero

Note that for the discrete spectral density if Rl(τ − s)
vanishes, B and Rt (τ − s) are zero as well. However, when
the bath consists of infinite many harmonic oscillators, these
three response functions can be nonzero alone [47].

We make several remarks here. First, both the effective
magnetic field B and the transverse response Rt(τ − s) are
antisymmetric matrices, and can induce a curl flux. When C =
0, Rt(τ − s) = − ∑

j ωjBj sin ωj (τ − s), where Bj denotes
the j th term in the summation of B. Second, as indicated
in Eq. (17), the effective magnetic field B is generally
independent of spectral functions for Rl,Rt, and thus it can still
exist with a fast oscillating bath. In addition, we have imposed
no condition for the time scale of interest and thus the quantum
phase induced by the closed motion in this effective magnetic
field exposes the geometrical property [11,50].

The noise correlation function and the velocity response
function in Eq. (22) obeys the fluctuation-dissipation theorem
[38,39]. It can be described in the integral form:

G(τ − s) = 1

π

[∫ +∞

0
dωχ ′′

FFl(ω) coth
βω

2
cos ω(τ − s)

+
∫ +∞

0
dωχ ′′

FFt(ω) coth
βω

2
sin ω(τ − s)

]
, (23)

where the symmetric matrix χ ′′
FFl(ω) and antisymmetric matrix

χ ′′
FFt(ω) correspond to the longitudinal and the transverse

response functions separately. The correlation matrix G(τ − s)
is symmetric under the combination of the matrix transpose
and the time reversal. Equation (23) has also been validated
in a matrix approach by the first-order theory of irreversible
thermodynamics [37]. In high-temperature regime βωj � 1
for all j , it reduces to the fluctuation-dissipation theorem of
the second type [39]: G(τ − s) = R(τ − s)/β. In frequency
space, it takes the form of

〈
F̃rand,ω[ω]F̃ T

rand,ω[ω′]
〉 = R̃[ω] δ(ω + ω

′
)/(πβ), (24)

which is the Nyquist theorem [51].

C. Continuous bath spectrum limit

To show that Eq. (16) can reduce to representative ex-
amples of stochastic dynamics, we consider continuous fre-
quency distribution for bath oscillators:

∑
j → ∫

dω ρD(ω),
where ρD(ω) = ∑

j δ(ω − ωj ) is the frequency density. Then,
the longitudinal and the transverse response functions are
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TABLE II. Four choices on the coupling coefficients in Eq. (4) leading to the same effective dynamics, Eq. (33). C-bath denotes that C �= 0
with other coupling coefficients vanishing, and the same notation goes for each choice.

Jl(ω) �(x,ẋ)

C-bath [16] ρD(ω)C(ω)CT (ω)/(mω)
∫

dω ρD(ω)xT CCT x/(2mω2)

E-bath [16] ρD(ω)ωE(ω)ET (ω)/m 0

W-bath ρD(ω)ω3W (ω)WT (ω)/m − ∫
dω ρD(ω)ẋT WWT ẋ/(2m)

CW-bath
ρD(ω)[C(ω) − ω2W (ω)]
·[C(ω) − ω2W (ω)]T /(mω)

− ∫
dωρD(ω)ẋT WWT ẋ/(2m)

+ ∫
dωρD(ω)xT CCT x/(2mω2)

denoted by

Rl(τ − s)
.=

∫ +∞

0
dω[Jl(ω) cos ω(τ − s)]/ω, (25)

Rt(τ − s)
.=

∫ +∞

0
dω[Jt(ω) sin ω(τ − s)]/ω, (26)

where we introduce the spectral functions Jl(ω) and Jt(ω).
By Eqs. (19) and (20) with the coupling constants valued at
ω = ωj ,

Jl(ω)
.= ρD(ω)

mω
[(C(ω) − ω2W (ω))(C(ω) − ω2W (ω))T

+ω2E(ω)ET (ω)], (27)

Jt(ω)
.= ρD(ω)

m
[E(ω)(C(ω) − ω2W (ω))T

− (C(ω) − ω2W (ω))ET (ω)], (28)

where we treat these spectral functions as smooth functions.
Since we are interested in the long-time behavior of the
effective dynamics, it is sufficient to expand them to the lowest
order of the frequency ω:

Jl(ω) = (2Sωc/π )(ω/ωc)κl exp(−ω/ωc), (29)

Jt(ω) = Aω(ω/ωc)κt exp(−ω/ωc), (30)

where ωc is a cutoff frequency and κl,t is the corresponding
lowest order. From Eq. (19), the friction matrix S and matrix A

are symmetric and antisymmetric separately, i.e., S = ST and
A = −AT . These spectral functions determine the equation of
motion since they give the response functions by Eqs. (25) and
(26):

Rl(τ − s) = Re

{
2Sωc

π

(κl)

[1 − iωc(τ − s)]κl

}
(31)

and

Rt (τ − s) = Im

{
Aωc

(κt + 1)

[1 − iωc(τ − s)](κt+1)

}
, (32)

where (x) is  function and various diffusion properties
related with the longitudinal response Rl(τ − s) have been
investigated in the quantum Brownian system [52–56].

