
PHYSICAL REVIEW B 96, 134412 (2017)

Theory of the spin Peltier effect

Y. Ohnuma,1 M. Matsuo,1,2 and S. Maekawa1

1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan
2Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 28 June 2017; published 10 October 2017)

A microscopic theory of the spin Peltier effect in a bilayer structure comprising a paramagnetic metal (PM)
and a ferromagnetic insulator (FI) based on the nonequilibrium Green’s function method is presented. Spin
current and heat current driven by temperature gradient and spin accumulation are formulated as functions of
spin susceptibilities in the PM and the FI, and are summarized by Onsager’s reciprocal relations. By using the
current formulas, we estimate heat generation and absorption at the interface driven by the heat-current injection
mediated by spins from PM into FI.

DOI: 10.1103/PhysRevB.96.134412

I. INTRODUCTION

In the field of spintronics, interconversion between heat
and spin current has attracted considerable attention and
has been studied actively since the discovery of the spin
Seebeck effect [1–3]. The spin Seebeck effect refers to the
spin-current generation from heat in magnetic materials [4,5].
The spin Seebeck effect has been observed in a variety of
materials ranging from magnetic metals and semiconductors
to insulators [1–3]. Recently, the spin Peltier effect which is
the reciprocal phenomenon of the spin Seebeck effect, that is,
heat generation from spin current, was reported experimentally
[6,7]. While the spin Peltier effect has been studied using
a phenomenological model [8–14], its microscopic theory is
missing.

In this paper, we formulate a microscopic theory of the
spin Peltier effect in paramagnetic metal (PM)/ferromagnetic
insulator (FI) junction systems by using the nonequilibrium
Green’s function method. To reveal the microscopic mech-
anism of spin and heat transfer, we perform investigations
using the setup shown in Fig. 1, where electron spins in PM,
σ , are coupled with localized spins in FI, S, via the exchange
interaction Jsd.

Let us consider spin accumulation at the interface, δμS ,
generated by the spin Hall effect [15] in PM. Owing to
the exchange interaction, this spin accumulation excites the
localized spins in FI, and then magnon flows are induced,
accompanying both the spin and the heat.

The outline of this paper is as follows. In Sec. II, a brief
review of the spin-current generation in PM/FI is given by
using the nonequilibrium Green’s function. In Sec. III, the heat-
current generation in PM/FI is derived following the formalism
shown in Sec. II. In Sec. IV, we estimate the temperature
change at the PM/FI interface due to the spin Peltier effect. In
Sec. V, we summarize our results.

II. SPIN-CURRENT GENERATION
AT MAGNETIC INTERFACE

In this section, we briefly review spin-current generation
in PM/FI by using the nonequilibrium Green’s function. The
PM/FI interface is modeled using the s-d exchange interaction:

Hsd = Jsd

∑
i∈int

σ i · Si , (1)

where Jsd, σ i , and Si represent the coupling constant of the
exchange interaction, Pauli matrices, and localized spin of FI,
respectively, and

∑
i∈int denotes the summation on the lattice

sites at the interface.
The spin current I S is defined by the time derivative of the

z component of the conduction electron spin in PM, that is,
I S ≡ ∑

i∈P 〈 ∂tσ
z
i 〉, where 〈· · · 〉 denotes the statistical average

[16]. The Heisenberg equation of motion for σ z
i gives [5]

I S = (Jsd/h̄)Re[
∑

i∈int(−i)〈σ+
i (t)S−

i (t)〉], where σ±
i = σx

i ±
iσ

y

i and S±
i = Sx

i ± iS
y

i . After the perturbative calculation
[17,18] of 〈σ+

i (t)S−
i (t)〉 up to the second order of Jsd, the

spin current is given by

I S = J 2
int

2
Re

∫
qkω

(
χR

qr,ωtG
<
kr′,ωt + χ<

qr,ωtG
A
kr′,ωt

)
, (2)

where, we have introduced the shorthand notation∫
qkω

= ∫
d3kd3q

∫ ∞
−∞

dω
2π

. J 2
int is given by J 2

int = (Jsd/h̄)2Nint,
with Nint being the number of sites at the interface. In Eq. (2),
χ

R(<)
qr,ωt is the retarded (lesser) component of the transverse

spin susceptibility in PM given by χ
R(<)
qr,ωt = ∫

δrδt exp[−iq ·
δr + iωδt]χR(<)(r + δr/2,t + δt ; r − δr/2,t − δt), where
χR(r + δr/2,t + δt ; r − δr/2,t − δt) and χ<(r + δr/2,t +
δt ; r − δr/2,t − δt) are defined as χR(r + δr/2,t +
δt ; r − δr/2,t − δt) ≡ −iθ (t1 − t2)〈[σ+

r1
(t1),σ−

r2
(t2)]〉 and

χ<(r + δr/2,t + δt ; r − δr/2,t − δt) ≡ −i〈σ+
r1

(t1)σ−
r2

(t2)〉,
respectively, with r ≡ (r1 + r2)/2, δr = r1 − r2, t ≡
(t1 + t2)/2 and δt = t1 − t2. G

