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Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet
trigonal chromium telluride Cr0.62Te
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The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet
Cr0.62Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition.
Critical exponents β = 0.315(7) with a critical temperature Tc = 230.6(3) K and γ = 1.81(2) with Tc = 229.1(1) K
are obtained by the Kouvel-Fisher method whereas δ = 6.35(4) is obtained by a critical isotherm analysis
at Tc = 230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two
independent curves following a single scaling equation M| T −Tc

Tc
|−β = f±(H | T −Tc

Tc
|−βδ) around Tc, suggesting the

reliability of the obtained exponents. Additionally, the determined exponents of Cr0.62Te exhibit an Ising-like
behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with
an extension from two to three dimensions on cooling through Tc.
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I. INTRODUCTION

Two-dimensional (2D) materials such as graphene and
ultrathin transition-metal dichalcogenides have been attracting
significant interest due to their highly tunable physical prop-
erties and immense potential in scalable device applications
[1–4]. However, in contrast to mechanical and optoelectronic
properties, the investigation of magnetism in 2D materials has
received little attention. Recently, the Cr chalcogenides are of
great interest for possible application in spintronic technolo-
gies. The CrXTe3 (X = Si, Ge, Sn) have been identified as
promising candidates for long-range magnetism in monolayer
[5–7]. CrSiTe3 exhibits ferromagnetic (FM) ordering at ∼32 K
in the bulk [8], and it can be enhanced to ∼80 K in monolayer
and few-layer samples [9]. Bulk CrGeTe3 are ferromagnetic at
∼61 K, which is still somewhat low for spintronic applications
[10].

In the binary Cr-based chalcogenides, tellurides CrTe,
Cr3Te4, Cr2Te3, Cr5Te8 are ferromagnetic with metallic
conductivity [11–17], while selenides CrSe, Cr3Se4, Cr2Se3,
Cr5Se8 and sulfides CrS, Cr5S6, Cr3S4, Cr2S3, Cr5S8 are pre-
dominantly antiferromagnetic (AFM) showing either metallic
or semiconducting behavior [18–22]. Among these com-
pounds, the Cr1−xTe system shows ferromagnetism with
Tc of 170 ∼ 360 K [11]. Cr1−xTe with x < 0.1 crystallize
in the hexagonal NiAs structure, while Cr3Te4 (x = 0.25)
and Cr2Te3 (x = 0.33) form monoclinic and trigonal crystal
structures where Cr vacancies occupy in every second metal
layer. According to neutron-diffraction studies, the saturation
magnetization in this system is small and it could be partly
explained if spin canting is taken into consideration for x =
0.125, 0.167, and 0.25 [23]. The magnetic moment induced
on the Cr ion for x = 0.25 is close to an integral number of
Bohr magnetons, suggesting the existence of mixed valence Cr
[23]. However, for Cr2Te3 (x = 0.33), the ordered magnetic
moment of 2.65–2.70μB deduced from the neutron diffraction
is much smaller than that calculated using the ionic model 3μB ,
suggesting the itinerant nature of the d electrons [13,23]. The
electron correlation effects in itinerant ferromagnets has also
been discussed in the photoemission spectra [24]. Until now,

only a few studies were performed on Cr1−xTe with x = 0.375,
of which the trigonal phase exhibits a higher Tc than that of
the monoclinic phase [15].

Trigonal Cr0.62Te exhibits weak itinerant ferromagnetic
character with Tc ≈ 237 K. In order to understand the nature
of the FM transition, we investigated its critical behavior
by modified Arrott plot, Kouvel-Fisher plot, and critical
isotherm analysis. The determined exponents β = 0.315(7)
with Tc = 230.65(26) K, γ = 1.81(2) with Tc = 229.11(5) K,
and δ = 6.35(4) at Tc = 230 K indicate a change in the
nature of magnetic interaction passing from short-range order
to long-range order with an extension from two to three
dimensions on cooling through Tc.