D. Representative stochastic dynamics

The first example is to reproduce the original CL model
[16]. If we choose the ohmic bath for Jl(ω) (κl = 1):

Jl(ω) = (2Sω/π ) exp(−ω/ωc), and Jt(ω) = 0, our model
when ωc → +∞ produces the Langevin equation describing
the quantum Brownian motion [16] by Eqs. (31) and (32):

mẌ = − 
X V − SẊ + Frand(τ ), (33)

where the noise correlation function〈
Frand(τ )FT

rand(s)
〉 =

∫ +∞

0
(Sω/π ) coth(βω/2) cos ω(τ − s).

In the high-temperature regime βω � 1, it becomes
〈Frand(τ )FT

rand(s)〉 = (2S/β)δ(τ − s). Furthermore, there are
many choices on the coupling coefficients C, E, and W in our
model that can give the same spectral functions Jl,t(ω) above.
Thus they lead to the same equation of motion, Eq. (33). We
list four choices in Table II. The redundant degrees of freedom
of choosing the coupling coefficients to generate Eq. (33) has
also been discussed [18,57].

Furthermore, Eq. (16) can reduce to the stochastic
dynamics for nonequilibrium processes [1]. If we choose
the ohmic bath for Jl(ω) (κl = 1) and Jt(ω) (κt = 1): Jl(ω) =
(2Sω)/π exp(−ω/ωc), Jt(ω) = Aω2/ωc exp(−ω/ωc), by
Eqs. (31) and (32), we obtain both of the longitudinal and the
transverse responses:∫ τ

0
ds Rl(τ − s)Ẋs = SẊτ , (34)∫ τ

0
ds Rt(τ − s)Ẋs = AẊτ . (35)

We now have different ways to choose the coupling coeffi-
cients. For example, let C,E be nonzero and W zero, and then
B = 0. The equation of motion takes the form of

mẌ = − 
X V − (S + A)Ẋ + Frand(τ ), (36)

with the noise correlation 〈Frand(τ )FT
rand(s)〉 = (2S/β)δ(τ − s)

in the high-temperature regime. It has the same form as
the Klein-Kramers equation in previous works [1]. This
equation in three dimension also corresponds to the classical
equation of motion for a charged particle in superfluid with
vortices [12].

IV. CONCLUSIONS AND DISCUSSIONS

We compare our results with previous studies. First, the
effect of magnetic field in the system-plus-bath model has been
discussed [21–24]. However, the magnetic field there is put by
hand an external field or a vector potential in the Hamiltonian,
rather than explicitly generated by bath oscillators. Second,
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generating the transverse response from the system-plus-
bath mechanism has attracted sustained theoretical interest
[11,24,58–60]. However, those previous attempts typically
require the adiabatic approximation that the system variables
change very slowly compared with the bath variables, while
ideal adiabaticity is difficult to achieve in real experiments.
Third, all of the four couplings in Eq. (4) have been taken into
account [57,61], but it is restricted to one-dimensional space.
Therefore Eq. (16) that includes the effective magnetic field
and the transverse response with memory has not been exactly
obtained from the harmonic oscillator bath before. Moreover,
the simultaneous occurrences of the momentum-momentum
Wj and the coordinate-coordinate Cj couplings have been
applied to the quantum frustration where two ensembles of
independent harmonic oscillators are responsible for these
two different couplings separately [62]. Such setting can be
reduced to by our model in Eq. (4) if Cj = 0 for a set of
js while Wj = 0 for the rest of js. Therefore our model can
produce the phase diagram triggered by competing dissipa-
tive processes of two noncommutating operators [x,px] �= 0
[63,64]. Besides this generalization, the inclusion of transverse
responses is expected to enrich the possible phases in addition
to the previous picture of longitudinal responses alone.