A(<)
kr′,ωt is the advanced

(lesser) component of the transverse spin susceptibility
in FI, and it is given by G

A(<)
kr′,ωt = ∫

δrδt exp[−ik · δr +
iωδt]GA(<)(r′ + δr/2,t + δt ; r′ − δr/2,t − δt), where
GA(r′ + δr/2,t + δt ; r′ − δr/2,t − δt) and G<(r′ + δr/2,t +
δt ; r′ − δr/2,t − δt) are defined as GA(r′ + δr/2,t +
δt ; r′ − δr/2,t − δt) ≡ iθ (t2 − t1)〈[S+

r1
(t1),S−

r2
(t2)]〉 and

G<(r′ + δr/2,t + δt ; r′ − δr/2,t − δt) ≡ −i〈S+
r1

(t1)S−
r2

(t2)〉,
respectively. Here, r is defined in FI, while r′ is defined in
PM. It is noted that G<

kr′,ωt includes the effect of dynamics of
the magnons in the ferromagnet.

Let us focus on the steady state in terms of time
and spatially uniform interface, where χ

R(<)
qr,ωt → χ

R(<)
qω

and G
A(<)
kr′,ωt → G

A(<)
kω . By substituting the Kadanoff Baym

ansatz [18] χ<
qω = 2iImχR

qωf P
ω and G<

kω = 2iImGR
kωf F

ω into
Eq. (2), with f P

ω = f (ω/TP) and f F
ω = f (ω/TF) being the
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FIG. 1. Schematic view of the spin Peltier effect. We consider
spin transport in a bilayer structure consisting of a paramagnetic metal
(PM) and a ferromagnetic insulator (FI), where the electron spins in
PI are coupled with the localized moments in FI via the exchange
interaction Jsd. The spin accumulation at the interface (δμs) is found
to be a driving force of spin and heat current (I S and IQ) by using the
nonequilibrium Green’s functions for electron spin χ and magnon G,
where TC denotes the time ordering on the Keldysh contour.

Bose-Einstein distribution functions in PM and FI, respec-
tively, we obtain the general expression of spin current as
follows:

I S = J 2
int

∫
qkω

ImχR
qωImGR

kω

(
f P

ω − f F
ω

)
. (3)

Equation (3) is a spin-current version of the Meir-Wingreen
formula [17], where J 2

int corresponds to the tunneling probabil-
ity of the spin current at the interface. The integration of ImχR

qω

over q and that of ImGR
kω over k represent the density of states

of the transverse spin fluctuations in PM and FI, respectively.
The difference f P

ω − f F
ω plays a crucial role in spin-current

generation and has a nonvanishing value only when the system
is out of equilibrium. In the following, we investigate the effect
of the temperature difference and the spin accumulation at the
interface.

A. Spin current driven by spin Seebeck effect

First, let us consider the spin Seebeck effect [1–5] that spin
current injection is driven by the temperature difference δT

between PM and FI, given as δT = TP − TF. The difference
between f P

ω and f F
ω is given by

f P
ω − f F

ω = ∂f

∂T
δT . (4)

Substituting Eq. (4) into Eq. (3), we obtain the spin-current
injection due to the spin Seebeck effect as follows [5]:

I S = J 2
int

∫
qkω

ImχR
qωImGR

kω

∂f

∂T
δT . (5)

B. Spin current driven by spin accumulation

Now, let us focus on the spin-current injection driven by
the spin accumulation. The expression of spin accumulation
at the interface is given by δμS = 2eαSHρNλNjc tanh(dN/2λN)
[19,20], where αSH, ρN, λN, jc, and dN are the spin Hall angle,
electrical resistivity, spin diffusion length, charge current, and
thickness of metal, respectively. The retarded and the lesser
components of the spin susceptibility in the metal, χR

qω and χ<
qω,

are modified by the spin accumulation δμS as χR
qω → χR

q,ω+δμS

and χ<
qω → χ<

q,ω+δμS
= 2iImχR

q,ω+δμS
f P

ω+δμS
, respectively.

The difference between f P
ω+δμS

and f F
ω is as follows:

f P
ω+δμS

− f F
ω = ∂f

∂ω

δμS

h̄
. (6)

Substituting Eq. (6) into Eq. (3), we obtain the spin-current
injection driven by spin accumulation as follows:

I S = J 2
int

∫
qkω

ImχR
qωImGR

kω

∂f

∂ω

δμS

h̄
. (7)

Note that Eq. (7) reduces to (S10) in Ref. [21] when we evaluate
spin susceptibility in the metal χR

qω for the noninteracting
electrons.