II. EXPERIMENTAL DETAILS

The trigonal Cr0.62Te single crystals were grown by the
self-flux technique starting from an intimate mixture of pure
elements Cr (99.99%, Alfa Aesar) powder and Te (99.9999%,
Alfa Aesar) pieces with a molar ratio of 0.06 : 0.94. Starting
materials were sealed in an evacuated quartz tube, which was
heated to 900 ◦C over 20 h, held at 900 ◦C for 3 h, and then
slowly cooled to 500 ◦C at a rate of 1 ◦C/h. X-ray diffraction
(XRD) data were taken with Cu Kα (λ = 0.15418 nm) radi-
ation of Rigaku Miniflex powder diffractometer. The element
analysis was performed using an energy-dispersive x-ray
spectroscopy (EDX) in a JEOL LSM-6500 scanning electron
microscope, confirming a near-stoichiometric Cr0.62Te single
crystal. The magnetization was measured in a Quantum Design
magnetic property measurement system (MPMS-XL5). The
isothermal M(H ) curves are measured in �T = 1 K intervals.
The applied magnetic field (Ha) has been corrected for the
internal field as H = Ha − NM , where M is the measured
magnetization and N is the demagnetization factor. The
corrected H was used for the analysis of critical behavior.

III. RESULTS AND DISCUSSIONS

The Cr-Te phase diagram was summarized by Herbert
et al. [11]. The multiple Cr1−xTe phases with structures
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FIG. 1. (a) Crystal structure of Cr0.62Te. (b) Single-crystal x-ray
diffraction (XRD) and (c) powder XRD pattern of Cr0.62Te. The
vertical tick marks represent Bragg reflections of the P 3̄m1 space
group.

intermediate between the NiAs and the CdI2 types depend
on the different arrangements of metal atom vacancies. So far,
the trigonal Cr0.62Te in which the Cr atoms are located on four
crystallographically different sites leading to the formation of
a five-layer superstructure of the CdI2 type [Fig. 1(a)] has been
rarely studied [25]. In the CdI2-type structure the second basal
planes for Cr atoms of NiAs-type structure are partially occu-
pied by Cr vacancies and the Cr atoms are surrounded by the
octahedral environment of Te anions [15]. Figure 1(b) presents
the single-crystal x-ray diffraction (XRD) pattern of Cr0.62Te.
Only (00l) peaks are detected, indicating the crystal surface is
normal to the c axis with the plate-shaped surface parallel to
the ab plane. As shown in Fig. 1(c), the powder XRD pattern is
well fitted with the P 3̄m1 space group. The determined lattice
parameters a = 0.7792(2) nm and c = 1.1980(2) nm are very
close to the values in a previous report [15].

Figure 2(a) shows the temperature dependence of magne-
tization M(T ) measured in H = 1 kOe applied parallel to the
c axis, in which a clear paramagnetic (PM) to ferromagnetic
(FM) transition is observed. As shown in the inset in Fig. 2(a),
the critical temperature Tc ≈ 237 K is roughly determined
from the minimum of the derivative dM/dT curve, which is
in good agreement with the value reported previously [15]. The
zero-field-cooling (ZFC) and field-cooling (FC) curves show
significant splitting at low temperatures, indicating a strong
magnetocrystalline anisotropy or spin canting. The 1/M vs T

is also plotted in Fig. 2(a). A linear fit in the high-temperature
range of 290 ∼ 350 K yields the Weiss temperature θ =
272(1) K, indicating predominant FM exchange interaction.
The deduced effective moment μeff = 3.93(3)μB/Cr for the
ZFC curve is close to μeff = 4.04(5)μB/Cr for the FC data,
in agreement with the theoretical value expected for Cr3+ of
3.87μB . Figure 2(b) displays the isothermal magnetization
measured at T = 5 K. The saturation field is Hs ≈ 3 kOe and

FIG. 2. (a) Temperature dependence of magnetization for
Cr0.62Te measured in the external magnetic field H = 1 kOe applied
along the c axis with zero-field-cooling (ZFC) and field-cooling (FC)
modes. The dashed lines are fits by the modified Curie-Weiss law χ =