To conclude, we have obtained a stochastic dynamics with
an effective magnetic field, the longitudinal and the transverse
response functions exactly from bath of harmonic oscillators
in the influence functional approach. Two representative
examples of previous stochastic dynamics in classical regime
has been reproduced from our model. The physical effects of
longitudinal and transverse response functions in subohmic,
ohmic, and superohmic baths will be classified in our future
work. Experimental implementation on the effective magnetic
field requires further investigations. Generalization of our
model to the system with non-trivial topology [65] and
quantum regime remain to be explored since the addition of
total derivatives in Eq. (11) can change quantum-mechanical
quantities, such as ground-state degeneracies in systems with
nontrivial topology [50].
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APPENDICES

In the following, we append the results used in the previous
sections, including the influence functional formulation and
the effective dynamics.

APPENDIX A: DERIVATION ON INFLUENCE
FUNCTIONAL

We first review the quantum influence functional of
Caldeira-Leggett model, which corresponds to Eq. (4) with
Cj = Cj , Ej = 0, and Wj = 0. In the center of mass coordi-
nate and the relative coordinate X

.= (x + x ′)/2, Y
.= x − x ′,

the influence functional is [16,20]

Ic[X + Y/2,X − Y/2]

= exp
∫ t

0
dτ

∫ t

0
ds −iY T

τ [Rc(τ − s)Ẋs + hc(τ − s)Xs]

× exp
∫ t

0
dτ

∫ t

0
ds −Y T

τ

Gc(τ − s)

2
Ys, (A1)

where we have defined

Rc(τ − s) = 0, (A2)

hc(τ − s) =
∑

j

2θ (τ − s)

{
− sin ωj (τ − s)

2mjωj

CjC
T
j

}
, (A3)

Gc(τ − s) =
∑

j

[
CjC

T
j

cos ωj (τ − s)

2mjωj

]
coth

βωj

2
. (A4)

We can generalize this result of the Caldeira-Leggett model to
our model by the following substitutions:

Cj → 1, X → X̃j and Y → Ỹj , (A5)

where X̃j
.= (x̃j + x̃ ′

j )/2 and Ỹj
.= (x̃j − x̃ ′

j ), with x̃ ′
j defined

similarly to x̃j by

x̃ ′
j

.= CT
j x ′ + ET

j ẋ ′ + WT
j ẍ ′′, (A6)

x̃j
.= CT

j x + ET
j ẋ + WT

j ẍ. (A7)

The coupling between this transformed system coordinate x̃j

and the bath coordinates has the same bilinear from as that of
the original CL model [16], and thus we can directly apply
their influence functional approach.

Then the influence functional of our model can be
expressed as

Ic[X̃ + Ỹ /2,X̃ − Ỹ /2] = exp(iIm + Re), (A8)

where

Im =
∑

j

∫ t

0
dτ

∫ t

0
ds Ỹ T

τ,j

{
2θ (τ − s)

sin ωj (τ − s)

2mjωj

}
X̃s,j

(A9)

and

Re =
∑

j

∫ t

0
dτ

∫ t

0
ds Ỹ T

τ,j

1

2

×
{
−cos ωj (τ − s)

2mjωj

}
coth

βωj

2
Ỹs,j . (A10)

We first simplify the notation in the following manner:

Im =
∫ t

0
dτ

∫ t

0
dsỸ T

τ

{
2θ (τ − s)

sin ω(τ − s)

2mω

}
X̃s (A11)

and

Re =
∫ t

0
dτ

∫ t

0
dsỸ T

τ

1

2

{
−cos ω(τ − s)

2mω

}
coth

βω

2
Ỹs ,

(A12)
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where we have suppressed the subscripts “j”s and its summation
∑

j just for convenience and we will restore them in the end.
We first evaluate the imaginary part Im by inserting the replacements in Eq. (A5) for Ỹτ :

Im =
∫ t

0
dτ

∫ t

0
ds

[
Ÿ T

τ W + Ẏ T
τ E + Y T

τ C
][

2θ (τ − s)
sin ω(τ − s)

2mω

]
X̃s = I1 + I2 + I3. (A13)

We have defined

I1
.=

∫ t

0
dτ

∫ t

0
dsŸ T

τ W

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
X̃s =

∫ t

0
dτ

∫ t

0
dsY T

τ W
d

dτ

[
2θ (τ − s)

cos ω(τ − s)

2m

]
X̃s,

I2
.=

∫ t

0
dτ

∫ t

0
dsẎ T

τ E

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
X̃s =

∫ t

0
dτ

∫ t

0
ds − Y T

τ E
d

dτ

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
X̃s

I3
.=

∫ t

0
dτ

∫ t

0
dsY T

τ C

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
X̃s, (A14)

where we have integrated it by part and omitted the surface terms dependent on Y (t) and Y (0) since these terms contributes
impulse forces proportional to δ(τ ) or δ(τ − t) in the final equation of motion. We discard these surface terms because we are
interested in the time 0 � τ � t .