III. HEAT TRANSPORT MEDIATED BY SPIN CURRENT

In this section, the heat-current generation in PM/FI is
derived according to the formalism developed in Sec. II.
Following Ref. [22], we define the heat current IQ injected into
the ferromagnet as the time derivative of the Hamiltonian of
the ferromagnet Hm, IQ ≡ ∑

i∈F 〈∂tHm〉, where 〈· · · 〉 denotes
the statistical average. The Heisenberg equation of motion for
Hm gives

∂tHm = 1

ih̄
[Hm,Hsd]. (8)

Substituting Eq. (1) into Eq. (8) and taking the statistical
average gives the following heat current:

IQ = −Jsd

∑
i∈int

∂t ′ 〈σ i(t) · Si(t
′)〉t ′→t , (9)

where we use the Heisenberg equation of motion for localized
spin at the interface ∂tSi = (ih̄)−1[Si ,Hm] to derive Eq. (9).

Now we consider the spin-wave approximation in the
lowest order of 1/S0 expansion, with S0 being the size of the
localized spins. The time derivative of Sz

i vanishes because the
z component of the localized spins Sz

i becomes constant. By
performing the perturbative calculation up to the second order
of the interfacial interaction Jsd, we obtain the heat current as

IQ = J 2
int

2
Re

∫
qkω

h̄ω
[
χR

qωG<
kω + χ<

qωGA
kω

]
. (10)

By substituting the Kadanoff Baym ansatz into Eq. (10),
we can rewrite the heat current as

IQ = J 2
int

∫
qkω

h̄ωImχR
qωImGR

kω

(
f P

ω − f F
ω

)
. (11)

Especially, substituting Eqs. (4) and (6) into Eq. (11), we
obtain the interfacial heat current caused by the temperature
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difference:

IQ = J 2
int

∫
qkω

h̄ωImχR
qωImGR

kω

∂f

∂T
δT , (12)

and that caused by the spin accumulation:

IQ = J 2
int

∫
qkω

ωImχR
qωImGR

kω

∂f

∂ω
δμS. (13)

Equations (5), (7), (12), and (13) are summarized by
Onsager’s reciprocal relation [23]:(

I S

IQ

)
=

(
L11 L12

L21 L22

)(
δμS

−δT /T

)
, (14)

where the transport coefficients are given by

L11 = J 2
int

∫
qkω

1

h̄
ImχR

qωImGR
kω

∂f

∂ω
, (15)

L12 = J 2
int

∫
qkω

ImχR
qωImGR

kω

(
−T

∂f

∂T

)
, (16)

L21 = J 2
int

∫
qkω

ωImχR
qωImGR

kω

∂f

∂ω
, (17)

L22 = J 2
int

∫
qkω

h̄ωImχR
qωImGR

kω

(
−T

∂f

∂T

)
. (18)

Substituting the relation ω∂f/∂ω = −T ∂f/∂T into Eq. (17)
yields the relation L12 = L21.

IV. TEMPERATURE CHANGE AT THE INTERFACE

In this section, we estimate the temperature change �T

due to the spin Peltier effect. At the interface, magnons are
excited and accumulated by the spin Peltier effect. The energy
change �E at the interface is generated by the accumulation
of magnons. Then, the temperature change �T is obtained
as �T = �E/CFI, with CFI being the heat capacity of the
ferromagnet.

Now, we formulate the energy change �E of the magnons
with the lesser component of transverse spin susceptibility
G<

kω. In the spin-wave approximation, the operators of local-
ized spins are given by S+

i ≈ √
2S0ai, S

−
i ≈ √

2S0a
†
i , where

ai and a
†
i are the creation and the annihilation operators

of the magnons. Substituting these relations into the lesser
component of transverse spin susceptibility in FI, we obtain
G<

k (t1,t2) = −2iS0〈a†
k(t2)ak(t1)〉. Because the statistical aver-

age of a
†
k(t2)ak(t1) can be interpreted as the number of the

magnons when t2 corresponds to t1, the energy change �E is
given by

�E ≡ −1

2S0

∫
kω

h̄ωIm
(
G<

kω − G0<
kω

)
, (19)

where G0<
kω = 2iImGR

kωf F
ω is the lesser Green’s function of the

free magnons.
Let us consider a bilayer system composed of the plat-

inum (Pt) and the yittrium iron garnet (YIG). In spin-wave
approximation, the retarded component of transverse spin
susceptibility GR

kω is given by GR
kω = 2S0(ω − ωk + iαω)−1,

where ωk = Ak2 + γH0 is the dispersion relation of magnons,

with A, γ , and H0 being the stiffness constant, gyromagnetic
ratio, and static magnetic field in YIG, respectively. α is the
Gilbert damping constant of the magnons. After perturbative
calculation up to the second order of Jsd, we obtain the lesser
Green’s function of the magnons at the interface G<

kω as
follows:

G<
kω = G0<

kω − i
J 2

intS0

αω

∫
q

ImχR
qωImGR

kω

∂f

∂ω

δμS

h̄
. (20)

Equation (20) shows the accumulation of magnons driven
by spin-current injection. Let us consider the rate equation of
the magnons at the interface. Since the number density of the
excited magnons can be derived from the lesser component
of the transverse spin susceptibility in FI, the rate equation of
magnons is written as

∂G<
kω,t

∂t
= −G<

kω,t − G0<
kω

τkω

+ I S
kω, (21)

where τkω = (αω)−1 is the lifetime of the magnons. In
Eq. (21), the source term I S

kω is the spin current of a
particular magnon with the wave number k and frequency
ω, defined as I S

kω ≡ J 2
int

∫
q ImχR

qωImGR
kω(∂f/∂ω)(δμS/h̄). In

the steady state, where the time derivative of G<
kω,t vanishes

(∂G<
kω,t /∂t → 0), Eq. (21) reduces to G<

kω − G0<
kω = I S

kωτkω,
corresponding to Eq. (20).

Substituting Eq. (20) into Eq. (19), we obtain the energy
change of the magnons as

�E = h̄

2α
I S, (22)

where I S is shown in Eq. (7).
The spin susceptibility in Pt, χR

qω, is written as

χR
qω = χN(τ−1

sf + DNq2 + iω)−1 [5], where τsf and DN

are the spin-flip time and the diffusion constant of Pt,
respectively. By integrating I S over ω in Eq. (22) by
using the relation ImGR

kω ≈ −πδ(ω − ωk), we have
�E = −(Nintgs/2)(kBT/h̄ωM)3/2(γ1/γ2)δμS, where gs

is given as gs = (Jsd/h̄)2S0
∫

q ImχR
q,γH0

/(γH0), with ωM

being the maximum energy of the magnons estimated
from the Curie temperature TC as ωM ≡ kBTC/h̄.
The numerical factors γ1 and γ2 are defined by γ1 =∫ 1

0 dx
∫ yM

y0
dyy

√
x(y − y0){4[(1 + x)2 + (ykBT τsf/h̄)2] sinh2

(y/2)}−1 and γ2 = ∫ 1
0 dx

√
x[(1 + x)2 + (γH0τsf)2]−1,

respectively. In the factor γ2, y0 and yM are given by
y0 = h̄γH0/kBT and yM = h̄ωM/kBT , respectively.

We examine the experiment in Ref. [7]. By using the
parameters of Pt in Ref. [7] as ρN = 0.48 μ� · m, λN =
7.3 nm [24], jc = 1.0×109 A/m2, dN = 5 nm, and αSH =
0.013 [15], we obtain the spin accumulation at the interface as
δμS = 2.3×10−8 eV. In the case of YIG, where TC = 565 K
and H0 = 200 Oe, we estimate γ1 = 0.215 and γ2 = 0.285 at
room temperature. Combining the values of δμS, γ1 and γ2,
and α = 10−5 and gs = 0.1 [24], we obtain the energy change
normalized per site of localized spin at the interface �E/Nint

as �E/Nint = −3.3×10−5 eV. Taking Nint = 1.0×1011 and
CFI = c̃FIρFIa

3
FINint, with the density ρFI = 5170 (kg/m3),

the lattice constant aFI = 1.24×10−9 m, and the specific
heat c̃FI = 570 J/(kg· K) of YIG, the temperature change is
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estimated to be �T = −1 mK, which is consistent with the
experimental result [7].

Finally, we mention the temperature change �T when the
FI is replaced by a ferromagnetic metal. The Gilbert damping
constant α in a ferromagnetic metal is, in general, much
larger than that in a FI because of the interaction between
the magnons and the conduction electrons [25]. According to
Eq. (22), �T is inversely proportional to α. Therefore, it is
expected that �T in the ferromagnetic metal is suppressed
more than that in the FI.

V. CONCLUSION

In this study, a microscopic theory of the spin Peltier effect
in a magnetic bilayer structure system consisting of PM and
FI was formulated using the nonequilibrium Green’s function
method. We derived the spin and heat currents driven by
temperature gradient as well as by spin accumulation at the
interface in terms of spin susceptibility and the magnons’

Green’s function. These currents have been summarized using
Onsager’s reciprocal relation. In addition, we estimated heat
generation and absorption at the interface due to spin injection
from PM into FI. Our theory will provide a microscopic
understanding of the conversion phenomena between spin and
heat at the magnetic interface.
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