C

T −θ
+ χ0, where χ0 is the temperature-independent susceptibility, C

is the Curie-Weiss constant, and θ is the Weiss temperature. Inset:
the derivative magnetization dM/dT vs T . (b) Field dependence
of magnetization for Cr0.62Te measured at T = 5 K. Inset: the
magnification of the low-field region.

the saturation moment at T = 5 K is Ms ≈ 1.814(1)μB/Cr.
The inset in Fig. 2(b) shows the M(H ) in the low-field region
and little hysteresis with the coercive force Hc = 278 Oe. All
these results are in good agreement with the previous report
[15]. Then we calculated the Rhodes-Wohlfarth ratio (RWR)
for Cr0.62Te, which is defined as Pc/Ps with Pc obtained
from the effective moment Pc(Pc + 2) = P 2

eff and Ps is the
saturation moment obtained in the ordered state [26,27]. RWR
is 1 for localized systems and is larger in an itinerant system.
Here we obtain RWR = 1.69 for ZFC and RWR = 1.74 for
FC, indicating weak itinerant character of FM in Cr0.62Te.

In order to understand the nature of the FM transition
in Cr0.62Te, one approach is to study in detail the critical
exponents associated with the transition. Isothermal magne-
tization M(H ) around Tc was measured from T = 220 K
to T = 250 K at intervals of 1 K to investigate the critical
behavior, as shown in Fig. 3(a). Figure 3(b) presents the
Arrott plot of M2 vs H/M . Generally, M2 vs H/M should
be a series of parallel straight lines in the high-field range in
the Arrott plot [28]. The intercept of the M2 as a function
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FIG. 3. (a) Typical initial isothermal magnetization curves mea-
sured along the c axis around Tc = 237 K (orange symbol and line)
for Cr0.62Te. (b) Arrott plots of M2 vs H/M around Tc for Cr0.62Te.

of H/M on the H/M axis is negative above Tc while it
is positive below Tc. The line of M2 vs H/M at Tc should
pass through the origin. According to the criterion proposed
by Banerjee [29], the order of the magnetic transition can
be determined from the slope of the straight line: the
positive slope corresponds to the second-order transition while
the negative corresponds to the first-order one. Apparently,
the positive slope of the M2 vs H/M implies that the PM-FM
transition in Cr0.62Te is a second-order one, as shown in
Fig. 3(b). However, all the curves in this plot are nonlinear and
show downward curvature even in the high-field region, which
indicates that the long-range Landau mean-field theory with
β = 0.5 and γ = 1.0 is not satisfied for Cr0.62Te according
to Arrot-Noaks equation of state (H/M)1/γ = aε + bM1/β ,
where ε = (T − Tc)/Tc is the reduced temperature, and a and
b are constants [30]. Hence, a modified Arrott plot should be
used to obtain the critical parameters.

It is well known that for a second-order transition, its
critical behavior can be characterized in detail by a series
of interrelated critical exponents [31]. In the vicinity of a
second-order phase transition, the divergence of correlation
length ξ = ξ0|(T − Tc)/Tc|−ν leads to universal scaling laws
for the spontaneous magnetization Ms and the inverse initial

magnetic susceptibility χ−1
0 . The mathematical definitions of

the exponents from magnetization can be described as

Ms(T ) = M0(−ε)β, ε < 0, T < Tc, (1)

χ−1
0 (T ) = (h0/m0)εγ , ε > 0, T > Tc, (2)