We sum up I1,2,3:

Im =
∫ t

0
dτ

∫ t

0
dsY T

τ

{
W

d

dτ

[
2θ (τ − s)

cos ω(τ − s)

2m

]
− E

d

dτ

[
2θ (τ − s)

sin ω(τ − s)

2mω

]

+C

[
2θ (τ − s)

sin ω(τ − s)

2mω

]}
[CT Xs + ET Ẋs + WT Ẍs]

= I4 + I5 + I6, (A15)

where we have further defined

I4
.=

∫ t

0
dτ

∫ t

0
dsY T

τ

{
W

d

dτ

[
2θ (τ − s)

cos ω(τ − s)

2m

]
− E

d

dτ

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
+ C

[
2θ (τ − s)

sin ω(τ − s)

2mω

]}
CT Xs

=
∫ t

0
dτ

∫ t

0
dsY T

τ W 2θ (τ − s)
cos ω(τ − s)

2m
CT Ẋs +

∫
Y T

τ W2θ (τ )
cos ωτ

2m
CT X0

−
∫ t

0
dτ

∫ t

0
dsY T

τ E 2θ (τ − s)
sin ω(τ − s)

2mω
CT Ẋs −

∫
Y T

τ E 2θ (τ )
sin ωτ

2mω
CT X0

−
∫ t

0
dτ

∫ t

0
dsY T

τ CCT cos ω(τ − s)

2mω2
2θ (τ − s)Ẋs −

∫ t

0
dτY T

τ CCT 2θ (τ )
cos ωτ

2mω2
X0

+
∫ t

0
dτ

∫ t

0
dsY T

τ CCT 2δ(τ − s)
1

2mω2
Xs, (A16)

I5
.=

∫ t

0
dτ

∫ t

0
dsY T

τ

{
W

d

dτ

[
2θ (τ − s)

cos ω(τ − s)

2m

]
− E

d

dτ

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
+ C

[
2θ (τ − s)

sin ω(τ − s)

2mω

]}
ET Ẋs

=
∫ t

0
dτ

∫ t

0
dsY T

τ

{
W 2δ(τ − s)

1

2m
− W 2θ (τ − s)

ω sin ω(τ − s)

2m

−E 2θ (τ − s)
cos ω(τ − s)

2m
+ C 2θ (τ − s)

sin ω(τ − s)

2mω

}
ET Ẋs, (A17)

and

I6
.=

∫ t

0
dτ

∫ t

0
dsY T

τ

{
W

d

dτ

[
2θ (τ − s)

cos ω(τ − s)

2m

]
− E

d

dτ

[
2θ (τ − s)

sin ω(τ − s)

2mω

]
+ C

[
2θ (τ − s)

sin ω(τ − s)

2mω

]}
WT Ẍs

=
∫ t

0
dτ

∫ t

0
dsY T

τ

{
W 2δ′(τ − s)

1

2m
− W 2θ (τ − s)

ω2 cos ω(τ − s)

2m
− E 2δ(τ − s)

1

2m

+E 2θ (τ − s)
ω sin ω(τ − s)

2m
+ C 2θ (τ − s)

cos ω(τ − s)

2m

}
WT Ẋs

−
∫ t

0
dτY T

τ

{
−W 2θ (τ )

ω sin ωτ

2m
+ E 2θ (τ )

cos ωτ

2m
+ C

[
2θ (τ )

sin ωτ

2mω

]}
WT Ẋ0. (A18)
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We have set the initial values for X(s = 0) and Ẋ(s = 0) as X0 and Ẋ0, and omitted the term proportional to Y (τ = 0) in the last
line above. These terms will contribute to the equation of motion by an external force f (τ ) [cf. Eq. (B5)], which is a finite force
at any time τ . We have also done the integral by part, and neglect the surface terms dependent on Y (0) and Y (t).

We sum up I4,5,6 to get Im:

Im = I4 + I5 + I6 = −
∫ t

0
dτ

∫ τ

0
ds Y T

τ

⎡
⎣R(τ − s)Ẋs + BẊτ + �mẌτ −

∑
j

CjC
T
j

mjω
2
j

Xτ − f (τ )

⎤
⎦, (A19)

where explicit expressions of the terms R(τ − s), B,�m, f (τ ) are given by Eqs. (19), (20), and (17),

f (τ ) =
∑

j

[
ω2

jWj − Cj

mjω
2
j

cos ωjτ − Ej sin ωjτ

mjωj

]
CT

j X0 +
[

ω2
jWj − Cj

mjωj

sin ωjτ + Ej cos ωjτ

mj

]
WT

j Ẋ0, (A20)

and G(τ − s) by Eq. (22).
Next, we evaluate the real part “Re” in the influence functional. We use integration by part, and neglect the surface terms

dependent on Y (0) and Y (t):

Re =
∫ t

0
dτ

∫ t

0
dsỸ T

τ

1

2

[
−cos ω(τ − s)

2mω

]
coth

βω

2
Ỹs

=
∫ t

0
dτ

∫ t

0
ds

[−ω2Y T
τ W + Y T

τ C
]1

2

[
−cos ω(τ − s)

2mω

]
coth

βω

2
[CT Ys − WT ω2Y ] +

∫ t

0
dτ

∫ t

0
ds ωY T

τ E
1

2

×
[
−cos ω(τ − s)

2mω

]
coth

βω

2
ET ωYs +

∫ t

0
dτ

∫ t

0
ds[−ω2Y T

τ W + Y T
τ C]

1

2

[
+ sin ω(τ − s)

2mω

]
coth

βω

2
ET ωYs

+
∫ t

0
dτ

∫ t

0
ds ωY T

τ E
1

2

[
− sin ω(τ − s)

2mω

]
coth

βω

2

[
CT Ys − WT ω2Ys

]
. (A21)

It can be further simplified as

Re =
∫ t

0
dτ

∫ t

0
ds −Y T

τ

G(τ − s)

2
Ys. (A22)

As a result, the influence functional takes the form of

Ic[X + Y/2,X − Y/2] = exp(iIm + Re)

= exp

⎧⎨
⎩−i

∫ t

0
dτ

∫ τ

0
ds Y T

τ

⎡
⎣R(τ − s)Ẋs + BẊτ + �mẌτ −

∑
j

CjC
T
j

mjω
2
j

Xτ − f (τ )

⎤
⎦

⎫⎬
⎭

× exp

{∫ t

0
dτ

∫ t

0
ds −Y T

τ

G(τ − s)

2
Ys

}
. (A23)

APPENDIX B: DERIVATION ON THE EQUATION OF MOTION

To get the equation of motion, we put the influence functional into the propagator of the density operator:

J [X,Y ] =
∫

DX DY exp

(
i

h̄

{
Ssys[X + Y/2] − Ssys[X − Y/2]

})
I[X + Y/2,X − Y/2].

We next expand the functionals to the first order of Yτ , and explicitly do the functional integral of Yτ without the surface terms:

J [X] =
∫

DX exp
∫

dτ1

∫
dτ2

⎛
⎝−1

2

⎡
⎣(m + �m)Ẍτ1 + �

(
V

(
Xτ1

) + �
(
Xτ1 ,Ẋτ1

))

+ ∂Ẋτ1
�

(
Xτ1 ,Ẋτ1

) +
∫

ds R(τ1 − s)Ẋs −
∑

j

CjC
T
j

mjω
2
j

Xτ1 + BẊτ1 − f (τ1)

⎤
⎦

T

G−1(τ1 − τ2)

⎡
⎢⎣(m + �m)Ẍτ2

+ �
(
V

(
Xτ2

) + �
(
Xτ2 ,Ẋτ2

)) + ∂Ẋτ2
�

(
Xτ2 ,Ẋτ2

) +
∫

ds R(τ2 − s)Ẋs −
∑

j

CjC
T
j

mjω
2
j

Xτ2 + BẊτ1 − f (τ2)

⎤
⎦

⎞
⎠, (B1)
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where �(x,ẋ) is supposed to eliminate the mass shift and the potential shift [18]. Here, G−1(τ − s) is defined as∫ t

0
G−1(τ − w)G(w − s)dw = δ(τ − s). (B2)

This gives the equation of motion of the subject system in the classical regime:

mẌτ = (−�mẌτ − ∂Ẋτ
�(Xτ ,Ẋτ )

) − �

⎛
⎝V (Xτ ) + �(Xτ ,Ẋτ ) −

∑
j

XτCjC
T
j Xτ

2mjω
2
j

⎞
⎠

−
∫ τ

0
ds R(τ − s)Ẋs − BẊτ + f (τ ) + frand(τ ). (B3)

The random force frand(τ ) has the following correlation:〈
frand(τ )f T

rand(s)
〉 = G(τ − s) (B4)

where 〈. . . 〉 is the statistical average over the system ensemble.
To eliminate the mass shift �m and the frequency shift, we set the function �(x,ẋ) by Eq. (5):

�(x,ẋ) =
∑

j

(
xT

CjC
T
j

2mjω
2
j

x − 1

2
ẋT

WjW
T
j

mj

ẋ

)
.