M = DH 1/δ, ε = 0, T = Tc, (3)

where ε = (T − Tc)/Tc is the reduced temperature, and
M0, h0/m0, and D are the critical amplitudes [31,32].
Parameters β (associated with Ms), γ (associated with χ0),
and δ (associated with Tc) are critical exponents. A 3D Heisen-
berg model (β = 0.365,γ = 1.386), a 3D XY model (β =
0.345,γ = 1.316), a 3D Ising model (β = 0.325,γ = 1.24),
and a tricritical mean-field model (β = 0.25,γ = 1.0) are used
to construct a modified Arrott plots [33], as given in Fig. 4. All
these models yield quasistraight lines in the high-field region,
however, the lines in Fig. 4(d) are not parallel to each other,
indicating that the tricritical mean-field model is not satisfied.
In order to distinguish which model is the best, normalized
slopes (NS), which is defined as NS = S(T )/S(Tc) (where
S(T ) is the slope of M1/β vs (H/M)1/γ ), are plotted in Fig. 5. In
an ideal model, all values of NS should be equal to 1.0 because
the modified Arrott plot should consist of a series of parallel
straight lines. For Cr0.62Te, the NS of a 3D Ising model is close
to NS = 1 mostly below Tc, while that of a 3D Heisenberg
model is best above Tc, indicating that the critical behavior
of Cr0.62Te may not belong to a single universality class.

In order to obtain the precise critical exponents β and γ ,
a rigorous iterative method has been used [34]. The linear
extrapolation from the high-field region to the intercepts with
the axis M1/β and (H/M)1/γ yields reliable values of Ms(T )
and χ−1

0 (T ). A set of β and γ can be obtained by fitting
data following Eqs. (1) and (2), which is used to reconstruct
a new modified Arrott plot. Then, a new set of β and γ

can be obtained. This procedure is repeated until the values
of β and γ do not change. By this method, the obtained
critical exponents do not depend on the initial parameters,
which confirms that these critical exponents are reliable and
intrinsic. Figure 6(a) presents the final Ms(T ) and χ−1

0 (T ) with
the solid fitting curves. The critical exponents β = 0.314(7)
with Tc = 230.76(9) K and γ = 1.83(2) with Tc = 229.0(2) K
are obtained. More accurately, the critical exponents can be
determined according to the Kouvel-Fisher (KF) method [35]:

Ms(T )

dMs(T )/dT
= T − Tc

β
, (4)

χ−1
0 (T )

dχ−1
0 (T )/dT

= T − Tc

γ
. (5)

According to the KF method, Ms(T )/[dMs(T )/dT ] and
χ−1

0 (T )/[dχ−1
0 (T )/dT ] are linear functions of temperature

with slopes of 1/β and 1/γ , respectively. As shown in
Fig. 6(b), the linear fits give β = 0.315(7) with Tc = 230.6(3) K
and γ = 1.81(2) with Tc = 229.1(1) K, respectively, which are
consistent with those generated by the modified Arrott plot.

As confirmation, the critical exponents can be tested
according to the prediction of the scaling hypothesis. In
the critical asymptotic region, the magnetic equation can be
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FIG. 4. The isotherms of M1/β vs (H/M)1/γ with parameters of (a) 3D Heisenberg model, (b) 3D XY model, (c) 3D Ising model, and (d)
tricritical mean-field model. The straight lines are the linear fit of isotherms at different temperatures.

written as [31]

M(H,ε) = εβf±(H/εβ+γ ), (6)

where f+ for T > Tc and f− for T < Tc, respectively, are the
regular functions. In terms of renormalized magnetization m ≡
ε−βM(H,ε) and renormalized field h ≡ ε−(β+γ )H , Eq. (6) can

FIG. 5. Temperature dependence of the normalized slopes NS =
S(T )/S(Tc).

be written as

m = f±(h); (7)

it implies that for true scaling relations and the right choice of
β, γ , and δ values, scaled m and h will fall on two universal
curves: one above Tc and another below Tc. This is an important
criterion for the critical regime. Following Eq. (7), scaled m

vs scaled h has been plotted in Fig. 7(a), with the logarithmic
scale in the inset of Fig. 7(a). It is rather significant that all
the data collapse into two separate branches: one below Tc

and another above Tc. The reliability of the exponents and
Tc has been further ensured with more rigorous method by
plotting m2 vs h/m, as shown in Fig. 7(b), where all data also
fall on two independent branches. This clearly indicates that
the interactions get properly renormalized in critical regime
following scaling equation of state. In addition, the scaling
equation of state takes another form:

H

Mδ
= k

( ε

H 1/β

)
, (8)

where k(x) is the scaling function. Based on Eq. (8), all
experimental curves will collapse into a single curve. The
inset in Fig. 7(b) shows the MH−1/δ vs εH−1/(βδ) for Cr0.62Te,
where the experimental data collapse into a single curve,
and Tc locates at the zero point of the horizontal axis. The
well-rescaled curves further confirm the reliability of the
obtained critical exponents.
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FIG. 6. (a) Temperature dependence of the spontaneous magne-
tization Ms (left) and the inverse initial susceptibility χ−1

0 (right)
with solid fitting curves for Cr0.62Te. (b) Kouvel-Fisher plots of
Ms(dMs/dT )−1 (left) and χ−1

0 (dχ−1
0 /dT )−1 (right) with solid fitting

curves for Cr0.62Te.

The critical exponent δ can be determined by the critical
isotherm analysis from M(H ) at Tc following Eq. (3). It
is determined that Tc = 230 K from the obtained critical
exponents. Thus, the isothermal magnetization M(H ) at
Tc = 230 K is shown in Fig. 8, where the inset plots the
logarithmic scale. The log(M)-log(H ) relation yields straight
line at higher field range (H > 3 kOe) with the slope 1/δ,
where δ = 6.35(4) is obtained. According to the statistical
theory, these three critical exponents should agree with the
Widom scaling relation [36]:

δ = 1 + γ

β
. (9)

Using the β and γ values determined from the modified
Arrott plot and Kouvel-Fisher plot, we obtain δ = 6.83(7)
and δ = 6.75(6), respectively, which slightly deviates from
that obtained from critical isotherm analysis δ = 6.35(4). The
slight deviation from the Widom scaling law indicates that
the critical behavior of Cr0.62Te does not belong to a single
university class as a result of possible complex competition of
several magnetic interactions.

FIG. 7. (a) Scaling plots of renormalized magnetization m vs
renormalized field h below and above Tc for Cr0.62Te. Inset: the
same plots in log-log scale. (b) Renormalized magnetization and field
replotted in the form of m2 vs h/m for Cr0.62Te. Inset: the rescaling
of the M(H ) curves by MH−1/δ vs εH−1/(βδ).

The obtained critical exponents of Cr0.62Te, as well as
those of different theoretical models [37–39]. are listed in
Table I for comparison. As we can see, the critical exponents
of Cr0.62Te do not belong to any single universality class. For
a homogeneous magnet, the universality class of the magnetic
phase transition depends on the exchange distance J (r). A
renormalization-group theory analysis suggests that the long-
range exchange interaction decays as J (r) ∼ r−(d+σ ), where
d is the spatial dimension and σ is a positive constant, and
the short-range exchange interaction decays as J (r) ∼ e−r/b,
where b is the spatial scaling factor [32,37,40]. The long- or
short-range of spin interaction depends on the value of σ ,
which is determined by [32,34,41]

γ = 1 + 4

d

(
n + 2

n + 8

)
�σ + 8(n + 2)(n − 4)

d2(n + 8)2

×
[

1 + 2G( d
2 )(7n + 20)

(n − 4)(n + 8)

]
�σ 2, (10)

134410-5



YU LIU AND C. PETROVIC PHYSICAL REVIEW B 96, 134410 (2017)

TABLE I. Comparison of critical exponents of Cr0.62Te with different theoretical models.