Then, the equation of motion takes the form as

mẌτ = −�V (Xτ ) −
∫ t

0
ds R(τ − s)Ẋs − BẊτ + f (τ ) + frand(τ ). (B5)

APPENDIX C: CHOICES ON THE INITIAL BATH DENSITY OPERATOR

To eliminate the force f (τ ) in Eq. (B5), we can choose a proper initial distribution of the bath oscillators. We want to find
an initial state of the heat bath that is locally coupled with the system at the starting point, and the force f is combined into
the random force before the bath is traced out. We achieve this by solving out the part of the Euler-Lagrange equation, which
contains an expected random force. The general bilinear Lagrangian in Eq. (4) gives the equations of motion:

mẌ + WR̈ + WWT

m
Ẍ − EṘ = − 
 V − CCT

mω2
X − CR (C1)

and

mR̈ + WT Ẍ = −mω2R − CT X − ET Ẋ, (C2)

where E = D + U . For convenience, we have omitted the subscript “j” and the summation
∑

j . To get the form of the random
force, it is convenient to solve this set of linear differential equations by Laplace transform techniques:

mẌ + 
V + CCT

mω2
X − W

m
(CT X + ET Ẋ) = (ω2W − C)R + EṘ, (C3)

where R has the image function solved by Eq. (C2):

R̃[p] = 1

m(ω2 + p2)
× [m(Ṙ0 + pR0) + (ET + pWT )X0 + WT Ẋ0 − (CT + pET + p2WT )X̃[p]], (C4)

with R0 ≡ R(τ = 0). Then, put the object function R(τ ) of Eq. (C4) into Eq. (C3), we obtain the following equation:

mẌ = − 
 V − EWT − WET

m
Ẋ + frand(R0,Ṙ0) + f (τ ) −

∫ τ

0
ds

cos ω(τ − s)

mω2
[(C − ω2W )(C − ω2W )T + ω2EET ]Ẋ(s)

−
∫ τ

0
ds

sin ω(τ − s)

mω
[(ω2W − C)ET − E(ω2W − C)T ]Ẋ(s), (C5)

where the velocity response parts are exactly the same those in the equation of motion, Eq. (B5), and the forces frand(R0,Ṙ0) and
f (τ ) are

frand(R0,Ṙ0) =
[

(ω2W − C)
sin ωτ

ω
+ E cos ωτ

]
Ṙ0 + [(ω2W − C) cos ωτ − Eω sin ωτ ]R0 (C6)
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and

f (τ ) =
[

(ω2W − C)
sin ωτ

ω
+ E cos ωτ

]
WT

mω
Ẋ0 + [(ω2W − C) cos ωτ − Eω sin ωτ ]

CT

mω2
X0. (C7)

1. High-temperature regime

To eliminate the force f (τ ) in high-temperature regime, we adopt the method in Refs. [20,46]. The force f (τ ) can be combined
with frand(τ ) above in the following way:

Frand
.= f (τ ) + frand(R0,Ṙ0) =

[
(ω2W − C)

sin ωτ

ω
+ E cos ωτ

](
Ṙ0 + WT

m
Ẋ0

)

+ [(ω2W − C) cos ωτ − Eω sin ωτ ]

(
R0 + CT

mω2
X0

)
. (C8)

After applying the substitution

Ṙ0 → Ṙ0 + WT

m
Ẋ0, R0 → R0 + CT

mω2
X0 (C9)

to the equipartition theorem at high temperature, we get another set of equipartition theorem [66]:〈(
Ṙ0 + WT

m
Ẋ0

)(
R0 + CT

mω2
X0

)T
〉

= 0;

〈(
Ṙ0 + WT

m
Ẋ0

)(
Ṙ0 + WT

m
Ẋ0

)T
〉

= 1

mβ
I, (C10)

〈(
R0 + CT

mω2
X0

)(
R0 + CT

mω2
X0

)T
〉

= 1

mω2β
I,

where “0” and “I” are zero matrix and identity matrix, respectively.
This equipartition theorem implies that the bath oscillators are initially at thermodynamic equilibrium with the coordinate

(−CT X0/(mω2),−WT Ẋ0/m) in position-velocity space and we can set the classical phase space distribution function
as ρcl

bath(R0,P0) = exp(−β[(P0 + WT Ẋ0)2/(2m) + mω2(R0 + CT X0/(mω2))2/2]) with P0 ≡ mṘ0. Then, the newly defined
random force Frand has 〈Frand(τ )〉 = 0, and after the summation