Composition Reference Technique Tc β γ δ

Cr0.62Te this work modified Arrott plot 230.76(9) 0.314(7) 1.83(2) 6.83(7)
this work Kouvel-Fisher plot 230.65(26) 0.315(7) 1.81(2) 6.75(6)
this work critical isotherm 6.35(4)

{d : n} = {2 : 1}
2D short range [J (r) ∼ e−r/b] 37 theory 0.125 1.75 15.0
{d : n} = {2 : 1}
2D long range [J (r) ∼ r−(d+σ )] 37 theory 0.298 1.393 5.67
{d : n} = {3 : 1}
3D Ising model 38 theory 0.325 1.24 4.82
{d : n} = {3 : 2}
3D XY model 38 theory 0.345 1.316 4.81
{d : n} = {3 : 3}
3D Heisenberg model 38 theory 0.365 1.386 4.8
Mean-field model 38 theory 0.5 1.0 3.0
Tricritical mean field 39 theory 0.25 1.0 5.0

where �σ = (σ − d
2 ) and G( d

2 ) = 3 − 1
4 ( d

2 )2, n is the spin
dimensionality. The short-range Heisenberg model is valid
when σ > 2, while the long-range mean-field model is
satisfied when σ < 3/2. In the present case, based on the
experimental γ = 1.81(2), it can be obtained that σ = 1.626
following Eq. (10). It can be seen that σ lies between the long-
range and short-range interaction (3/2 < σ < 2). In addition,
one can see that γ = 1.81(2) is close to the short-range
interaction with {d : n} = {2 : 1} (β = 0.125, γ = 1.75, and
δ = 15.0), however, β = 0.315(7) approaches the long-range
interaction with {d : n} = {2 : 1} (β = 0.298, γ = 1.392, and
δ = 5.67) and/or 3D Ising model with {d : n} = {3 : 1} (β =
0.325, γ = 1.24, and δ = 4.82) (as listed in Table I). The
previous photoemission spectrum of Cr0.62Te also confirmed
the existence of short-range FM interaction above Tc [24]. Here
the extension from d = 2 to d = 3 passing through Tc indicates
that Cr0.62Te features quasi-two-dimensional character of
chemical bonds and non-negligible exchange interaction along
the c axis through the Cr deficient layers; the n = 1 generally
implies uniaxial or Ising-like magnetic interaction. In addition,

FIG. 8. Isotherm M vs H plot collected at Tc = 230 K for
Cr0.62Te. Inset: the same plot in log-log scale with a solid fitting
curve.

it is found that the experimental critical exponent of γ is
slightly larger than the theoretical value of 2D short-range
interaction, and the value of β lies between the theoretical
values of 2D long-range interaction and 3D Ising model,
further indicating non-negligible interlayer coupling and
strong electron-electron correlation in this material [15,24].
The significant hybridization between Cr 3d and Te 5p bands
and strong electron-correlation effects were also previously
observed by photoemission spectroscopy [24], confirming the
weak itinerant ferromagnetic character of Cr0.62Te.

IV. CONCLUSIONS

In summary, we have made a comprehensive study of the
critical region at the PM-FM phase transition in the weak
itinerant ferromagnet Cr0.62Te. This transition is identified
to be second order in nature. The critical exponents β, γ ,
and δ estimated from various techniques match reasonably
well and follow the scaling equation, confirming that the
obtained exponents are unambiguous and intrinsic to the
material. Above Tc the critical exponent γ = 1.81(2) is close
to the short-range interaction with {d : n} = {2 : 1} (β =
0.125, γ = 1.75, and δ = 15.0) whereas below Tc the critical
exponent β = 0.315(7) lies between the long-range interaction
with {d : n} = {2 : 1} (β = 0.298, γ = 1.392, and δ = 5.67)
and 3D Ising model with {d : n} = {3 : 1} (β = 0.325, γ =
1.24, and δ = 4.82), in correspondence to different classes on
the two sides of the magnetic transition. It suggests a change in
the nature of magnetic interaction when crossing the transition
point, passing from short-range order to long-range order with
exchange interaction extending from two to three dimensions
on cooling through Tc. Furthermore, with the rapid develop-
ment in the field of 2D materials, we expect our experimental
work to stimulate broad interest in reducing bulk Cr0.62Te to
monolayer sheets and possible spintronic application.
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