∑
j

〈
Frand(τ )FT

rand(s)
〉 =

∑
j

1

β

{
cos ωj (τ − s)

mjω
2
j

[(
Cj − ω2

jWj

)(
Cj − ω2

jWj

)T + ω2
jEjE

T
j

]

+ sin ωj (τ − s)

mjωj

[(
ω2

jWj − Cj

)
ET

j − Ej

(
ω2

jWj − Cj

)T ]}
= lim

β→0
G(τ − s), (C11)

which tells that Frand(τ ) obeys a Gaussian distribution and has zero mean value

〈Frand〉 = 0,
〈
Frand(τ )FT

rand(s)
〉 = 〈

frand(τ )f T
rand(s)

〉 = lim
β→0

G(τ − s) (C12)

in the classical high temperature limit. Finally, the equation of motion is

mẌτ = −�V (Xτ ) − BẊτ −
∫ τ

0
R(τ − s)Ẋs + Frand(τ ), (C13)

with the noise term Frand(τ ) satisfying Eq. (C12).

2. Generalization to arbitrary temperature

To eliminate the force f (τ ) in Eq. (B5) at arbitrary temperature, we apply the following initial density operator for the bath:

ρbath(R1,R0; t = 0) = 1

2

{∫ R1−βWT Ẋ0/m

R0

+
∫ R0−βWT Ẋ0/m

R1

}
DR(τ ) exp

{∫ β

0
−

[
1

2
m(Ṙ(τ ) + WT Ẋ0/m)2

+ 1

2
mω2

(
R(τ ) + CT X0

mω2
+ WT Ẋ0τ

m

)2
]
dτ

}
, (C14)
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where we have defined the imaginary time path integral by t → −iτ and we have already absorbed the renormalization
constant into the measure

∫
DR(τ ). The time derivatives above are for the imaginary time derivatives, e.g., Ṙ ≡ dR/dτ and

Ẋ0 ≡ dX/dτ |τ=0. To see how this initial density operator works, we can evaluate the mean value of any quantity in the form as
N (Ṙ0 + WT Ẋ0/m,R0 + CT X0/(mω2)):

〈N (Ṙ0 + WT Ẋ0/m,R0 + CT X0/(mω2))〉τ
=

∫∫
dR1dR0 · δ(R1 − R0) · ρbath(R1,R0; t = 0) · N )Ṙ0 + WT Ẋ0/m,R0 + CT X0/(mω2))

=
∫∫

dR1dR0 · δ(R1 − R0)
∫

dRβ · δ(R1 − (Rβ + WT Ẋ0β/m))
∫ Rβ

R0

DR(τ ) exp

{∫ β

0
−

[
1

2
m(Ṙ(τ ) + WT Ẋ0/m)2

+ 1

2
mω2

(
R(τ ) + CT X0

mω2
+ WT Ẋ0τ

m

)2
]}

N (Ṙ0 + WT Ẋ0/m,R0 + CT X0/(mω2)), (C15)

where 〈· · ·〉τ means the quantity is averaged on the imaginary time and the derivatives in it are imaginary time derivatives. Then
we transform the functional integral R(τ ) to r(τ ) by r(τ ) ≡ R(τ ) + CT X0/(mω2) + τWT Ẋ0/m. In this coordinate,

〈N (Ṙ0 + WT Ẋ0/m,R0 + CT X0/(mω2))〉 =
∫∫

dR1dR0 δ(R1 − R0)
∫

dRβ δ(R1 − (Rβ + WT Ẋ0β/m))

×
∫ rβ

r0

Dr(τ ) exp

{∫ β

0
−

[
mṙ(τ )2

2
+ 1

2
mω2r(τ )2

]}
N (ṙ0,r0), (C16)

where r0 ≡ R0 + CT X0/(mω2) and rβ ≡ Rβ + CT X0/(mω2) + WT Ẋ0β/m. Therefore

〈N (Ṙ0 + WT Ẋ0/m,R0 + CT X0/(mω2))〉 =
∫∫

dR1dr0 δ(R1 − r0 + CT X0/(mω2))
∫

drβ δ(R1 − rβ + CT X0/(mω2))

×
∫ rβ

r0

Dr(τ ) exp

{∫ β

0
−

[
mṙ(τ )2

2
+ 1

2
mω2r(τ )2

]}
N (ṙ0,r0)

=
∫

dr0

∫ r0

r0

Dr(τ ) exp

{∫ β

0
−

[
mṙ(τ )2

2
+ 1

2
mω2r(τ )2

]}
N (ṙ(0),r(0)). (C17)

Then we set the function N (ṙ0,r0) to be the following quantities and transform back to the real time〈(
Ṙ0 + WT

m
Ẋ0

)(
R0 + CT

mω2
X0

)T
〉

t

= i
〈
ṙ0r

T
0

〉
τ
;

〈(
Ṙ0 + WT

m
Ẋ0

)(
Ṙ0 + WT

m
Ẋ0

)T
〉

t

= −〈
ṙ0ṙ

T
0

〉
τ
, (C18)

〈(
R0 + CT

mω2
X0

)(
R0 + CT

mω2
X0

)T
〉

t

= 〈
r0r

T
0

〉
τ
,

and we will calculate them one by one. To do so, we will use the Matsubara representation:

r(τ ) =
∑

n

rn exp(−i�nτ ), (C19)

where �n ≡ 2nπ/β. In the Matsubara modes,

i
〈
ṙ0r

T
0

〉
τ

=
∫

dr0

∫ r0

r0

Dr(τ ) exp

{∫ β

0
−

[
mṙ(τ )2

2
+ 1

2
mω2r(τ )2

]}
(i ṙ(0)r(0)T )

=
∫

D(rn,r−n) exp

[
β

∑
n

−m
(
�2

n + ω2
)

2
rnr−n

] ∑
k

(
�krkr

T
−k

) =
∑

k

�k

mβ
(
�2

k + ω2
)I = 0, (C20)

− 〈
ṙ0ṙ

T
0

〉
τ

=
∫

dr0

∫ r0

r0

Dr(τ ) exp

{∫ β

0
−

[
mṙ(τ )2

2
+ 1

2
mω2r(τ )2

]}
( − ṙ(0)ṙ(0)T )

=
∫

D(rn,r−n) exp

[
β

∑
n

−m
(
�2

n + ω2
)

2
rnr−n

] ∑
k

( − �2
krkr

T
−k

) =
∑

k

−�2
k

βm
(
�2

k + ω2
)I = ω

2m
coth

βω

2
I, (C21)
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and 〈
r0r

T
0

〉
τ

=
∫

dr0

∫ r0

r0

Dr(τ ) exp

{∫ β

0
−

[
mṙ(τ )2

2
+ 1

2
mω2r(τ )2

]}
(r(0)r(0)T )

=
∫

D(rn,r−n) exp

[
β

∑
n

−m
(
�2

n + ω2
)

2
rnr−n

] ∑
k

(
rkr

T
−k

)

=
∑

k

1

βm
(
�2

k + ω2
)I = 1

2mω
coth

βω

2
I, (C22)

where the summations over the Matsubara modes �k can be found in one of the condensed matter physics textbooks [50]. From
the above results, we can obtain 〈(

Ṙ0 + WT

m
Ẋ0

)(
R0 + CT

mω2
X0

)T
〉

= 0;

〈(
Ṙ0 + WT

m
Ẋ0

)(
Ṙ0 + WT

m
Ẋ0

)T
〉

= ω

2m
coth

βω

2
I, (C23)

〈(
R0 + CT

mω2
X0

)(
R0 + CT

mω2
X0

)T
〉

= 1

2mω
coth

βω

2
I,

which are valid for any temperature and they can be reduced to the results in the high temperature regime Eq. (C10) by βω � 1.
After putting them into 〈Frand(τ )FT

rand(s)〉, we get

〈
Frand(τ )FT

rand(s)
〉 =

∑
j

[(
ω2

jWj − C
) sin ωjτ

ω
+ Ej cos ωjτ

][(
ω2

jWj − Cj

) sin ωjs

ωj

+ Ej cos ωjs

]T
ωj

2mj

coth
βωj

2

+ [(
ω2

jWj − Cj

)
cos ωjτ − Ejωj sin ωjτ

][(
ω2

jWj − Cj

)
cos ωjs − Eωj sin ωjs

]T coth(βωj/2)

2mjωj

=
∑

j

Gj (τ − s), (C24)

where Gj (τ − s) is exactly the noise correlation function in Eq. (22). Thus the equation of motion is

mẌτ = −�V (Xτ ) −
∑

j

Bj Ẋτ −
∫ τ

0

∑
j

Rj (τ − s)Ẋs + Frand(τ ), (C25)

where

〈Frand(τ )〉 = 0, (C26)〈
Frand(τ )FT

rand(s)
〉 =

∑
j

Gj (τ − s). (C27)

Therefore this equation of motion holds at arbitrary temperature.
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